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ABSTRACT: Coenzyme I (nicotinamide adenine dinucleotide, NAD+/NADH) and coenzyme II (nicotinamide 

adenine dinucleotide phosphate, NADP+/NADPH) are involved in various biological processes in mammalian cells. 

NAD+ is synthesised through the de novo and salvage pathways, whereas coenzyme II cannot be synthesised de 

novo. NAD+ is a precursor of coenzyme II. Although NAD+ is synthesised in sufficient amounts under normal 

conditions, shortage in its supply due to over consumption and its decreased synthesis has been observed with 

increasing age and under certain disease conditions. Several studies have proved that in a wide range of tissues, 

such as liver, skin, muscle, pancreas, and fat, the level of NAD+ decreases with age. However, in the brain tissue, 

the level of NADH gradually increases and that of NAD+ decreases in aged people. The ratio of NAD+/NADH 

indicates the cellular redox state. A decrease in this ratio affects the cellular anaerobic glycolysis and oxidative 

phosphorylation functions, which reduces the ability of cells to produce ATP. Therefore, increasing the exogenous 

NAD+ supply under certain disease conditions or in elderly people may be beneficial. Precursors of NAD+ have 

been extensively explored and have been reported to effectively increase NAD+ levels and possess a broad range of 

functions. In this review article, we discuss the pharmacokinetics and pharmacodynamics of NAD+ precursors. 
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1.    Introduction 

 

1.1  A introduction to coenzyme I and coenzyme II 

 

Numerous research results have confirmed that 

nicotinamide adenine dinucleotide (NAD+) and 

nicotinamide adenine dinucleotide phosphate (NADPH) 

participate in mitochondrial energy and redox 

metabolism, reductive biosynthesis and cell signalling 

transduction [1-3], calcium homeostasis [4], gene 

expression [5], aging [6, 7], cell death [8], and other 

biological processes. NAD+ and NADPH exert preventive 

and protective effects in various diseases such as 

ischaemic stroke, cardiovascular disease, neuro-

degenerative disease, and liver damage [9-13].  

NAD+ plays a central role in the biosynthesis of 

NADH, NADP+, and NADPH, all of which require NAD+ 

as a precursor. NAD+ and NADH are transformed into 

each other under the action of NAD+-dependent 

dehydrogenase and NADH-dependent oxidase, and 

NAD+ can generate NADP+ under the action of NAD+ 

kinase. Under the action of glucose-6-phosphate 

dehydrogenase, NADPH-dependent isocitrate dehydro-

genase, NADPH-dependent malate dehydrogenase, and 
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transhydrogenase, NADP+ is converted to NADPH [14]. 

NAD+ is synthesised through the kynurenine pathway, 

Preiss-Handler pathway, and salvage pathway from 

tryptophan, nicotinic acid, and nicotinamide, respectively. 

Figure 1 depicts the conversion between coenzyme I and 

coenzyme II. 

 

 
Figure 1. The conversion between coenzyme I and coenzyme II. NAD+: 

Nicotinamide adenine dinucleotide, NADH: Reduced form of nicotinamide 

adenine dinucleotide, NADP+: Nicotinamide adenine dinucleotide phosphate, 

NADPH: Reduced form of nicotinamide adenine dinucleotide phosphate, 

NADK: NAD+ kinase, G6PDH: Glucose-6-phosphate dehydrogenase, 6GPDH: 

6 glucose phosphate dehydrogenase, IDHs: Isocitrate dehydrogenase, MEPs: 

Malate dehydrogenase, TH: transhydrogenase. 

NAD+ is an essential cofactor for redox reactions and 

energy metabolism. NAD+ is also an important cofactor 

for NAD+ consuming enzymes including sirtuins, 

poly(ADP-ribose) polymerase (PARP) and CD38. NAD+ 

thus directly or indirectly regulates many key cellular 

functions, including energy metabolism, redox, DNA 

repair, cellular senescence and immune regulation, which 

are essential for maintaining metabolic homeostasis and 

health [15, 16]. With aging, the body's NAD+ content 

decreases [17,18]. Alteration in NAD+ homeostasis is 

found in a variety of age-related diseases, including 

neurodegenerative diseases, cardiovascular diseases, 

diabetes, and cancer [19,20]. The age-related decline in 

NAD+ is considered to be a driving force for these aging-

related diseases. The level of NAD+ is strictly regulated 

by CD38 (one major NADase). However, the expression 

and activity of CD38 increase with aging, while inhibition 

or knockout of CD38 can partially prevent the decline of 

NAD+ [21,22]. During aging, senescent cells gradually 

accumulate in the white adipose tissue and liver. Then the 

inflammatory cytokines are secreted by senescent cells, 

the senescence-related secretory phenotype (SASP), can 

induce immune cells to proliferate and to express CD38, 

thereby consume more NAD+ in tissues [23,24]. These 

results reveal a causal relationship between cellular 

senescence and NAD+ decline during aging.  

Correspondingly, to increase intracellular NAD+ can 

prevent age-related metabolic decline [25], improve the 

function of mitochondria and stem cells [26], maintain 

skeletal muscle function and exercise capacity [27]. 

Therefore, elevation of NAD+ may slow down or even 

reverse the progression of many aging-related diseases 

such as neurodegenerative diseases [28], metabolic 

dysfunction [29-31], immune disorders [32], 

mitochondrial dysfunction [33], and vascular aging [34], 

and extend the life span of animals [26,35-37]. 

However, several studies have found that the oral 

administration of NAD+ cannot effectively increase the 

level of NAD+ in plasma or in tissues. On one hand, the 

intestinal effect of NAD+ lowers its bioavailability; on the 

other hand, the excessively large polarity of NAD+ 

inhibits its passive transport through the plasma 

membrane. Therefore, the direct absorption of NAD+ by 

cells is believed to be unfeasible; however, this viewpoint 

may be challenged because a NAD+ transporter has been 

recently identified [38, 39]. Furthermore, the direct 

administration of high doses of NAD+ can cause 

insomnia, fatigue, anxiety, and other adverse reactions 

[40]. NAD+ levels in plasma or tissues do not increase 

significantly after oral administration of NADH mainly 

because orally administered NADH cannot be oxidised to 

NAD+, which inhibits its effective absorption in the 

intestine, although a NADH transporter has also been 

identified [41]; another possible reason is that NADH, 

before being absorbed by the gastrointestinal system in 

the human body, is transformed into a product that cannot 

produce NAM [42, 43]. Currently, intravenous infusion of 
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NAD+ is the only clinically recognised method to increase 

the level of NAD+ in humans [44]. 

In recent years, more and more researchers have 

turned their attention to NAD+ precursors, namely 

nicotinic acid (NA), nicotinamide (NAM), nicotinamide 

mononucleotide (NMN), and nicotinamide ribose (NR). 

These precursors may have potential health and/or 

longevity benefits by increasing the level of NAD+ in the 

body and may be a promising strategy for alleviating 

aging-related diseases (Fig. 2).  

 

 
Figure 2. NAD+ and NAD+ precursors in aging. During aging, the 

inflammatory cytokines secreted by senescent cells, the senescence-

related secretory phenotype (SASP), can induce immune cells to 

proliferate and to express CD38, thereby decreasing NMN and 

NAD+ in tissues [23, 24]. The age-related decline in NAD+ may be 

a driving force for aging-related diseases. The NAD+ precursors may 

have potential health and longevity benefits by increasing NAD+, 

and may be a promising strategy for alleviating aging-related 

diseases. NAD+: Nicotinamide adenine dinucleotide, NA: Nicotinic 

acid, NAM: Nicotinamide, NMN: Nicotinamide mononucleotide, 

NR: Nicotinamide riboside. 

1.2 NAD+ and NAD+ precursors 

 

Tryptophan (Trp) in the de novo pathway and NA and 

NAM in the salvage pathway were identified after the 

outbreak of a deadly disease named pellagra. In the last 

century, this disease was common in underdeveloped 

countries, such as South Africa, and some rural areas in 

the southern United States, where the regular diet lacks 

NAD+ precursors in terms of both quantity and quality 

[45, 46]. The number of cases currently is relatively small 

and those rare cases are often detected in chronic 

alcoholics [47]. The study on pellagra in South Africa was 

conducted for the first time by Cluver EH et al. [45] and 

later by several other researchers. They found that 

pellagra is a syndrome caused by a lack of dietary 

tryptophan and NA in acid and amide forms [48]. The 

clinical signs of this disease include characteristic 

dermatitis, abnormal changes in the gastrointestinal tract 

and nervous system [49], obvious dark-pigmented rash, 

dermatitis, diarrhoea, and dementia [50]. The disease is 

pathogenic that is caused by a long-term lack of Trp in 

diet and can progress rapidly within 60 days. In 1937, a 

Professor of biochemistry first discovered the anti-

pellagragenic effect of NA and NAM [51], and 

subsequent biochemical studies have found that after 

chronic immune activation, the lack of Trp in diet and 

inhibition of quinolinic acid phosphoryl transfer (QRPT) 

decrease the availability of NAD+, which is related to the 

development of pellagra [52, 53]. For the treatment of this 

disease, a diet rich in NA and NAM and comprising corn, 

eggs, cured meat, and milk was suggested, which was 

found to prevent the occurrence of pellagra to some extent 

[54]. NMN and NR have been recently identified as the 

precursors of NAD+ and have received considerable 

attention because of their potential therapeutic effects and 

fewer side effects compared with those of NA and NAM. 

The discovery of these two precursors also prompted 

researchers to further investigate the function of NAD+. 

The three biosynthetic pathways of NAD+, namely 

the de novo pathway (Trp), Preiss-Handler pathway (NA) 

and salvage pathway (NA, NNM, NR), are illustrated in 

Figure 3. In the de novo pathway, Trp undergoes a series 

of reactions in eight steps to generate NAD+. Trp, as a 

precursor, first produces quinolinic acid (QA) through a 

five-step reaction, and one of these five-step reaction steps 

requires NADPH-dependent enzyme 3-Hydro-

xykynurenine (3-HK); the activity of 3-HK was reported 

to reduce under hyperthyroidism conditions [55]. This 
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enzyme can pass through the blood–brain barrier, which 

leads to the production of free radicals and vasodilation 

[56]. Subsequently, the generated QA produces nicotinic 

acid mononucleotide (NAMN) under the action of 

quinolinic acid phosphoribosyl transferase (QPRT). 

QPRT is the most critical rate-limiting enzyme in the de 

novo pathway. This reaction step is catalysed by the 

enzyme in an ATP-dependent manner and requires the 

participation of Mg2+ and 5-phosphoribosyl-1-pyro-

phosphate (PRPP). Finally, the generated NAMN is 

transformed to NAD+ under the action of nicotinamide 

mononucleotide adenylyl-transferases (NMNATs) and 

NAD+ synthetase (NADs) in a two-step reaction, and 

these two steps require 2 ATP molecules. 

 

 

 
Figure 3. NAD+ can be synthesised through three pathways: de novo, Preiss-Handler, and 

salvage pathways. Trp: Tryptophan, QA: Quinolinic acid, QRPT: Quinolinic acid 

phosphoribosyl transferase, NAMN: Nicotinic acid mononucleotide, NAAD: Nicotinic acid 

adenine dinucleotide, NADs: NAD+ synthetase, NAD+: Nicotinamide adenine dinucleotide, 

NR: Nicotinamide riboside, NP: Nucleoside phosphorylase, NA: Nicotinic acid, NARPT: 

Nicotinic acid phosphoribosyl transferase, NAM: Nicotinamide, iNAMPT: Intracellular 

Nicotinamide phosphoribosyl transferase, NMN: Nicotinamide mononucleotide, NMNATs: 

Nicotinamide mononucleotide adenylyl-transferases, NRK: Nicotinamide ribose kinases, 

NADH: Reduced form of nicotinamide adenine dinucleotide, NADP+: Nicotinamide adenine 

dinucleotide phosphate, NADPH: Reduced form of nicotinamide adenine dinucleotide 

phosphate. 

In the Preiss-Handler pathway, NA as a precursor 

undergoes a total of three reactions to generate NAD+. 

First, NAMN is generated under the action of nicotinic 

acid phosphoribosyl transferase (NAPRT). The reaction 

catalysed by NAPRT is ATP-dependent and requires the 

participation of PRPP. Subsequently, the generated 

NAMN is converted to NAD+ under the action of 

NMNATs and NAD+ synthetase in a two-step reaction, 

and this reaction also consumes 2 ATP molecules. 

In the salvage pathway, NAM serves as the precursor 

and undergoes a two-step reaction to generate NAD+. 

First, it is converted to NMN under the action of 

nicotinamide phosphoribosyl transferase (NAMRT). The 

reaction catalysed by NAMPT is also ATP-dependent and 

requires PRPP. The generated NMN is converted to 
NAD+ under the action of NMNATs, and the reaction 

requires 1 ATP molecule. NR, as the precursor of the 

additional NAD+ salvage pathway, can generate NAD+ 

through two pathways: first, under the action of 

nucleoside phosphorylase (NP), NR produces NAM and 

after 3 steps generates NAD+; second, NR generates 

NAD+ through a 2-step reaction under the action of 

nicotinamide ribose kinases (NRK). 

These precursors require different amounts of ATP 

to convert into NAD+; Trp, NA, NAM, NR, and NMN 

require 4 ATP, 3 ATP, 2 ATP, 2 ATP, and 1 ATP 

molecule, respectively. The synthesis of NAD+ through 

the de novo pathway is a long pathway, which consumes 

more energy than the salvage pathway. Trp is far less 

effective in increasing the concentration of NAD+ 

compared with other precursors; daily administration of 

15 mg/kg of NA or NAM can be used to prevent and treat 

pellagra; however, the administration of 60 times or 
higher amount of Trp can produce similar effects as those 

of NA and NAM [57]. 
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2. Pharmacokinetics of NAD+ precursors 

 

2.1 Cell entry modes of NAD+ and its precursors 

 

Current knowledge suggests that all precursors and NAD+ 

must enter cells to produce biochemical and physiological 

actions. Increasing evidence indicates that NAD+ cannot 

enter cells directly through the plasma membrane and that 

it must be converted into smaller, less charged molecules 

to enter cells [58]. NAD+ can be degraded into NAM by 

membrane-bound CD38 and CD157 outside the cells, and 

the produced NAM can further produce NMN under the 

action of extracellular nicotinamide phosphoribosyl 

transferase (ENAMPT); NAD+ can also generate NMN 

directly under the action of membrane-bound CD73 

outside the cells [59-61]. Some studies have identified a 

special NAD+ transporter, the connexin 43 (Cx43) 

channel, through which NAD+ can enter cells. Cx43 is 

highly expressed in cardiomyocytes [62, 63]. NADH has 

been reported to enter cells through the P2X7 receptor 

[41]; however, the same has not been confirmed by other 

researchers. Further research is required to determine the 

cell-specific efficiency of NAD+/NADH transporters and 

other NAD+/NADH transporters, if any, in addition to the 

Cx43 and P2X7 channels. 

In the de novo pathway, Trp enters cells through 

carrier proteins (SLC7A5 and SLC36A4), which transport 

large, neutral amino acids [64]. NA and NAM, two forms 

of vitamin B3, can directly pass through the plasma 

membrane. Of these forms, the entry of NA into cells is 

mediated by a membrane carrier system, which includes a 

pH-dependent anion antiporter and a proton co-

transporter (SLC5A8 or SLC22A13) [65, 66]. NAM can 

enter cells through two pathways; it may either be directly 

transported into the cell in its intact form or be converted 

into a metabolite of the salvage pathway and taken up by 

cells. The presence of the enzyme NAMPT, which 

converts NAM to NMN both inside and outside the cells, 

indicates that both pathways are feasible [67, 68]. 

Relevant studies on rodents have reported that NAM can 

be directly absorbed by the intestine [69]. The third form 

of vitamin B3, NR, does not require conversion to enter 

cells, which accounts for the high bioavailability of NR. 

NR enters cells through equilibrative nucleoside 

transporters (ENTs) and is phosphorylated into NMN by 

nicotinamide ribose kinase (NRK1/2) in cells [70, 71]. 

 

 
Figure 4. The routes of NAD+ and its precursors to enter cells. 

The routes through which NMN enters cells are 

described in literature as being highly complicated. First, 

NMN is transformed into NAM under the action of 

membrane-bound CD38, and then, it directly passes 
through the plasma membrane [21]; second, under the 

action of membrane-bound CD73, NMN is transformed 

into NR, which enters cells through ENTs [72]; third, 

NMN can directly enter cells through an NMN-specific 

transporter, a recently discovered transporter, which is 

highly expressed in the small intestine and encoded by the 

Slc12a8 gene [73]. Therefore, the uptake of NMN may be 
cell- or tissue-specific. However, a recent study in yeast 

showed that dephosphorylation of NMN into NR is 

necessary for the production of NAD+, whereas another 
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study reported that the conversion of NMN to NAD+ can 

be inhibited by silencing the gene CD73, indicating that 

NMN must be converted into NR [4, 69, 70]. Therefore, 

investigating the uptake mode and kinetics of cell- or 

tissue-specific NAD+ precursors is essential. Figure 4 

illustrates the routes through which NAD+ and its 

precursors enter cells. 

 

2.2. Pharmacokinetics of NAD+ precursors 

 

To maintain the level of NAD+ in vivo, most of NAD+ is 

synthesised through the salvage synthesis pathway rather 

than the de novo pathway. Trp can produce kynurenic acid 

and serotonin in addition to producing QA for further 

synthesis of NAD+ [74]. Trp is considered to be the main 

precursor of NAD+ production in the liver [75]. NA and 

NAM are the only precursors that are increased in the liver 

15 min after oral administration of NA or NAM, 

suggesting that the liver can use both de novo and salvage 

pathways to synthesis NAD+ [76]. 

We hereafter discuss the pharmacokinetics of NA and 

NAM. At high doses, the half-life of NA is 1 h, whereas 

that of NAM is 4 h. Studies have shown that the 

administration of high doses of NA will increase the level 

of NAM, but whether the administration of high doses of 

NAM influences the content of NA is still unclear [77]. 

However, the administration of NAM has been reported 

to cause skin flushing, which is a common adverse 

reaction that occurs after the administration of NA, 

indicating that the administration of high doses of NAM 

may also increase the NA content [78]. 

In a study, the ability of NA and NAM to increase 

NAD+ was compared by orally administering NAD+ 

precursors to mice and NA was reported to produce the 

lowest level of NAD+ [76]. Oral administration of NA has 

been shown to result in a two-fold increase in NAD+ levels 

in the liver along with an increase in the NAAD level [76, 

79]. In another study, 30 mg/kg NA and 4000 mg/kg NA 

were administered to rats, and 4000 mg/kg NA was found 

to increase the level of NAD+ in the bone marrow of rats 

[79]. In a recent clinical study, after 10 or 4 months of 

administration of NA (750-1,000 mg/day), the blood and 

muscle NAD+ levels of human subjects were significantly 

increased. NA can also alleviate systemic NAD+ 

deficiency and improve muscle performance in adult-

onset mitochondrial myopathy [80]. In another study, six 

healthy male subjects who took the upper level of NAM 

that can be tolerated per day (200 mg) in a single oral 

administration caused the maximum NAM blood 

concentration to increase by 30 times at 0.5 h, and then 

continued to decrease until 6 h, and the NAD+ blood 

concentration also increased significantly with the 

maximum concentration at 12 h [81]. The pharmaco-

kinetics of oral administration of 3–6 g NAM in humans 

has been studied, and high doses have been shown to 

produce adverse reactions such as nausea and vomiting 

[82]. Although the capacity of NAM to increase NAD+ 

levels offer an advantage over NA, the less accumulation 

of ADP-ribose (ADPR) mediated by NAM also indicates 

a disadvantage. ADPR is a marker for NAD+-consuming 

enzymes activities [76], and NAM inhibits the activities 

of NAD+-consuming enzymes, such as PARP and sirtuin. 

Although limited pharmacokinetic data are available 

on NMN and NR compared with those on NA and NAM, 

a few studies have demonstrated that NMN and NR can 

effectively increase the NAD+ content in various tissues. 

Limited evidence shows that the administration of NMN 

can enhance NAD+ levels in various peripheral tissues 

such as pancreas [29], liver [83], adipose tissue [84], heart 

[85], skeletal muscle [33], and kidney [86]. Reports also 

indicate that after the administration of NMN, NAD+ 

levels in the testes [87] and eyes [25] are significantly 

increased. Furthermore, NMN has been reported to 

rapidly increase the level of NAD+ in the hippocampus, 

hypothalamus, and other brain regions within 15 min of 

intraperitoneal administration [88, 89], which further 

suggests that NMN can pass through the blood–brain 

barrier, thereby contributing to the biosynthesis of NAD+ 

in the brain. Studies have reported that NMN can be 

detected in the mouse plasma, liver, adipose tissue, and 

pancreas within 15 min of the administration of 500 

mg/kg NMN to wild-type mice through intraperitoneal 

injection; NMN is then used for NAD+ biosynthesis, 

which increases the level of NAD+ in the liver by 2–3 

times [29]. A study also reported that the administration 

of 300 mg/kg NMN to mice through gavage increases the 

plasma NMN level significantly within 2.5 min and 

further increases the level after 10 min; however, the 

plasma NMN level returned to the original level within 15 

min. Simultaneously, an increase in NAD+ levels in the 

liver, skeletal muscle, and cerebral cortex was observed. 

Results of the study indicated that NMN reaches the blood 

circulation from the intestine within 2–3 min and reaches 

the tissue from the blood circulation within 15 min [25]. 

Another study reported that the retention time of NMN in 

the body after intraperitoneal injection may be longer than 

that of NAM [90]. Some studies have shown that the 

plasma NAM content and hippocampal NR level are 

significantly increased after NMN injection, suggesting 

that at least a part of NMN is transformed into NAM and 

NR [40, 91]. In a recent clinical study, after a single oral 

administration of 100-500 mg of NMN in 10 healthy men, 

the plasma concentrations of NMN and NAD+ metabolites 

(N-methyl-2-pyridone-5-carboxamide and N-methyl-4-

pyridone-5-carboxamide) increased significantly [92]. 

NMN is generally believed to show good chemical 

stability. More than 90% of NMN can remain stable for 7-

10 days in drinking water at room temperature [25]. NMN 
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is also relatively stable in human HEK293 cell culture in 

FBS-free medium, and only 5% of NMN is 

dephosphorylated to NR by cells in 24 h [93]. However, 

during aging, senescence-induced inflammation promotes 

the accumulation of CD38 in immune cells. Then CD38 

degrades the extracellular NMN through its ecto-enzyme 

activity, resulting in the decrease of intracellular NAD+ 

[24]. Trammell et al. administered NR orally to study its 

effect on human peripheral blood mononuclear cells 

(PBMCs) and mouse liver NAD+ metabolism [76]; results 

of the study showed that the concentrations of all NAD+ 

metabolites, except NAM, were elevated in PBMCs. 

Moreover, the concentration of NAAD, a metabolite that 

is supposed to increase after the administration of NA 

instead of NR [94], was also assessed, which was found 

to be significantly increased, although a slight delay in the 

increase in the concentration of NAAD was observed 

relative to other metabolites, NAAD may be a biomarker 

of NAD+ biosynthesis and indicate the conversion of NR 

to NAD+ over time. In the liver of mice, the oral 

administration of 185 mg/kg NR increased the levels of 

NAM and NAD+ by approximately four times. Similarly, 

the level of NAD+ and NAAD in blood cells of a healthy 

52-year-old man who took NR (1000 mg/kg) for 7 days 

was found to increase by 2.7 times. The study also found 

that the ability of NR to increase ADPR is 2–3 times that 

of NAM and that ADPR is a marker of the activity of 

NAD+-depletion enzymes such as sirtuin [76]. 

The pharmacokinetics of NMN and NR have not been 

fully studied. NMN and NR exhibit better 

pharmacological properties compared with NA and 

NAM; however, a deeper dosage and mechanistic 

research are required to compare pharmacokinetics 

between NMN and NR. Both NMN and NR undergo 

primary metabolism before being absorbed in the body 

and are rapidly converted into intermediates [27]. 

Exploration of the pharmacokinetics of NMN and NR in 

the body can help determine their optimal concentration 

for different applications and provide insights into their 

pharmacological mechanisms of action. 

 

3. Pharmacological actions of NAD+ precursors 

 

NAD+ precursors are widely present in natural foods such 

as meat, eggs, dairy products, and whole wheat [25, 95]. 

NA is produced in plants and algae; NAM is the main 

form of vitamin B3 that can be absorbed from foods, and 

it is also a byproduct of deacetylation and ADP-

ribosylation mediated by NAD+-metabolising enzymes 

such as SIRT, PARP, and CD38. NMN and NR are found 

in vegetables (such as broccoli and cucumber), fruits 

(such as avocados), and meats (such as beef) [96]. NR, the 

third discovered NAD+ precursor, is naturally present in 

milk and is considered a nutritious food source [97]. 

Several studies have shown that relying more on 

nutritious plant foods rather than meat may be the most 

effective strategy for obtaining health benefits and 

extending the lifespan [98]. 

Both NA and NAM are the forms of vitamin B3 that 

were introduced more than 50 years ago for the prevention 

and treatment of pellagra. Usually, 15 mg/day of NA, the 

acidic form of niacin, is commonly used in clinics to treat 

hyperlipidemia [44]. Intake of 1–3 g of NA per day has 

been reported to effectively regulate the ratio of low-

density lipoprotein to high-density lipoprotein (LDL: 

HDL) [99, 100]. Similarly, increased NA levels have been 

shown to improve the genome integrity, and NA 

deficiency has been shown to cause chromosomal 

instability [101, 102]. High-dose NAM, the amide form of 

niacin, is used in radiotherapy and chemotherapy to 

promote microvascular blood flow in the brain [103, 104]. 

Studies have also reported that in several types of animal 

models of diabetes, NAM can prevent and reduce the 

progression of diabetes [105, 106]. NAM has been shown 

to inhibit cell apoptosis caused by glutamate-induced 

excitotoxicity [107, 108]. Moreover, it has been reported 

to maintain the genomic stability and reduce the incidence 

of skin cancer [109]. NAM can also improve 

remyelination after stroke [110]. In addition, NAM is 

widely used to treat skin diseases including autoimmune 

vesicular diseases. 

Researchers have paid considerable attention to the 

precursors NMN and NR in recent years because these are 

highly efficient in increasing NAD+ levels. These two 

precursors are involved in the DNA repair and ATP 

production and also play roles in cell signal transmission 

[98]. NMN was reported to improve insulin sensitivity 

and exert a positive effect on insulin levels [111]. Some 

studies have reported that NMN may be an effective 

intervention for patients with hypoglycaemia [112]. NMN 

participates in mitochondrial energy metabolism by 

improving mitochondrial respiration. NMN also has a 

hepatoprotective effect. NMN supplementation can 

prevent liver fibrosis by promoting the degradation of 

prostaglandin E2 and inhibiting the activation of hepatic 

stellate cells [113]. The application of NMN alone can 

restore the cardiac systolic function of elderly mice, while 

the combined application of NMN and SS-31 (a drug that 

targets mitochondria) in mice improved both systolic and 

diastolic function, and reduced myocardial hypertrophy 

[114]. Studies have shown that NMN can improve 

cognitive impairment in the Alzheimer disease (AD) mice 

model [115]. NMN can also improve the depressive 

behavior in animal models [116] and improve the survival 

rate in the Parkinson disease (PD) model in vitro [117]. 

NMN has also been reported to exert a protective effect 

on secondary brain damage caused by cerebral 

haemorrhage [118], haemorrhagic transformation in the 
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MCAO (middle cerebral artery occlusion) model [119] 

and haemorrhagic transformation caused by ischaemic 

stroke with tPA [120]. Additionally, NMN protects 

against cardiac ischaemia and ischaemic stroke [121, 

122], Therefore, NMN may be a potential drug for the 

treatment of age-related neurodegenerative diseases. Low 

doses of NMN were shown to improve the quality of 

female oocytes [123], thereby improving female fertility. 

Because NMN can effectively improve the quality of 

aging oocytes, NMN may be a potential drug for the 

treatment of fertility problems in older women [123-126]. 

Studies have shown that NMN can reverse age-related 

weight gain and cognitive impairment [25, 116]. 

Moreover, administration of NMN in aging mice has been 

shown to improve vascular oxidative stress and energy 

metabolism, restore the activity of sirtuin, and reverse 

age-related arterial dysfunction [29, 127]. NMN also 

improved the impaired neurovascular coupling response 

in the aged cortex and the resulting vascular cognitive 

impairment by the induction of genes involved in 

mitochondrial regeneration, anti-inflammation and anti-

apoptosis [128]. All these initial studies suggest that NMN 

exhibits certain therapeutic prospects in aging-related 

diseases. 

NR is the main precursor of NAD+ in the central 

nervous system and the preferred precursor in 

mitochondria. It maintains the function of mitochondria 

by regulating the activity of sirtuin [44]. NR is also the 

preferred precursor for supplementing NAD+ levels in 

animal models of heart failure [129] and was shown to 

reduce cholesterol in obese mice [130]. It has also been 

shown to exert a certain ameliorating effect on alcohol-

induced liver disease and depressive behaviour [28, 131, 

132] and improve diabetic lesions and hepatic steatosis in 

mice with high-fat diet-induced obesity [133, 134]. NR 

can also ameliorate angiotensin Ⅱ-induced cerebral small 

vessel disease in mice [135] and prevent noise-induced 

hearing loss [132, 136]. Similar to NMN, NR can also 

improve female fertility [137, 138]. NR is the only 

precursor that can prevent axon degeneration [139] as 

well as the oxidative stress and organ damage caused by 

sepsis [140]. Moreover, NR has been shown to exert a 

certain degree of therapeutic effect in the pathological 

progress of neurodegenerative diseases such as AD [28, 

141], PD [142], aging [138, 143], cerebral apoplexy [129], 

and hypertension and cardiovascular diseases [76, 129, 

144]. Numerous studies have shown that NR can increase 

the lifespan of all species tested so far, including mice [35, 

37, 145]. 

 

 
Figure 5. The pharmacological actions of NAD+ precursors. 
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Although NR, NMN, NA, and NAM can effectively 

improve NAD+ levels, many issues still remain to be 

explored. As an NAD+ precursor enters the body, it is 

converted into NAD+, which is further converted into 

NADH, NADP+, and NADPH. Therefore, whether the 

beneficial effects are produced by the precursor itself or 

the transformed NAD+ or other coenzymes is unclear. 

Canto et al. reported that the ability of NA to lower 

cholesterol levels can be attributed to its ability to increase 

NAD+ levels [130]. NAD+ depletion increases the skin’s 

sensitivity to ultraviolet light, increases the DNA damage 

response, and eventually increases the instability of the 

genome and incidence of skin cancer. Conversely, NAM 

increases the genomic stability and decreases skin cancer 

incidence, which can also be attributed to its ability to 

increase NAD+ levels. Moreover, the administration of 

NA and NAM did not show the same physiological results 

compared with those of NMN and NR [76, 95, 146]. Liver 

damage caused by diet can be reversed by endogenous 

metabolism of NR rather than NAM [147]. Oral 

administration of NR can significantly improve the 

survival rate of immune-deficient mice and regeneration 

of haematopoietic stem cells, which cannot be achieved 

by administrating NA or NAM [148]. The effects that are 

observed after the administration of precursors may not 

necessarily be produced by NAD+, and different functions 

of the precursor itself or its transformation into other 

coenzymes may also play a role (Fig. 5). 

 

4. Safety and side effects of NAD+ precursors 

 

Studies have found that with aging, the body's intake of 

L-Trp [149, 150] and the de novo synthesis of NAD+ 

decrease. Among all organs of the body, only the liver 

contains all the synthetases involved in the de novo 

pathway, including the rate-limiting enzyme QPRT. 

Studies have shown that most Trp is consumed in the liver 

when the body is not aging [151]. However, the absence 

of QPRT has no significant effect on NAD+ levels in 

tissues, including the liver [152]. These results indicate 

that mammals may synthesise NAD+ mainly through the 

salvage synthesis pathway. The de novo pathway 

synthesises two basic neurotransmitters, namely 

glutamate and acetylcholine, in addition to generating 

NAD+. Some intermediates are also produced that 

regulate the activity of N-methyl-D-aspartic acid 

(NMDA) [153], for example, the antagonist of NMDA 

receptor kynurenic acid exerts a protective effect, and the 

agonist of NMDA receptor QA induces excitatory toxicity 

through glutamate receptors; hence, the de novo pathway 

is a double-edged sword that regulates the neuronal 

function [12]. 

NA has been clinically used to treat dyslipidemia 

because it can lower blood lipid levels. However, the 

dosage of NA should be carefully used. If the daily dosage 

exceeds 50 mg, it will not only cause headaches and 

dizziness but also induce the production of 

prostaglandins, cause irritation to skin immune cells, and 

dilate skin capillaries, leading to skin flushing and itching 

[154]. Studies have found that this side effect is due to the 

activation of the G protein-coupled receptor, GPR109A 

(HM74A). NA can also cause spontaneous skin flushing 

reactions even at therapeutic doses because it acts as an 

agonist of this G protein-coupled receptor [155, 156], and 

this side effect greatly limits its clinical application [157, 

158]. In addition, some of the animal studies have used a 

much higher NA dosage than those used in clinical 

patients to assess the effects of NA. For example, NA 

improves the neuronal function after hypoxic injury at a 

concentration of 250 μM–1000 μM in the culture medium, 

which exceeds the usual therapeutic concentration 

achievable in humans [159, 160]. Therefore, an optimal 

dosage of NA required for the elevation of NAD+ in the 

human body should be investigated. In recent years, the 

results of various clinical studies on NA and NAM have 

shown that NAM is safer and more easily absorbed by the 

gastrointestinal tract than NA; although NAM reaches a 

serum peak 1 h after its oral administration, high doses of 

NAM can cause adverse reactions such as nausea and 

vomiting [161]. As mentioned earlier, NAM is a 

byproduct of NAD+ catabolism and a natural feedback 

inhibitor of NAD+-dependent enzymes such as sirtuin. 

Several studies have shown that the activities of PARP, 

sirtuin, and CD38 are inhibited at high doses of NAM 

[162]. The inhibition of NAD+-dependent enzymes 

produces side effects in the body. For example, a study 

demonstrated that the administration of NAM increases 

the accumulation of liver fat in a rat model of choline 

deficiency [44]. In addition, NAM consumes methyl 

groups and leads to a decrease in epigenetic methylation 

[163, 164]. Therefore, NAM is not considered to be an 

ideal precursor for supplementing NAD+ due to its 

feedback inhibition of NAD+-dependent enzymes and 

side effects of methyl depletion [165]. Considering the 

side effects of NA and NAM, neither NA nor NAM are 

the ideal precursors for increasing NAD+ levels. 

According to reports, low-dose NMN may be 

effective and safe. Single oral administration of 500 mg 

of NMN in healthy individuals is also safe and does not 

cause adverse reactions [92]. Following the oral 

administration of 300 mg/kg of NMN to normal wild-type 

mice (C57BL/6) for up to one year, the mice did not 

display any harmful or toxic effects, suggesting the 

superior safety and tolerability of NMN [25]. However, 

high-dose NMN may have adverse effects. Although low-

dose NMN can improve the quality of female oocytes, 

high-dose NMN can reduce sperm quality [166]. In 

particular, the brain is highly sensitive to NMN, and high 
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doses of NMN may exert adverse effects on neurons after 

ischaemia [121]. Studies have shown that high doses of 

NMN promote axonal degeneration in case of nerve 

damage [167-170]. NMN may also exacerbate in vitro 

axonal degeneration caused by a chemotherapy drug, 

vincristine [171]. Although numerous studies have proved 

the potential of NMN in the treatment of metabolic and 

aging-related diseases, its toxicological and clinical 

effects have not been sufficiently studied, and further 

studies are required to investigate the optimum dose range 

of NMN and long-term safety to humans. 

Clinical studies on the short-term and long-term 

administration of NR have demonstrated the superior 

bioavailability and safety of NR. It is considered safe even 

when administered at a dose of 2000 mg a day for 12 

weeks, and no adverse symptoms, such as nausea and 

vomiting, or undesirable skin flushing have been reported 

[143, 172]. Supplementation of NR neither inhibits 

NAD+-dependent enzymes nor causes side effects such as 

liver damage [76]. A study indicated that with an increase 

in the NR level in tissues following NR administration, 

the activity of the enzyme sirtuin is significantly increased 

compared with NAM administration [76]. Compared with 

other precursors, NR is gradually becoming a preferred 

candidate precursor because of its high bioavailability, 

safety, and ability to increase NAD+ levels. It offers many 

potential health benefits in diseases such as cardiovascular 

diseases [173, 174], neurodegenerative diseases [130, 

175, 176], and metabolic diseases [177]. In summary, NR 

is a more effective precursor for synthesising NAD+ and 

increasing the activity of NAD+-dependent enzymes than 

NA and NAM. However, further research is required to 

explore whether NR can cause skin flushing or other 

adverse symptoms. Although NR produces no serious 

adverse reactions, it has not been shown to improve 

insulin sensitivity, endogenous glucose production, 

glucose disposal, and oxidation [172, 178]. Therefore, 

further studies are required to determine the benefits of 

NR. 

NAD+ participates in thousands of biochemical 

reactions in the body and thus maintains and regulates 

various physiological processes such as DNA repair, 

calcium homeostasis, and energy metabolism. Whether 

the supplementation of NAD+ precursors to increase the 

NAD+ content produces, in addition to the 

aforementioned effects, other side effects, especially 

diseases involving cell proliferation, such as tumours and 

atherosclerotic plaques, remains unclear. Energy 

metabolism not only plays an important role in the growth 

of normal cells but also promotes the growth of tumour 

cells. Moreover, aerobic glycolysis and other energy 

metabolism pathways in tumour cells are abnormally 

upregulated, thus generating a large amount of energy and 

metabolic intermediates to satisfy the rapid proliferation 

of tumour cells [179]. In addition, NAD+ not only acts a 

key coenzyme in aerobic glycolysis but also plays a 

central role in other energy metabolism pathways, 

including the TCA cycle [16]. Tumour cells have higher 

NAD+ levels than normal cells; therefore, NAD+ poses a 

risk of driving the growth of tumours. For chemotherapy 

drugs under development, some researchers have turned 

their attention to drugs that can consume NAD+ [180]. 

The consumption of NAD+ in tumour cells inhibits the 

ability of NAD+ to repair DNA and participate in energy 

metabolism, thereby inhibiting the rapid proliferation of 

tumour cells. The consumption of NAD+ also promotes 

the production of reactive oxygen species, which in turn 

causes the disruption of tumour cells due to autophagy and 

apoptosis [181]. Inhibition of the rate-limiting enzyme 

NAMPT in the salvage synthesis pathway in tumour cells 

and animal tumour models has been shown to reduce the 

growth of tumour cells and enhance survival of animals 

[182-184]. However, some researchers believe that the 

decline in NAD+ levels may be related to aging-related 

diseases including tumours. Lack of NA in rats along with 

carcinogen exposure has been shown to increase the 

incidence of tumours [185, 186]. Moreover, the incidence 

of skin tumours in mice was shown to reduce with the 

topical application of NAM or supplementation of NA in 

the diet [187]. Recently, NR was reported to reduce the 

proliferation and activation of liver progenitor cells 

involved in liver tumour heterogeneity [188]. NR 

treatment can also reduce the size of the established liver 

tumour [189]. Increasing NAD+ levels have been shown 

to play an important role in the prevention of liver cancer 

and pancreatic cancer in mice [188, 190, 191]. The 

expression of CD38 increases with cell aging, thereby 

degrading NMN, which is one of the main reasons for the 

decline in NAD+ levels in senescent cells. According to a 

study, the proliferation of gliomas can be inhibited by 

inhibiting CD38, thereby prolonging the survival time of 

glioma mice [192]. Daratumumab, a CD38 monoclonal 

antibody, is a drug used for the treatment of multiple 

myeloma [193]. 

 

5. Potential clinical applications and future study 

 

The first discovered NAD+ precursors, NA and NAM, are 

used as both food supplements and drugs. Although they 

are not as effective as NR and MNM in increasing NAD+ 

levels, they are relatively cheaper. However, the reason 

for these precursors being not much sought-after 

supplements for NAD+ remain to be investigated. NMN 

and NR may be favourable precursors for increasing the 

level of NAD+ and activating the activity of the NAD+-

dependent enzyme, sirtuins. According to public safety 

assessments, the bioavailability and safety profile of 

NMN and NR are superior to those of other precursors, 
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particularly of NR. The dose of NR that causes the lowest 

level of side effects is 1000 mg/kg/day, and the daily 

recommended dose of NR is 300 mg/kg. Hence, it does 

not produce side effects at the recommended dose [194]. 

Because the level of CD38 enzyme, which degrades 

NMN, increases with cell aging, NR may be more 

effective than NMN in elderly people. Therefore, in-depth 

studies on the safety, pharmacological effects, and side 

effects of NR, NMN, NA, and NAM are required to 

explore the NAD+ precursor most suitable as an 

exogenous supplement for NAD+. 

Among all the NAD+ precursors, NMN and NR 

protect against metabolic disorders, cardiovascular 

diseases, and central nervous diseases in animal 

experiments. However, there are few clinical studies on 

the protective effects of NR and NMN on these diseases. 

In April 2021, the first randomized, double-blinded 

clinical trial evaluated the effect of NMN on the metabolic 

function of postmenopausal women with overweight or 

obesity [195]. The data showed that after 10 weeks of 

continuous oral administration of NMN (250 mg per day), 

the subjects' skeletal muscle insulin signal increased and 

insulin sensitivity improved. NMN upregulated platelet-

derived growth factor (PDGF) receptor β and other genes 

related to skeletal muscle remodeling. This clinical study 

initially indicates that NMN can increase muscle insulin 

sensitivity in obese middle- aged or elderly women. In the 

future, more comprehensive clinical studies must be 

conducted to explore whether NMN and NR protect 

against metabolic disorders, cardiovascular diseases, and 

central nervous diseases in humans.  

Although both NMN and NR protect against various 

diseases related to aging and even reverse the aging 

process in animals, the question that remains is can NMN 

and NR improve human age-related diseases or slow 

down the human aging progress? The questions that arise 

are: whether NMN or NR improves mitochondrial 

respiration and thus maintains the function of 

mitochondria in humans; whether NMN or NR delays or 

slows down the neurodegeneration progression in AD, 

PD, or other central nervous diseases in humans; and 

whether NMN or NR improves cardiovascular functions 

in heart failure or cardiac ischaemia in humans. Therefore, 

more studies are requiring before initiating their clinical 

applications. 

Another debatable issue is the dosage of NAD+ 

precursors. The dose used in current research ranges from 

a few milligrams to 1 g/kg. From the pharmacological 

viewpoint, an appropriate dose has not been reasonably 

determined thus far. Therefore, determination of the 

appropriate dose and dosing frequency remains to be 

studied. Additionally, guidelines are required to monitor 

the beneficial effects and side effects of these precursors, 

if used as drugs in clinics or as food supplements, in 

humans. According to a study, the pharmacological 

effects of long-term supplementation of NAD+ precursors 

may change over time [79]. Thus, further research is 

required to investigate the NAD+ content that decreases in 

various tissues with age. We speculate that if it is a 

physiological decrease, whether it is the body's protective 

measure for reduced demand, or if the pathological 

decrease is caused by insufficient intake or excessive 

consumption, whether everyone requires exogenous 

NAD+ supplements during old age, and whether a high 

NAD+ content is favourable. 

The NAD+ salvage pathway is also essential for 

immune cell functions, as discussed earlier, and NR can 

significantly improve the survival rate of immune-

deficient mice. Therefore, future research should focus on 

balancing the positive role of inhibition of the salvage 

synthesis pathway in promoting tumour cell death and the 

negative role of it in maintaining the normal function of 

immune cells. In tumour cells, NAD+ is mainly 

synthesised through the salvage pathway. This pathway 

may provide a novel target for anticancer therapy. 

Therefore, investigating the effect of NAD+ levels on 

different types of tumour cells is essential. 

As a nutritional supplement, NR is relatively safe and 

therefore has been developed as a dietary ingredient. 

Researchers have proposed that NR treatment can 

simulate the benefits of calorie restriction, which is the 

only known method for increasing the human lifespan 

[141]. However, NR is relatively unstable, and therefore, 

development of new NR products is essential to enhance 

its stability. In a recent human pharmacokinetic study, the 

level of NAD+ in human blood was found to increase by 

more than two times after a single administration of NR 

chloride (NRCl); however, NRCl is hydrolysed and 

degraded into NAM and sugars in the gastrointestinal 

fluid, which produces the antagonising effect of 

nicotinamide against NR [196]. Therefore, developing a 

method to optimise the preparation method, storage 

method, and route of administration of NRCl in order to 

increase its stability and prevent the formation and 

accumulation of NAM is essential. A membrane-coated 

form of NRCl, known as NIAGEN, is considered safe 

when used in food or as a dietary supplement, and its 

safety has also been evaluated in a series of preclinical 

studies [197]. Recently, NRH, a reduced form of 

nicotinamide riboside, was discovered that defines a new 

path for NAD+ biosynthesis, which is NRK independent. 

NRH exhibits high bioavailability and an unprecedented 

ability to increase the level of NAD+. It increases the 

intracellular NAD+ content by 5- to 10-fold compared 

with the basal level in different cell lines and mice, and 

thus, it is more potent than NR [198]. Moreover, NRH is 

not degraded to NAM in plasma, which is an advantage of 

using NRH for NAD+ synthesis [59]. 
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In conclusion, NAD+ precursors may offer benefits 

to human health; however, more studies are required to 

determine the dose-response relationship, pharmaceutical 

formulation, pharmacological actions, adverse effects, 

and particularly the long-term safety of NMN and NR. 

Necessarily, owing to the availability of limited 

information, the beneficial effects of NAD+ precursors 

should not be exaggerated. 
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