
State-of-the-art machine learning improves predictive
accuracy of 1-year survival after heart transplantation

Heart transplantation (HT) remains the treatment of choice
for patients with medically refractory end-stage heart failure
given its improved long-term outcomes and quality of life.1

Despite the effectiveness of the treatment, only about 3000
HTs are performed annually in the USA, with a small rise
attributed to the opioid epidemic and the expanded use of
donors with hepatitis C.2 Optimization of outcomes and risk
stratification is recognized as a critically important issue in
HT today.3 Although several risk scores have been developed
for the prediction of outcomes after HT, their accuracy re-
mains modest. Machine learning (ML) algorithms have shown
promising results in predicting outcomes and discovering
phenotypes in patients with heart failure4 and have even
been applied in patients undergoing HT.5 However, further
work is needed to determine the role of ML in the prediction
of outcomes and risk stratification of HT patients. Herein, we
present our work on prediction of 1-year survival after HT
using state-of-the-art ML algorithms.

We queried the United Network for Organ Sharing (UNOS)
database for patients that were enlisted and underwent
heart transplant between 2010 and 2018. Extensive baseline
clinical and laboratory data as well as follow-up survival were
collected. We excluded patients with multiple transplants
during the index hospitalization, non-adult patients, and
patients with >10% missing values or less than 1-year
follow-up. The study dataset was then randomly split into
training and validation cohorts with a 3:1 ratio. A random
oversampling technique was applied to artificially equalize
the number of patients that were alive with the number of
patients that did not survive at 1-year in the training cohort.
This is common practice for many ML algorithms. Next, a
feature selection method based on Support Vector Machines
(SVM) and Fuzzy Logic, namely, SVM-FuzCoC,6 was used to (i)
identify the most informative variables, (ii) reduce the
complexity, and (iii) improve the performance of the ML
models. The selected features were then used to train five
state-of-the-art supervised ML algorithms: Adaptive boosting
(Adaboost), SVM, Decision Trees, K-nearest neighbour, and
Logistic Regression.7 Training of the models was controlled
by hyperparameter optimization. After training, the valida-
tion cohort was used to internally test the ML algorithms.

Their performance was evaluated by measuring the total
area under the curve (AUC) of the receiver-operator curve
as well as sensitivity, specificity, and positive and negative
predictive value. We performed explainability analysis of
the best ML model using the method of local interpretable
model-agnostic explanations (LIME).8 This method creates a
simple linear model that approximates any complex ML
model. We separately applied the IMPACT score for the pre-
diction of 1-year survival after HT.

After preprocessing, the dataset composed of 18 625
recipients (mean age 53 ± 13 years, 73% male) with 134
pre-transplant variables. There were no significant differ-
ences between patients assigned to the development and
validation cohort. There were a total of 2334 (12.5%) deaths
at 1-year after HT. Feature selection identified 39 out of 134
variables that were highly predictive of 1-year survival and
were used in the ML algorithms (Table 1). These included re-
cipient, donor, and transplant characteristics. AUC for each of
the five ML using the validation cohort is shown in Figure 1A.
Although the best performance was achieved by Adaboost
(AUC 0.689, 95% CI 0.665–0.715), all ML models achieved
higher AUC compared with IMPACT score with the exception
of the K-nearest neighbour (SVM AUC 0.637 95% CI
0.612–0.662, DT AUC 0.649 95% CI 0.622–0.676, LR AUC
0.642 95% CI 0.614–0.667, and KNN AUC 0.527 95% CI
0.502–0.550 in contrast to IMPACT AUC 0.569, 95% CI
0.545–0.592). With the exception of K-nearest neighbour,
there was an exponential increase in AUC with the use of
one to five pre-transplant variables. However, the increase
in AUC gradually plateaued after the use of 10 variables.
Sensitivity, specificity, and positive and negative predictive
value of the ML models using the validation subcohort
ranged from 55.6% to 68.5%, 42.6% to 63.4%, 88.7% to
93.6%, and 13.5% to 21.6%, respectively. The results of
explainability analysis for the best ML model using LIME are
shown in Figure 1B. Increased serum creatinine, shorter
recipient height, and increased ischaemic time had the stron-
gest association with 1-year mortality.

Artificial intelligence and ML algorithms in particular offer
some striking advantages compared with traditional statisti-
cal methods in regard to their ability to analyse large and
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Figure 1 (A) Receiver-operating characteristic curves for ML models and the IMPACT score. (B) LIME analysis visualizing relative impact of top-10
variables on 1-year survival for the best performing ML model (Adaboost). Note that smaller recipient height was associated with decreased survival.
Results in logarithmic scale. AUC, area under the curve; ML, machine learning; SVM, support vector machine.

Table 1 Baseline donor, recipient, and transplant characteristics selected by the feature selection algorithm as highly relevant to 1-year
survival

Demographic History/clinical Laboratory

Recipient Age (years) Ventricular assist device Creatinine (mg/dL)
Sex Prior cardiac surgery HIV seropositive
Ethnicity Heart failure etiology EBV seropositive
Height (cm) Waiting time in 1A status (days) CMV seropositive
BMI (kg/m2) Total waiting time (days) HBV (HBsAg+)
Level of education Treatment with prostaglandins

AICD
Inotropic support
Mechanical ventilation

Donor Age (years) Alcohol abuse Creatinine (mg/dL)
Ethnicity Cocaine abuse SGPT (mg/dL)
BMI (kg/m2) Inotropic support PCO2 (mmHg)

HTN requiring medical therapy
Cause of death
Characteristic

Transplant Ischaemic time (min)
Transplant surgery duration (min)
Transplant yeara

Listing year
ABO match

BMI, body mass index.
These variables were used to train the machine learning algorithms. Continuous variables have their units in parentheses.
aWithin 2010–18.
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multivariable datasets. The previously published Interna-
tional Heart Transplant Survival Algorithm (IHTSA) was based
on a flexible, non-linear artificial neural network to predict
survival after HT, included over 56 000 adult patients who
underwent HT from 1994 to 2010 with a reported AUC 0.65
for 1-year survival.5 Our analysis included HT recipients after
2010 including patients transplanted after the recent change
in the allocation policies, thus representing contemporary
practices and outcomes. In addition, we used a feature selec-
tion technique, which identified predictors of 1-year mortal-
ity and LIME explainability analysis. On the other hand, the
IMPACT score was based on patients that received HT before
2010, and an era affect may partially explain its low perfor-
mance in our analysis.

Predictors of mortality from our analysis are in accordance
with recently published big data analyses.9 Increased
pre-transplant serum creatinine in particular is a well-known
predictor of mortality that has been strongly associated with
mortality after HT10 and was found to have the largest impact
on outcomes in our LIME explainability analysis of the
Adaboost ML model. Although this finding does not add clini-
cal novelty by itself, it represents a novel way to confirm that
the ML model is based on clinically solid grounds and can
therefore be used to predict outcomes. Shorter stature also
strongly impacted 1-year survival in the Adaboost ML model.
Although we cannot entirely explain this finding, we believe
it is related to height mismatch, which has been associated
with poor outcomes after HT in the past. A focused analysis
on height mismatch was not a primary goal of this analysis.
Our results additionally draw attention to the potential
importance of donor parameters such as history of alcohol
and cocaine use, cause of death, and renal and liver indices,
at least as hypothesis generating.

In conclusion, ML models created and validated using a
contemporary cohort of the UNOS database showed
improved accuracy in predicting 1-year survival after HT.
Further validation of these models in other HT cohorts and
the assessment of their predictive capacity of long-term
survival after HT are warranted.
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