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Abstract

In the face of recent wildfires across the Western United States, it is essential that we under-

stand both the dynamics that drive the spatial distribution of wildfire, and the major obstacles

to modeling the probability of wildfire over space and time. However, it is well documented

that the precise relationships of local vegetation, climate, and ignitions, and how they influ-

ence fire dynamics, may vary over space and among local climate, vegetation, and land use

regimes. This raises questions not only as to the nature of the potentially nonlinear relation-

ships between local conditions and the fire, but also the possibility that the scale at which

such models are developed may be critical to their predictive power and to the apparent rela-

tionship of local conditions to wildfire. In this study we demonstrate that both local climate–

through limitations posed by fuel dryness (CWD) and availability (AET)–and human activity–

through housing density, roads, electrical infrastructure, and agriculture, play important

roles in determining the annual probabilities of fire throughout California. We also document

the importance of previous burn events as potential barriers to fire in some environments,

until enough time has passed for vegetation to regenerate sufficiently to sustain subsequent

wildfires. We also demonstrate that long-term and short-term climate variations exhibit dif-

ferent effects on annual fire probability, with short-term climate variations primarily impacting

fire probability during periods of extreme climate anomaly. Further, we show that, when

using nonlinear modeling techniques, broad-scale fire probability models can outperform

localized models at predicting annual fire probability. Finally, this study represents a power-

ful tool for mapping local fire probability across the state of California under a variety of his-

torical climate regimes, which is essential to avoided emissions modeling, carbon

accounting, and hazard severity mapping for the application of fire-resistant building codes

across the state of California.
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Introduction

Variation in fire activity arises from patterns of local vegetation, climate, and ignitions on the

landscape. Wildfire thus requires convergence of these factors in the ‘fire regime triangle’,

respectively involving gradients of sufficient flammable resources, conditions that are condu-

cive to propagation of fire, and influences on how fires start and stop. All of these factors are

variable across space and time, and can be mediated by multiple aspects of local conditions

including precipitation, fire weather patterns, human activity, and the length of time since the

most recent fire event [1–4]. Previous examinations by Westerling & Bryant [5], for example,

found nonlinear relationships between many aspects of local climate and fire probabilities

throughout California. Similarly, the relationship between burned area and local population

density, a critical metric for human activity, has been documented to exhibit a non-monotonic

relationship in California [6], and varies globally across climate regions, vegetation regimes,

and local land use [7].

Human activity is well documented to play a dominant role not only in fire ignition, but

also suppression, land fragmentation, and in some cases, the quantity of flammable resources

throughout California [6, 8, 9], particularly in Mediterranean-climate ecoregions [9]. Although

changes in human-induced ignitions may not translate directly into increases in area burned

or in the resultant fire probability at any location [10], human activity is important in predict-

ing fire probability and burned area throughout California at broader scales [11]. For instance,

burned area typically increases in tandem with population density and anthropogenic igni-

tions in moderately populated areas, but decreases in highly populated areas due to a reduction

in fuel continuity and greater management effort towards preventing wildfires [2, 12, 13]. Cali-

fornia encompasses both densely populated urban centers and large tracts of largely uninhab-

ited wildlands, as well as many degrees of habitation in between. Thus, it is critical that we

determine the precise nature of these relationships and their potential for nonlinearity to accu-

rately assess current and future fire probabilities across California’s diverse fire regimes [11].

Variations in local climate also play a major role in determining local fire probability by

altering the quantity and structure of local fuels [14, 15], as well as the dryness of fuel and the

length of the fire season [16–18]. Increasing drought and warming temperatures have been

associated with larger fire size [19, 20], stronger burn intensity, and more rapid rates of spread

by wildfire. This has led to greater suppression difficulty and shortened fire intervals through-

out much of California [21–24]. Examination of the Rim Fire, a large wildland fire that

occurred in the California Sierra Nevada in 2013, found that local water balance (as measured

by climatic water deficit [CWD] and actual evapotranspiration [AET]) is an effective predictor

of both area burned and burn severity [25]. Moreover, CWD was found to be the most effec-

tive predictor of fire distribution surrounding Lake Tahoe, regardless of whether the ignitions

were due to lightning or human activity [26]. However, CWD and AET reflect quite different

aspects of local conditions as relates to vegetation and wildfire occurrence. CWD, which mea-

sures the degree to which evaporative demand exceeds available soil moisture, can be viewed

as a proxy for conditions favorable for vegetation flammability [1]. AET, in contrast, may be

seen as a proxy for vegetation productivity, vegetative biomass, and regrowth [1, 27]. In addi-

tion to long-term climate conditions, shorter-term climate variations have been found to play

a significant role in rates of wildfire occurrence throughout the Western United States [28].

Positive annual AET anomalies have been associated with increased area burned in some eco-

systems [27]. Similarly, wildfire frequencies throughout both northern and southern California

have been positively associated with wetter than average conditions over the preceding three

years due to the ability of wet conditions to spur additional plant growth and fuel buildup [29,

30]. However, the effects of these drivers on wildfire probabilities can be complex, and have
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been observed to interact with ignitions and other anthropogenic factors [31]. To better cap-

ture the dynamics of wildfire on the landscape, it is therefore clear that both human activity

and climatic factors must be taken into account when aiming to predict the probability of fire

across the landscape.

In addition to the effects of local climate and human activity on fire, the amount of time

since the most recent fire may mediate the probability of fire at any given location. It is widely

acknowledged that after each fire event, a period of time must elapse for local vegetation to

regenerate sufficiently to sustain another wildfire. In many ecosystems, flammability (and

therefore the probability of wildfire) may be strongly reduced in the years immediately follow-

ing a fire event due to post-fire fuel limitations, which can reduce the size, severity, and proba-

bility of subsequent burns until vegetation has sufficiently regenerated [32–34]. However, the

actual importance of stand-age in determining local fire probability throughout many Califor-

nia ecosystems remains uncertain and may vary both across vegetation types and among ecor-

egions [32, 35–37]. Further, post-fire succession produces complex shifts in the composition

of the local vegetation that may alter the quantity, structure, and flammability of both live vege-

tation [38] and dead fuels [39] in complex ways. As a result, the relationship between annual

fire probability and the time since last fire may be nonlinear, complex, and contingent on local

climate [11, 12].

Concerns were raised that the broad-scale modeling of fire probabilities at statewide scales

may not be possible without the use of regional sub-models due to the extremely heteroge-

neous nature of climate and vegetation regimes in California. Previous studies have deter-

mined that both the magnitude and nature of the relationship between local conditions and

fire probabilities may differ widely among distinct ecoregions [36, 40], along aridity gradients

[14], and among vegetation types [41] throughout California. Thus, regional models may cap-

ture different relationships for each independent variable. However, multiscalar examinations

of fire risk from local through continental scales found that, while the predictive power of

localized models sometimes remained high when extrapolated to novel regions, such models

typically performed poorly because local conditions often exhibited little overlap with regions

in which models were trained [42]. Thus, these apparent regional differences in the spatiotem-

poral relationship between local conditions and fire may reflect shifts that occur in consistent

ways as local conditions change over space. If so, observed relationships between local climate

and fire probability within each region may each simply represent a portion of the overall non-

linear relationship between local climate and fire probability across a wider climate gradient.

Broad-scale models, which encompass a wider array of conditions, may therefore be more

capable of capturing these underlying relationships than localized models in which the degree

of variation in local climate or human activity is typically limited. Localized modeling also has

several limitations and potential pitfalls in comparison to models constructed across broader

areas. As localized models typically incorporate both a smaller number of fires and a more lim-

ited range of climate conditions, they may be both more prone to overfitting due to the limited

number of specific fire events available in the training dataset, and also less capable of predict-

ing fire probability under conditions that are rarely encountered within that region (e.g., most

commonly encountered at the edges of ecoregions where conditions transition into alternate

vegetation and climate regimes). By incorporating nonparametric estimators into broad-scale

models of fire probability, it may be possible to avoid these limitations while both (a) incorpo-

rating contextual shifts in the importance of each parameter to fire across the conditions

within each local region, and (b) revealing the underlying relationships to fire that persist

across a range of local conditions and spatial scales.

For this study, we applied a GAM (Generalized Additive Model) framework to examine

annual fire probabilities across California from 1970–2016. GAMs have previously been used
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to successfully model the presence and absence of fire across California at longer time scales

[43]. This study refines these methods to predict fire probability at annual intervals by incor-

porating both short- and long-term climate variations, additional temporally dynamic parame-

ters assessing different aspects of human activity on the landscape, and the time elapsed since

the previous fire event within each pixel and year. We use GAMs to address two open ques-

tions in fire science. First, we tested the hypothesis that human activity will have equal or

greater influence on local annual fire probabilities than local climate conditions. Second, we

tested the hypothesis that statewide models of annual fire probability will outperform localized

regional models (based in this study on local California ecoregions). We addressed these

hypotheses with a series of statewide and regional models of annual fire probability developed

using past conditions throughout California from 1970 through 2016 at 1-km scales. Addition-

ally, we determined the potential for nonlinear modeling frameworks to provide robust pre-

dictions of annual fire probability while simultaneously revealing the underlying factors

driving observed patterns of fire throughout California.

Materials and methods

In this study, we developed a method for estimating annual fire probability from 1970–2016

throughout the state of California at a 1000-meter spatial resolution using a GAM framework.

To capture both long-term conditions and interannual variability, we incorporated both

1951–1980 climate normals and the mean deviation from these normal conditions over the

three years preceding each year of interest (i.e. each year under examination). Three-year devi-

ations from climate normals were used in preference to annual deviations as a compromise

between incorporating conditions in the year of interest and the documented effects of climate

conditions in the years preceding the year of interest on wildfire [44]. This coincides with an

ecologically meaningful period, as wet conditions over the preceding three years have previ-

ously been associated with greater wildfire frequencies throughout California [29, 30]. In addi-

tion, this model incorporated multiple aspects of human activity and development on the

landscape, including local housing density, distance from roads or electrical infrastructure,

and the proportion of the local area under agricultural cultivation.

Our GAM framework, while appropriate for predicting probability across broad areas, does

not attempt to mechanistically model the ignition, progression, or intensity of any specific fire

event. Instead, the GAM framework provides spatially explicit predictions of fire probability

across the California landscape in order to contextualize management practices and to project

future fire probabilities under variable climate and land use regimes. Further, to compare how

statewide versus regional models influence the accuracy of predicted fire probability, we used

data at the state level and for each CalVeg ecosystem province [45], which we later explain in

more detail.

Data sources

Climate data used in this study was drawn from the California Basin Characterization Model

v8 [46, 47], and consists of monthly estimates of cumulative water deficit (CWD) and actual

evapotranspiration (AET) from 1951–2016. This dataset represents a 270-m grid-based model

of water balance calculations that incorporates climate inputs through PRISM data [48] in

addition to solar radiation, topographic shading, cloudiness, and soil properties to estimate

evapotranspiration [49]. Using these monthly values, we calculated the 1951–1980 mean CWD

and AET normals, as well as mean deviations from those normals over a three-year period pre-

ceding each year of interest.
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Cultivated and agricultural areas were identified using the 2016 National Land Cover Data-

base data [50], which estimated dominant land cover throughout North America at 30-m reso-

lution. The proportion of cultivated area and of water features that covered each 1-km pixel

were then calculated by resampling to 1-km scale. Mean housing density data was drawn from

the Integrated Climate and Land-Use Scenarios (ICLUS) dataset [51], which provides decadal

estimates of housing density throughout the United States from 1970–2020. As precise contin-

uous estimates of housing density were not available, housing density within each pixel was set

to the mean of its class. Annual values were estimated from decadal data using linear interpola-

tion. Ecoregions within California (hereafter referred to as “regions”) were delineated using

CalVeg ecosystem provinces data [45] (Fig 1).

Road data were drawn from 2018 TIGER layer data, and consisted of all primary and sec-

ondary roads across California [52]. Electrical infrastructure data was drawn from 2020 trans-

mission lines data [53]. In both cases, the distance of nearest roads or transmission lines to

each pixel were then calculated. Pixels which contained roads or electrical infrastructure were

assigned distances of 0 km.

Fire history data was drawn from FRAP fire perimeter data [54], which incorporates perim-

eters of all known timber fires>10 acres (>0.04 km2), brush fires >30 acres (>0.12 km2), and

grass fires >300 acres (>1.21 km2) from 1878–2017. Using this data, the presence of fire in

each 1-km pixel was classified in a binary fashion (e.g. 1 for burned, 0 for unburned) for each

year of interest. Due to computational limits and the quantity of data involved in this study, we

did not calculate burned area within each pixel, or distinguish pixels in which a single fire

occurred in a given year from those in which multiple fires occurred. This data was also used

to calculate the number of years since the most recent fire within any pixel, prior to each year

in which fire probability was projected. Thus, locations in which no fire was observed through-

out the fire record were treated as having gone a maximum of 100 years without a fire event

for the purposes of model construction. These pixels comprised 29% - 33% of data annually

(depending on year), and included both locations in which fire would not be expected (such as

highly xeric regions) as well as locations in fire-prone areas in which no fire had been docu-

mented within the FRAP fire perimeter data used in this study.

Fig 1. Regions of California, corresponding to CalVeg ecosystem provinces [45].

https://doi.org/10.1371/journal.pone.0254723.g001
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Data preparation

To manage computational load, we resampled all datasets to 1-km pixels using Rasterio in

Python v3.7 [55]. In the case of cultivated lands and water features, the percent area covered by

those features within each resulting 1-km pixel was calculated from the 30-meter national land

cover data. Each dataset was masked to exclude locations outside California state boundaries,

pixels in which 50% or more of the area was characterized by water features according to the

2016 National Land Cover Dataset [56], and pixels in which BCM climate data was not avail-

able (S1 Fig). To produce a training dataset of manageable size, we further subsampled these

data using Poisson-disk sampling [57]. This method allows the selection of randomly distrib-

uted pixels across a surface while ensuring a minimum distance threshold between selected

pixels, thereby minimizing the likelihood of clumped samples and the resulting issues arising

from spatial autocorrelation among pixels that were selected in close proximity (S1 Fig,

Table 1). In this study, a minimum distance of 5 km was maintained among all selected pixels

used to train statewide and regional models, resulting in a total of 493,876 pixels selected across

California. This threshold represents a tradeoff between ensuring a high number of pixels and

observed fire events available for model training, while also restricting the dataset to a compu-

tationally manageable size (S1 Table).

Fire probability calculation

Fire probability within each year was calculated using a binomial GAM conducted using

penalized cubic regression splines in the R package MGCV [58] and integrated with additional

Python code using rpy2 [59]. Training data used to predict fire probability within each year

consisted of data from all training pixels selected using Poisson-disk sampling, and from all

years excluding the year currently under prediction. To minimize computational time while

allowing for nonlinear relationships between fire probability and each observed aspect of local

conditions, a maximum of five smoothing terms was allowed for each parameter. The contri-

bution of high and low values of each parameter to predicted fire probability were evaluated

using smoothing curves for each parameter throughout the entirety of the observed parameter

space. To visualize the typical contribution of each parameter to fire probabilities (excepting

short-term deviations from climate normals) over space, we mapped the smoothed coefficient

associated with each parameter using the 1951–1980 climate normal within each pixel across

the state of California.

Table 1. Description of variables used to estimate annual fire probability.

Variable Description Time Variant

Climate

Actual Evapotranspiration (AET) Normal 1951–1980 mean annual actual evapotranspiration (mm) True

Actual Evapotranspiration (AET) Deviation Mean 3-year Deviation from 1951–1980 mean annual actual evapotranspiration normal (mm) True

Climatic Water Deficit (CWD) Normal 1951–1980 mean annual climatic water deficit normal (mm) True

Climatic Water Deficit (CWD) Deviation Mean 3-year Deviation from 1951–1980 mean annual climatic water deficit normal (mm) True

Human Activity

Mean Housing Density Mean housing density within a 25-km radius (Units/ha) True

Proportion Cultivated Area Proportion of 1-km pixel characterized by cultivated lands False

Distance to Roads Distance to paved roads (km) False

Distance to Electrical Distance to electrical infrastructure (km) False

Other

Years Since Fire Years since most recent fire True

https://doi.org/10.1371/journal.pone.0254723.t001
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Evaluating model performance under novel spatial and temporal conditions

To determine the ability of this GAM framework to predict fire probabilities both (a) in novel

locations and (b) in years not present in the training dataset, model performance was assessed

using multidimensional k-fold cross-validation. To accomplish this, all data were divided by

year into one of ten randomly assigned temporal groups of equal size, and all pixels (of those

previously selected by the Poisson-disk mask) were similarly divided into ten randomly

assigned spatial groups of equal size. GAMs were then constructed iteratively while holding

out one temporal and one spatial group as testing data within each iteration. The ability of

these models to successfully separate high-fire probability conditions from low-fire probability

conditions was evaluated by calculating the ROC/AUC score of pixels and years not included

in the training dataset during each iteration. The ROC/AUC score is a performance measure-

ment for classification problems that evaluates the degree to which the two classes (in this case

burned and unburned locations in a given year) can be separated by a given model, with

scores� 0.5 indicating no separation between classes by the model, and scores of 1.0 indicat-

ing perfect separation [60]. Overall model performance was thus reflective of the ability of a

given model permutation to predict fire probabilities in both years and locations that were

novel to the data on which it was trained. This metric was preferred to other classification met-

rics such as balanced accuracy, recall, or F1 scores [61] because the annual probability of fire in

any location was not expected to exceed 50% in any case. As a result, predicted binary classifi-

cations were expected to be zero (i.e. no fire) in all cases. Other metrics that accounted for pre-

dicted probabilities of a positive event, such as log-loss or Brier scores were also found to be

inappropriate, due either to the unbalanced nature of the annual fire occurrences versus

absences, which lead to biases in log loss scores, or to the comparative rarity of fire events,

which limit the utility of Brier scores [62, 63]. Thus, ROC/AUC scores, which were resilient to

these issues [64] were selected as the most appropriate metric for evaluating model

performance.

We applied similar methods to evaluate whether localized models of fire probability outper-

formed models constructed using data distributed across all of California. To accomplish this,

we tested the performance of localized models in predicting fire probability within their region

using identical methods to those described above. In these regional models, however, both

training and testing data were restricted to pixels located within the region of interest prior to

assigning randomized spatial groups for cross-validation.

To determine whether regional models provided superior predictive ability to statewide

models when making predictions in a region not used in training of the statewide model, we

trained statewide models in iterative fashion similar to the methods described above. However,

among statewide models used for these comparisons, holdout pixels were not chosen ran-

domly in each iteration, and instead consisted of all pixels within a given region. Thus, in each

iteration, we tested model performance only within a novel region not used in model training.

We then assessed whether regional models significantly outperformed these statewide models

in predicting fire probabilities within each region not used in training of the statewide model.

This was accomplished by testing for significant differences in ROC/AUC scores between

statewide and regional models using pairwise T-tests across all model iterations. Additionally,

we evaluated the degree to which predictions of 1970–2016 mean fire probabilities were corre-

lated to observed 1970–2016 (representing the period for which predictions were produced)

and 1930–2016 (representing a longer period that allowed a more robust estimation of annual

fire probabilities from observed fire data) mean annual fire probabilities calculated from the

observed frequency of fire events within each 1-km pixel according to FRAP fire history data

[54].
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Impacts of local climate and human activity on fire probability

The contributions of local climate and human activity to local fire probability were evaluated

in three ways. First, to evaluate the contribution of each parameter across the range of

observed spatiotemporal variation in local conditions across California, the smoothed coeffi-

cients of each parameter were plotted using matplotlib [65]. Second, to visualize the contribu-

tions of each parameter to resulting fire probability over space, we produced raster maps of the

smoothed coefficients associated with the 1970–2016 mean value of each parameter at a 1-km

resolution across California. Third, to evaluate the importance of each category of local condi-

tions (i.e. local climate conditions, human activity, and short-term deviations from long-term

climate normals), we evaluated the degree to which predictions of mean annual fire probability

from 1970–2016 differed when the effects of all parameters other than the parameter(s) of

interest were eliminated. This was accomplished by first calculating annual fire probabilities

using the parameter coefficients produced by the full GAM, while eliminating the effects of

parameters not included in the subset being evaluated (e.g. climate variables). In the case of

parameters that had no meaningful null value (such as climate normals), the effect of spatial

variation on fire probability was eliminated by setting the climate conditions in each pixel to

the mean value observed in the training set. Conversely, in the case of those parameters for

which a value of zero was meaningful (e.g. mean housing density, the proportion of cultivated

area, and short-term climate deviations within each pixel), the effect of spatial variation on fire

probability was eliminated by setting the value of that parameter to zero. To eliminate the

effects of distance-related parameters, we set their values to the maximum observed in the

training dataset (as zero values would typically coincide with locations in which their influence

was strongest, and no other inherent null value existed). We then evaluated the contributions

of each subset of parameters to overall predictions of annual fire probability by correlating the

predictions of mean fire probability produced by those sub-models (climate parameters only,

human activity only, and climate normals only) to those of the full model using Pearson’s cor-

relation coefficients.

We assessed the importance of each parameter to fire probability by evaluating the degree

to which mean annual predicted fire probabilities were correlated to mean observed annual

fire probabilities from 1970–2016. We also calculated predictions of annual fire probability

using the same GAMs, while eliminating the effects of parameter(s) that fell within a given sub-

category (i.e. local climate conditions, human activity, or short-term deviations from normal

climate conditions). We then assessed the degree to which each subcategory of local conditions

contributed to the predictions of annual fire probability by evaluating their predicted mean

annual fire probabilities using both (a) predictions of fire probability calculated using the full

model, and (b) the observed mean annual fire probability.

Results and discussion

All parameters included in this analysis exhibited significant relationships to annual fire prob-

ability in statewide models (Table 2). High ROC/AUC values also indicated that areas of high

fire probability were separated successfully from those with low fire probability (ROC/

AUC = 0.770, Table 3; ROC/AUC values > 0.5 and� 1.0 indicate successful separation).

Additionally, predictions of fire probability produced by the full model were successful in pre-

dicting the observed fire patterns (r = 0.48, p< 0.001, Table 4, Fig 2). This degree of predictive

power is particularly impressive considering the limited timescale of the observed fire records

and given the many locations and years in which conditions were likely primed for fire events

but did not actually burn due to lack of ignition.
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Effects of agriculture and human activity on fire probability

Across California, both local climate and human activity contributed to observed patterns of

fire. However, eliminating either climatic or anthropogenic factors resulted in significant shifts

in predicted fire probabilities (Table 2, Figs 3 and 4). As hypothesized, the effects of human

activity (housing density, percent cultivated area, and distances to roads or electrical infra-

structure) were better predictors of local fire probability than local climate (r = 0.396 versus

r = 0.302 for climate-only submodels, see Table 4). Furthermore, human activity on the land-

scape exhibited complex and sometimes antagonistic influences on fire probability. Notably,

local housing density exhibited a complex relationship to fire that could either reduce or

increase local fire probability depending on the level of development. In locations experiencing

a high level of development (housing densities > 250 units/ha), greater housing density was

strongly associated with reduced annual fire probability (Fig 5F), likely due to reduced fuel

availability and increasingly effective fire management and suppression [6, 11, 66]. Similarly,

low housing density was typically associated with reductions in annual fire probability (Fig

5F), likely due to fewer human-induced ignitions. In contrast, areas with moderate housing

densities throughout the surrounding (25 km) area revealed higher annual fire probabilities

(Fig 5F), likely due to a confluence of more frequent anthropogenic ignitions, greater fuel

availability due to largely intact vegetation, and in some areas, limited accessibility to fire con-

trol personnel. These areas often reflect regions with scattered homes throughout the wild-

land-urban interface, as well as areas such as portions of the Southern California mountains

such as the Angeles and Los Padres National Forests (Fig 1). Despite sometimes exhibiting few

Table 2. Parameter significance of the statewide Generalized Additive Model.

Parametric Coefficient Estimate Std. Error Z value p-value

Intercept -6.581 0.102 -64.18 <0.001

Smoothed Parameter EDF Ref. df Chi squared p-value

AET Normal 3.978 4 134.524 <0.001

CWD Normal 3.971 4 252.579 <0.001

AET Deviation 2.803 4 15.084 <0.001

CWD Deviation 1.873 4 5.673 0.03

Cultivated Area 3.043 4 107.926 <0.001

Mean Housing Density 3.029 4 106.490 <0.001

Years Since Fire 3.915 4 237.608 <0.001

Distance to Roads 2.549 4 11.089 0.004

Distance to Electrical 3.111 4 62.756 <0.001

The estimated degrees of freedom (EDF) for each model term indicates the potential for a curvilinear response by each term.

https://doi.org/10.1371/journal.pone.0254723.t002

Table 3. Mean ROC/AUC across iterations of both statewide and regional models (averaged across all regions

within California) in predicting fire probabilities in novel years, novel locations, and in novel years at novel loca-

tions not used in model training.

Prediction Type ROC/AUC

Statewide Regional

Novel Locations 0.767 0.716

Novel Years 0.780 0.623

Novel Locations & Years 0.767 0.624

ROC/AUC values are bounded between 0 and 1, with 1 indicating perfect model prediction.

https://doi.org/10.1371/journal.pone.0254723.t003

PLOS ONE Spatiotemporal variation in annual fire probability across California

PLOS ONE | https://doi.org/10.1371/journal.pone.0254723 November 3, 2021 9 / 20

https://doi.org/10.1371/journal.pone.0254723.t002
https://doi.org/10.1371/journal.pone.0254723.t003
https://doi.org/10.1371/journal.pone.0254723


Table 4. Pearson correlation between observed 1970–2016 (and 1930–2016) fire probability and predicted fire

probability from 1970–2016, as well as Pearson correlation among predictions of fire probability generated using

a full model, using only local climate conditions, only local climate normals, human development (consisting of

local housing density, distance to electrical infrastructure, and distance to roads), cultivation (consisting of % cul-

tivated area within each pixel), and time since the most recent fire within each pixel.

Prediction Type Observed Predicted

1970–2016 1930–2016 (versus overall Model)

All Parameters 0.477 0.632

Climate Parameters Only

Overall 0.302 0.353 0.696

Climate Normal 0.305 0.356 0.998

Human Activity Only

Overall 0.396 0.565 0.762

Development 0.405 0.605 0.742

Cultivation 0.131 0.145 0.302

Time Since Fire Only

0.402 0.702 0.652

Correlations were significant (p <0.001, df = 403,995) in all cases.

https://doi.org/10.1371/journal.pone.0254723.t004

Fig 2. (a) Observed mean annual fire return probabilities, (b) predicted mean annual fire probabilities from 1970–2016 produced by the statewide model, and (c) by a

composite of all regional models. Boundaries between regions are delineated by black lines in predictions developed by regional models.

https://doi.org/10.1371/journal.pone.0254723.g002
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housing units within their boundaries, such regions are located in close proximity (within 25

km) to human activity and ignitions associated with the densely populated Los Angeles metro-

politan area (S2D Fig). Distances from both primary or secondary roads and from electrical

Fig 3. Predicted changes in mean annual fire probability after (a) eliminating the effects of human activity and after (b) eliminating the effects of variation in climate

conditions throughout California.

https://doi.org/10.1371/journal.pone.0254723.g003

Fig 4. Predicted changes in 1970–2016 mean annual fire probability after eliminating the effects of short-term climate deviations.

https://doi.org/10.1371/journal.pone.0254723.g004
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infrastructure exhibited a minimal relationship to historical fire probability, although fire

probabilities were predicted to decrease among locations where distances from electrical infra-

structure exceeded 45 km (Fig 5I, S2F Fig). In both cases, this pattern may be assumed to result

from lower rates of anthropogenic ignitions among sites that were located at great distances

from these forms of infrastructure [67]. Agricultural activity and cultivation, in contrast to

other forms of human activity, was found to strongly reduce fire probability (Fig 5E). This

effect was likely due to its association with irrigation, accessibility to fire control personnel,

and thinning of more flammable vegetation. Collectively, these results agree with previous

studies documenting the critical role that human activity plays in determining the frequency

of fire across California [11, 68, 69] and that, across California, areas with intermediate popula-

tion densities typically experience the highest probabilities of fire [6, 70, 71]. This study also

highlights that various kinds and intensities of human activity may exert either positive or neg-

ative effects on the probability of fire.

Effects of local climate on fire probability

Local climate conditions played a significant role in predicted fire probability throughout Cali-

fornia (Table 2). AET normals exhibited a strong increase in fire probability as evapotranspira-

tion shifted from low (<10 mm, Fig 5A) to moderate amounts (� 30 mm, Fig 5A), reflecting

the effects of higher vegetative biomass (and therefore fuel availability), across densely vege-

tated areas such as the Sierra Nevada and Klamath ranges (Figs 1 and 5A, S2A Fig). It should

be noted, however, that extremely low AET (AET <10) was associated with increases in fire

probability; this pattern was driven almost exclusively by multiple fires throughout the western

portion of California’s Central Valley (Fig 1), in which frequent large grass fires were observed

throughout areas characterized by extremely low AET values. Exotic grasses often support far

more frequent fire cycles than other vegetation types throughout the Western United States,

and are likely to be the primary driver of this pattern [72, 73]. Our findings thus corroborate

the hump-shaped response of fire activity to productivity first observed by Krawchuk et al.

[74], which forms the basis of the global “varying constraints hypothesis” [1, 2]. However, the

new peak of fire probabilities documented here, associated with “priming” of very unproduc-

tive environments by invasive grasses, may be an important new feature in the overall fire�pro-

ductivity relationship.

In contrast to AET, CWD normals exhibited a positive effect on fire probability among

locations that were characterized by moderate to high water deficits (>~600 mm—<~1100

mm). Across California, such locations typically experienced dry summer conditions that led

to greater fuel flammability and resulting high fire probabilities [75]. However, higher CWD

normals exhibited a negative effect among locations characterized by severe water deficits (>~

1100mm). This pattern likely reflects the limited fuel availability among highly xeric locations,

in which insufficient vegetation is present to sustain the spread of large fires (Fig 5B, S2B Fig).

Eliminating the effects of short-term (3 year) deviations from local climate normals did not

significantly reduce overall model explanatory power when predicting mean annual fire proba-

bilities over multidecadal timescales (Table 4). Nevertheless, short-term climate variations did

have significant (Table 2) and systematic relationships to predicted annual fire probabilities

throughout California (Fig 4). This apparent contradiction likely occurs because short-term

climate variations in both AET and CWD impacted predictions of fire probability predomi-

nantly in those years that most deviated from local normal conditions (Fig 5C and 5D). Short-

term climate deviations are most relevant to fire probabilities in those periods that represent

extreme departures from local climate norms, and thus may not play a major role in determin-

ing fire probability except in years that experience extreme conditions. Three-year climate
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Fig 5. Smoothed coefficients for the statewide generalized additive model. Coefficients include (a) 1951–1980

normal actual evapotranspiration, (b) 1951–1980 normal climatic water deficit, (c) annual deviations from 1951–1980

normal actual evapotranspiration, (d) annual deviations from 1951–1980 normal climatic water deficit, (e) proportion

of cultivated area, (f) annual mean housing density, (g) years since fire, (h) distance from roads, and (i) distance from

electrical infrastructure.

https://doi.org/10.1371/journal.pone.0254723.g005
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anomalies exhibited the most dramatic effect on fire probability in periods with higher than

average CWD (Fig 5D), while years that exhibited unusually low CWD or AET also experi-

enced moderate reductions in fire probability. When examining average fire probabilities

across the years 1970–2016, the elimination of short-term climate deviations produced mild

but systematic shifts in long-term fire probability over space. These shifts largely consisted of

decreases in predicted fire probabilities throughout the transverse and peninsular ranges of

southern California (Figs 1 and 4). Further, extreme climate events were found to affect annual

probabilities throughout much of California (Fig 5C and 5D). This indicates that, while spatial

variation in local climate normals and human activity throughout California may play larger

roles in determining local fire probability throughout California, short-term variations in cli-

mate do play a significant role in the probability of fire in years with extreme conditions, par-

ticularly in certain fire-prone environments. Specifically, these results indicate that periods of

extreme drought (i.e. years with unusually low CWD) are associated with greater annual fire

probability throughout Southern California.

Effects of time since fire on annual fire probability

Time since last fire also played a significant role in annual fire probability throughout Califor-

nia (Table 2). Annual fire probability increased rapidly throughout the first 20 years after a

burn event (Fig 5G). This finding is consistent with previous studies that observed reduced

ignition and spread of wildfire in recently burned portions of the Rocky Mountains [32]. The

rapid restoration of annual fire probability beginning immediately post-fire likely occurs

because, in many fire-prone ecosystems within California, fire-associated tree mortality can be

low [76], and surface fuels such as grasses or surface litter regenerate rapidly after fire. How-

ever, resulting fire sizes may be limited in the years immediately following fires [33], and the

actual strength and duration of post-fire reductions in annual fire probability are likely to vary

among vegetation types and by the rate at which fuels regenerate in a given location [32]. Fire

probability was found to be highest approximately 80 years post fire, likely due to a progressive

accumulation of fuel. As the limited duration of fire records throughout California limited the

maximum observed time since fire to 100 years (i.e. time since fire was always set to a maxi-

mum value of 100 years), there is likely some conflation of locations which have not been

observed to burn within the past 100 years but may burn, and highly xeric or barren locations

in which no fire has likely occurred in thousands of years due to a lack of sufficient fuel to

carry a wildfire. As a result of this data limitation, this model predicts reduced fire probability

in locations in which fire has not occurred for 100 years or more. Additionally, as previous

studies have found that previous fires provide barriers to subsequent fire events for varying

lengths of time across different vegetation types [33, 34, 77], it is likely that some additional

interactions between time since fire and local vegetation may be overlooked in this study due

to a lack of vegetation maps that track historical vegetation at annual timescales. Nevertheless,

the observed reductions in probability of fire in the years following a prior fire event empha-

sized the importance of the short-term temporal aspect of fire load on wildfire across Califor-

nia, and the potential for previous burn events to act as potential barriers to fire. This pattern

also indicated that management practices such as controlled burns or fuel reductions, if con-

ducted safely and at frequent intervals, could significantly reduce wildfire probabilities

throughout much of California.

Modeling fire probability at statewide versus regional scales

The statewide model systematically outperformed regional models in successfully distinguish-

ing between areas of high and low fire probability (Table 3). Further, predictions of mean
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annual fire probability produced by regional models demonstrated no significant correlation

to observed historical fire probabilities within the region in which they were trained (r<0.01,

p = 0.11 among regional models [excluding the Sonoran and Mojave Desert regions in which

an insufficient number of fires were observed to produce regional models, Figs 1 and 2C], ver-

sus r = 0.59, p<0.01 among statewide models). While relationships between each parameter

and predicted fire probabilities were not always consistent among regions, this appeared to

largely be the result of either limited variation in a given parameter within a region (e.g. cli-

matic homogeneity), or of overfitting on individual large fire events due to limited number of

fires observed within some regions. Furthermore, regional models have previously been

observed to perform poorly when applied to conditions which did not overlap with those in

which they were trained [42]. In this study, this effect was primarily observed near the borders

between adjacent regions, where local conditions were often different from the remainder of

that region, and in which predicted fire probabilities produced by regional models were there-

fore sometimes wildly inaccurate. Thus, while the contributions and relative importances of

local conditions may vary with the status of local conditions over space [7, 42, 69], this study

demonstrates that, when working at 1-km spatial resolution, localized modeling of fire proba-

bility is not necessarily desirable or preferable to broad-scale modeling. When using a nonlin-

ear modeling framework that is capable of adapting to differing relationships between local

conditions and the resulting fire regime, localized or regional modeling approaches may limit

model transferability to other regions [42], and by extension, transferability to new conditions

within that region. Further, this study indicates that regional models underperform broad-

scale models even within their own boundaries due to their reduced quantity of training data,

greater potentiality for edge effects, and increased potential for overfitting to specific fire

events. In contrast, broad-scale state-wide or multi-region models benefit from the incorpo-

ration of a wider range of conditions, a greater number of historical fire events, and fewer arti-

ficial disjuncts in predicted fire probability. Further, broad-scale models demonstrate high

predictive ability among both novel locations and novel years (Table 3). As computational

power and the scope of spatially explicit data continue to increase, these results emphasize the

power of large-scale machine learning techniques to provide powerful, holistic models of fire

probability. It should be noted, however, that while broad-scale models may outperform

regional models at 1-km resolution, finer-scale models of fire behavior, which are more sensi-

tive to subtle variations in local conditions, may still require highly localized modeling frame-

works. Additionally, this dataset only examines timber fires of 10+ acres (0.04 km2), brush

fires of 30+ acres (0.12 km2), and grass fires of 300+ acres (1.21 km2). Thus, this dataset likely

overlooks many small fires that were rapidly contained or failed to spread sufficiently to be

included in FRAP records, and for which finer-scale analysis might be required.

Comparison to competing models

Our findings corroborate generalized constraints on fire activity reviewed in Krawchuk and

Moritz [1], as well as prior studies by Syphard [19] and Mann [11] in which local climate and

human activity were observed to play critical roles in determining the local probability of fire

throughout California. However, this method exhibits several advantages over previous meth-

ods. For instance, our model derived the response curve of fire probability to each parameter

directly from the historical data, rather than restricting those responses to linear [11, 19], log

[78], or predetermined polynomial orders [11]. In contrast, GAM response curves are based

on multiple smooths rather than the parameterization of preset curve types. The model used in

this study was therefore far less restricted in its ability to model nonlinear responses. By gener-

ating these response curves directly, this method provides unique insights into the
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contributions of human activity and local climate to the resulting fire probabilities both

throughout the observed range of each parameter (Fig 5) and across California (S2 Fig).

Importantly, the high cross-validated ROC/AUC scores exhibited by models produced in this

study, as well as the strong correlations between predicted and observed fire frequencies

(Tables 3 and 4) indicate that these curves meaningfully predict actual fire probabilities and do

not suffer from overfitting.

Conclusions

This study demonstrates that local climate–through limitations posed by fuel dryness (CWD)

and fuel availability (AET)–plays an important and predictable role in determining the annual

probabilities of fire throughout California. Further, our findings emphasize the importance of

incorporating human activity–through influences on ignitions and suppression of fires–into

predictions of fire probability over space and time. We also document the importance of previ-

ous burn events as potential barriers to fire in some environments, until enough time has

passed for vegetation to regenerate sufficiently to sustain wildfire events. While confirming

previous findings that human activity is critical for fire prediction, this study also demonstrates

that, although interannual climate variation typically only exhibits significant impacts of fire

probability in years that undergo extreme conditions, such changes can be an important aspect

of fire probability, particularly in certain fire-prone regions such as the southern California

shrublands and forests. Further, it demonstrates a novel methodology for applying the varying

constraints framework to fire probability modeling that is simultaneously capable of produc-

ing powerful estimates of fire probability while also illuminating the relationship of local cli-

mate and human activity on spatiotemporal patterns of fire. Finally, this study represents a

powerful tool for mapping local fire probability across the state of California under a variety of

historical climate regimes, which is essential to avoided emissions modeling, carbon account-

ing, and hazard severity mapping for the application of fire-resistant building codes across the

state of California. As these methods advance and additional data becomes available, these

techniques may be further refined to examine the effects of historical and projected changes in

vegetation on resulting fire return intervals, to predict future patterns of fire under specific cli-

mate change and development scenarios, to conduct finer-scale assessments of the impacts of

specific forms of human activity or development on local fire probability or hazard, or to

incorporate the effects of additional parameters such as live fuel moisture on resulting fire

probability, size, or burn severity.
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S1 Fig. Study area (a) and example distribution of pixels selected using Poisson disk regulari-

zation with a 5-km minimum distance between pixels (b). Red squares correspond to selected

pixels.

(TIF)

S2 Fig. Smoothed Coefficients of a) 1951–1980 normal actual evapotranspiration, b) 1951–

1980 climatic water deficit, c) proportion of cultivated area, d) mean housing density (over the

years 1970–2016), e) distance from roads, f) distance from electrical infrastructure, and g)

mean time since last fire across California, from statewide GAM model.

(TIF)

S1 Table. Distribution of pixels selected by Poisson-disk regularization among individual

fire events across different minimum distance thresholds.
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