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Abstract

To estimate species loss from habitat destruction, ecologists typically use species–area relation-
ships, but this approach neglects the spatial pattern of habitat fragmentation. Here, we provide
new, easily applied, analytical methods that place upper and lower bounds on immediate species
loss at any spatial scale and for any spatial pattern of habitat loss. Our formulas are expressed in
terms of what we name the ‘Preston function’, which describes triphasic species–area relationships
for contiguous regions. We apply our method to case studies of deforestation and tropical tree
species loss at three different scales: a 50 ha forest plot in Panama, the tropical city-state of Singa-
pore and the Brazilian Amazon. Our results show that immediate species loss is somewhat insensi-
tive to fragmentation pattern at small scales but highly sensitive at larger scales: predicted species
loss in the Amazon varies by a factor of 16 across different spatial structures of habitat loss.
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INTRODUCTION

To estimate the number of species lost as a result of habitat
destruction, ecologists typically turn to species–area relation-
ships (SARs), which take habitat area as an input and give
species richness as an output. This approach has several limi-
tations (Lewis 2006). First, it ignores the dependence of spe-
cies loss on the time elapsed since habitat destruction
occurred. Here, we study the shortest timescale possible –
immediate species loss – which is a prerequisite to understand-
ing more complex long-term problems where losses from
extinction debt repayment are added to immediate losses. Sec-
ond, while traditional SARs assume that species persist only
in remnant habitat areas, in practice some species may persist
in non-habitat areas too. Previous studies have tackled this
second problem (Pereira & Daily 2006). Here, we retain the
assumption that species live only inside habitat areas in order
to focus on the third major limitation of the traditional
species–area approach: the assumption that total habitat area
is the only spatial parameter of importance. In practice, frag-
mentation and spatial structure – of both habitat loss and spe-
cies distributions – are also critical.
If one has complete information on the spatial distribution

of species, including their abundances, one can compute the
number of species and the number of endemics in an arbitrary
region of habitat; the number of endemics gives the number
of species immediately lost when that habitat is destroyed
(Kinzig & Harte 2000; He & Legendre 2002; Green & Ostling

2003; He & Hubbell 2011, 2013; Pereira et al. 2012). In prac-
tice, however, such complete information is usually lacking.
The traditional fallback approach has been to estimate species
loss from an SAR by comparing the species richness calcu-
lated from an initial area to that from a reduced area. But
this is only accurate if one of two restrictive conditions is sat-
isfied: either species are distributed randomly in space, or the
SAR is constructed such that the spatial pattern of habitat
considered is exactly opposite (complementary) to the spatial
structure of destroyed habitat in the target system (He & Hub-
bell 2013). These considerations are routinely ignored in prac-
tice, with the typical approach being to parameterise an SAR
with data from contiguous patches of habitat and apply it to
a fragmented target system.
The above concerns apply to any SAR, that is, any function

that expresses species richness solely as a function of habitat
area. The most common specific approach is to use a power-law
function of area (Arrhenius 1921) with exponent in the range
0.2–0.3. But these typical exponents come from fits to data from
contiguous habitat patches (e.g. Storch et al. 2012), which are
not complementary to the complex and usually fragmented pat-
terns of real world habitat destruction and thus not suitable for
predicting species loss. Further problems with the power-law
SAR are that it is phenomenological, rather than mechanistic,
and that it ignores scale-dependent variation in the power-law
exponent observed in empirical data (Harte et al. 2009).
Beyond the power-law SAR, more sophisticated mechanistic

SAR models have been developed (Durrett & Levin 1996;
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Rosindell & Cornell 2007; O’Dwyer & Green 2010; Grilli
et al. 2012). Such models accurately characterise the contigu-
ous SARs seen in nature, with scale-dependent power-law
exponents and an overall triphasic shape (Preston 1960; Plot-
kin et al. 2000; Storch et al. 2012), but share the one key limi-
tation with the power-law SAR when it comes to predicting
species loss from habitat destruction: they implicitly assume
contiguous habitat.
Several studies have pushed the envelope and studied frag-

mented SARs, which allow one to predict how species loss is
affected by the spatial pattern of habitat fragmentation, not
just total habitat area loss. These studies have typically used
phenomenological extensions of the power-law model (Kinzig
& Harte 2000; He & Hubbell 2011; Pereira et al. 2012) or spa-
tial simulations (Campos et al. 2012; Hanski et al. 2013; Keil
et al. 2015), and have mostly found that fragmented habitat
destruction causes less immediate species loss than does con-
tiguous habitat destruction, because fragmented habitat
arrangements preserve more of a landscape’s beta diversity.
Indeed, simulations suggest that immediate species loss is low-
est when the landscape is cleared randomly (Claudino et al.
2015). Simulations also suggest that fragmented SARs exhibit
a qualitatively similar triphasic shape to contiguous SARs
(Campos et al. 2013). But to establish the generality of these
conclusions and to facilitate species loss calculations at spatial
scales where simulations are infeasible, we require analytical
results from mechanistic models, which have thus far been
elusive. The only such result we know of is for when habitat
destruction is spatially random and each species’ spatial distri-
bution follows a finite version of a negative binomial distribu-
tion (Zillio & He 2010; He & Hubbell 2011).
Here, we make substantial progress towards the problem of

analytically calculating immediate species loss in fragmented
landscapes. Our analyses are based on spatially explicit com-
munities generated by a neutral model (Hubbell 2001;
O’Dwyer & Chisholm 2013). Neutral theory is not the focus
of our study; we apply it here because it generates artificial
communities that look similar to natural ones while being
analytically tractable across multiple scales. Our results place
upper and lower bounds on immediate species loss at any spa-
tial scale and for any spatial pattern of habitat destruction.

METHODS

Clearing patterns

Empirical habitat destruction typically exhibits complex frac-
tal-like patterns (Gardner et al. 1987; Sugihara & May 1990;
With 1997; Hargrove et al. 2002; Ewers & Laurance 2006). In
theoretical studies, patterns used include fractal structures
(With 1997), percolation maps (Campos et al. 2012) and dis-
tinct clumps of habitat or non-habitat (He & Hubbell 2011).
Some results we derive here apply to all clearing patterns but
we focus on three cases: ‘contiguous clearing’, where remain-
ing habitat is a contiguous block (Fig. 1a inset); ‘clumped
clearing’, where remaining habitat comprises several clumps
that are randomly distributed throughout a landscape
(Fig. 1b,c insets); and ‘random clearing’, where the clearing
pattern is random at the scale of individual organisms, with

no spatial autocorrelation (Fig. 1d inset). Random and con-
tiguous clearing provide upper and lower bounds on species
richness, and hence lower and upper bounds on immediate
species loss (Claudino et al. 2015). Heuristically, this is
because remaining habitat under random clearing is sampled
uniformly across the landscape, maximising beta diversity,
whereas contiguous clearing maximises the spatial autocorre-
lation among remaining habitat, minimising beta diversity.
To characterise our clearing patterns, we use three parame-

ters: the area of remaining habitat A; the total area of the
landscape of interest Amax ≥ A; and the number of fragments
n, with n = 1 corresponding to contiguous clearing, n = A to
random clearing, and 1 < n < A to clumped clearing. We con-
structed the clumped clearing maps by randomly choosing n
clump centroids on a gridded landscape of area Amax, and
then marking as habitat the A grid cells nearest to centroids.

Spatial neutral model

To create artificial and generic communities on which to study
the immediate effects of habitat loss, we required a spatially
explicit model that produces plausible species distributions
and is tractable for large landscape sizes. We chose the spatial
neutral model on an infinite two-dimensional landscape,
which comes in two versions: zero-sum and non-zero-sum. In
the zero-sum version (e.g. Rosindell & Cornell 2007), exactly
one individual occupies each grid cell. Individuals rain
propagules down in a pattern governed by a radially symmet-
ric dispersal kernel with variance r2. In most of the following
we assume that the kernel is a bivariate normal distribution,
but many of our results generalise to any dispersal kernel with
finite variance (r2 < ∞). Individual death follows a Poisson
process, and each cell vacated by a death is immediately
replaced by a new recruit drawn at random from the propag-
ule rain onto the cell. There is a small but non-zero probabil-
ity m that the new recruit transforms into a new species, that
is, m is the per-capita probability of point speciation. The non-
zero-sum version of the model (e.g. O’Dwyer & Cornell 2017)
is similar, except that deaths and births are independent pro-
cesses, positions of individuals are not constrained to a grid,
and new species enter the community via an independent Pois-
son process whose rate parameter m is constant in time and
space and measured per unit area.
Of the two versions of the spatial neutral model, the zero-

sum is generally easier to simulate, and non-zero-sum is more
tractable analytically. But they yield almost identical results
except in some limiting cases, for example, r2 ? 0. In partic-
ular, they reproduce the triphasic contiguous SAR characteris-
tic of empirical data (Rosindell & Cornell 2007), with the first
phase occurring at scales A < r2, the second phase at
r2 < A < r2/m and the third phase at A > r2/m (O’Dwyer &
Green 2010). Here, we draw on coalescence theory to simulate
the zero-sum model (Rosindell et al. 2008) and analytical
solutions for the non-zero-sum model (O’Dwyer & Cornell
2017; also see Appendix 1).
Because we are here concerned with immediate species loss,

we solve the spatially explicit neutral model at the dynamic
equilibrium on a contiguous landscape, and then subsequently
fragment the community and measure immediate species loss
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(if we were instead investigating long-term species loss, we
would need to find the dynamic equilibrium on the frag-
mented landscape).
Our results from the neutral model can be applied to non-

neutral systems provided that the constituent species’ spatial
distributions are statistically similar to those of neutral spe-
cies. In such applications, the parameters r and m can be cho-
sen to match data on species’ spatial distributions, with r
controlling spatial autocorrelation and m controlling overall
landscape diversity (Condit et al. 2002) (see Appendix 2 for
details).

Rescaling approach

We now define functions that relate species richness immedi-
ately after habitat clearing to the parameters of the clearing
map and the community model. Except where otherwise
noted, the sampling area A, landscape area Amax and dispersal
parameter r are measured in units such that there is one indi-
vidual per unit area. For the contiguous-clearing case, we
define Scontig A; m;r2

� �
, which is a contiguous SAR and

depends only on the area A of a contiguous habitat region

and the two underlying community model parameters. For
the random-clearing case, we define Srandom Amax;A; m;r2

� �
,

which additionally depends on the underlying landscape area
Amax. The clumped-clearing case depends also on n and is
described by Sclump n;Amax;A; m;r2

� �
.

The following rescaling relationship for Scontig A; m;r2
� �

has
been derived previously (Rosindell & Cornell 2007) for
r2 ≫ 1:

Scontig A; m;r2
� ��r2W A

r2 ; m
� � ð1Þ

for some function Ψ, or, equivalently,

Scontig kA; m; kr2
� �� kScontig A; m;r2

� � ð2Þ
for any scalar k. Formula (1) reduces the number of effective
parameters so that instead of having to understand the three-
parameter function Scontig, we need to only understand the
simpler two-parameter function Ψ.
In view of the central importance of the neutral contiguous-

SAR function in ecological theory, we henceforth refer to Ψ
as the ‘Preston function’, after Frank Preston who first
observed the triphasic SAR in empirical data and understood
the basic mechanisms behind it (Preston 1960). Specifically,

A

S

100 101 102 103 104 105

100

101

102

103

104

105

A

S

100 101 102 103 104 105

100

101

102

103

104

105

A

S

100 101 102 103 104 105

100

101

102

103

104

105

A

S

100 101 102 103 104 105

100

101

102

103

104

105 = 64
= 32
= 16
= 8
= 4
= 2
= 1

 Contiguous n = 1 Clumped n = 16

Clumped n = 256  Random n = A

(a) (b)

(c) (d)

Figure 1 Insets: Types of habitat clearing considered in this study. Green pixels indicate habitat; grey pixels indicate cleared areas. Panel a shows classic

contiguous clearing (n = 1); panels b and c show clumped clearing with n = 16 and n = 256 clumps respectively; panel d shows random clearing (n = A).

Main panels: SARs resulting from the four types of habitat clearing shown in insets, for a range of values of landscape extent Amax and total habitat area

A = Amax/16 (thus A and Amax vary proportionally on the horizontal axes). The ecological communities to which the clearing maps are applied are spatial

neutral communities with speciation rate m = 0.01 and a range of values for the dispersal standard deviation r (colours; see legend on panel a).
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we define the Preston function to be the SAR for contiguous
circular areas in the non-zero-sum spatial neutral model with
a bivariate normal dispersal kernel (O’Dwyer & Green 2010;
O’Dwyer & Cornell 2017). We choose this definition because
the non-zero-sum model is more amenable to analytical treat-
ment and, anyway, produces almost identical SARs to the
zero-sum model. Abstracting the Preston function away from
the main focus of our work enables us to derive rescaling for-
mulas independently of the mathematical study of the Preston
function itself (O’Dwyer & Green 2010; Grilli et al. 2012;
O’Dwyer & Cornell 2017). The combination of the new scal-
ing results we present below and any method to evaluate the
Preston function yields analytical approximations of Scontig,
Srandom and Sclump that predict immediate species loss under a
range of scenarios at arbitrary spatial scales.

Case studies

After deriving our rescaling formulas, we applied them to three
real species-loss problems spanning a range of spatial scales.
We focused our applications on tropical tree communities, for
several reasons: (1) Beta diversity of tropical trees over dis-
tances of 0.5–50 km is statistically similar to beta diversity
under neutral theory (Condit et al. 2002), which suggests that
tree species’ spatial distributions at these scales are also statisti-
cally similar to those under neutral theory (notwithstanding a
current paucity of individual-mapped data at these scales). (2)
Trees are sessile and this simplifies the question of immediate
species loss because individuals cannot relocate to escape habi-
tat destruction. (3) Immediate species loss is most relevant to
communities in which extinction debt is small or repaid slowly,
and in tree communities the latter condition is likely to be satis-
fied because trees are sedentary and long-lived (the same is not
true for, e.g. vertebrates). (4) There are substantial data avail-
able for tropical tree communities.
Our definition of ‘tree’ is a vascular plant that can grow to

at least 10 cm diameter-at-breast-height (DBH). For all case
studies, we used estimates of tree density and dispersal dis-
tance from the well-studied tropical forests of central Panama:
our estimate of tree density was q = 42 000 km�2 (Hubbell
et al. 2005); our estimate of dispersal standard deviation was
r = 40.2 m (Condit et al. 2002). Although in reality q and r
vary across tropical forests, these ballpark estimates serve the
purpose of demonstrating our methods and producing
approximate estimates of species loss.
For each case study, we first determined from empirical data,

the initial area Amax, post-clearing area A, and initial species
richness Smax. The values of Amax and Smax were used as con-
straints to estimate the speciation rate parameter m separately
for each case study (Appendix 2). Initial species richness, initial
area, final area and dispersal distance were thus the only data
used to fully parameterise our model: our predictions were
emergent from these data and not fitted to the empirical species
loss numbers. Next, we used our analytical formulas to estimate
the post-clearing species richness Scontig and Srandom under con-
tiguous- and random-clearing scenarios, respectively, and thus
the number of endemic species in the cleared areas,
Econtig0 ¼ Smax � Scontig and Erandom0 ¼ Smax � Srandom, under the
same two scenarios. Species loss under each scenario can then

be equated to the number of species that were endemic to the
cleared region (He & Hubbell 2013): Sloss;contig ¼ Econtig0 and
Sloss;random ¼ Erandom0 . These provide upper and lower bounds on
immediate species loss under arbitrary clearing scenarios
(Claudino et al. 2015).
The first case study was at the local scale of an Amax = 50 ha

forest plot on Barro Colorado Island in the Panama Canal
(Hubbell et al. 2005). The number of tree species in the plot in
2010 was Smax = 222. Our clearing scenario here was hypotheti-
cal, with area losses of 10–90% explored. We compared these
estimates to those from simulated random and contiguous
clearing on the actual 50 ha plot spatial census data.
Our second case study was at the regional scale and corre-

sponded to the entire tropical island city-state of Singapore
(Corlett 1992). Prior to 1819, Singapore was almost entirely
forested. From 1819 to 1992, Singapore’s forested area
decreased from approximately Amax ¼ 540 km2 to A ¼ 23 km2

(Corlett 1992), representing 95.7% forest loss. From herbar-
ium records, we estimated Singapore’s tree species richness in
1819 as Smax = 840 and current tree species richness as
S = 728, implying DS = 112 extinctions. In addition, we esti-
mated the number of undetected extinctions (species that went
extinct before they could be recorded) from a nonparametric
statistical method (Chisholm et al. 2016) that requires as input
only the time series of herbarium records. The method esti-
mated 89 undetected extinctions and a corresponding upper
bound on species loss of DS = 112 + 89 = 201.
Our third case study was at the continental scale and cov-

ered the Brazilian Amazon. The true magnitudes of tree spe-
cies diversity and extinction in the Amazon are highly
uncertain. Accordingly, this case study is not an exercise in
model validation, but a demonstration of our formulas’ power
to make predictions easily and quickly at arbitrarily large spa-
tial scales. We used input parameter values from the opti-
mistic scenario of Hubbell et al. (2008): original area
Amax = 4 652 400 km2, current area A = 0.633Amax and origi-
nal tree species richness Smax = 11 210. We also compared
our model’s predictions to those of Hubbell et al. (2008), who
used a more complex spatial simulation approach.
In Appendix 3, we provide R code for reproducing our case

study results and for applying our methods more broadly. As
input, the R code requires five parameter values: initial habi-
tat area Amax, final habitat area A, initial species richness
Smax, density of individuals per unit area q and standard devi-
ation of dispersal distance r. The parameter r can be esti-
mated either directly from dispersal data (e.g. from seed trap
data for plants (Muller-Landau et al. 2008) or telemetry data
for animals) or indirectly from data on the spatial distribution
of organisms, as done for our case studies here (Condit et al.
2002) (Appendix 2). The R code returns estimated species loss
under contiguous and random clearing (running time is on the
order of milliseconds).

RESULTS

Changing spatial scale

Our first theoretical result (Appendix 4) is that rescaling rela-
tionships similar to those shown in formula (2) also apply to
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arbitrary clearing patterns, including clumped clearing and
random clearing:

Sclump n; kAmax; kA; m; kr2
� �� kSclump n;Amax;A; m;r2

� � ð3Þ

Srandom kAmax; kA; m; kr2
� �� kSrandom Amax;A; m;r2

� � ð4Þ
These formulas can be understood intuitively in terms of

coalescence processes (Appendix 4). We confirmed them
numerically for the clumped clearing case (see Fig. 1b,c and
dashed and dash-dotted curves in Figs 2 and 3), the random
clearing case (see Fig. 1d and dotted curves in Figs 2 and 3)
and for arbitrary clearing patterns (Fig. 4).

Relating clumped clearing to other clearing patterns

We also derived theoretical rescaling relationships between
qualitatively different types of clearing. Three different results
emerged relating a clumped-clearing pattern (see Fig. 1b,c
insets) to a contiguous-clearing pattern (see Fig. 1a inset). The
first result occurs when the mean species range size is small so
that any given species is unlikely to appear in more than one
clump: Amax/n ≫ r2/m. This decouples the clumps from one
another so that total species richness is simply the sum of the
species richness in each independent clump:

Sclump n;Amax;A; m;r2
� �� nScontig

A
n ; m;r

2
� � ð5Þ

Our second result for clumped clearing occurs under the
stricter condition that A/n ≫ r2/m so that the clumps them-
selves become larger than the average species range size.

Consequently, there is negligible overlap of species composi-
tion between clumps, even if the clumps are repositioned right
next to one another. Merging the clumps to form a contigu-
ous-clearing pattern therefore does not affect species loss and
clumped clearing becomes equivalent to contiguous clearing:

Sclump n;Amax;A; m;r2
� ��Scontig A; m;r2

� � ð6Þ
This result is demonstrated in Fig. 3, where the dashed and

dash-dotted curves (clumped clearing) begin to converge to
the solid curves (contiguous clearing) as A/r2 becomes large,
with faster convergence for smaller n and larger m.
Our third result for clumped clearing occurs at the opposite

extreme where the average species range size (r2/m) is large
enough to overlap many patches, that is, Amax/n � r2/m. In
this scenario, species are well mixed at the scale of a few habi-
tat clumps and hence species richness is affected similarly by
random and clumped clearing:

Sclump n;Amax;A; m;r2
� ��Srandom Amax;A; m;r2

� � ð7Þ
We numerically confirmed formula (7) for simulated

clumped clearing with n = 16, and n = 256. In Fig. 3, for
instance, we see that clumped clearing converges to random
clearing as A/r2 (and hence Amax/r

2) becomes small, with fas-
ter convergence for larger n and smaller m (see Fig. S1 for a
broader range of n). Our rescaling relationships (5)–(7) assume
equal-sized clumps (Figs 1b,c insets), but we expect they will
be robust to moderate perturbations of this idealised case, for
example, unevenness in clump shape and size.

Relating random clearing to contiguous clearing

We derived a further scaling result relating random-clearing
to contiguous-clearing scenarios provided that r ≫ 1:

Srandom Amax;A; m;r2
� �� Scontig A; 1� 1� mð ÞAmax

A ;r2
� �

ð8Þ
This, our flagship theoretical result, is highly non-trivial. To put

it in words, if a fraction A/Amax of the landscape remains as habi-
tat after a spatially random clearing event, this has a similar effect
on species richness to a scenario of contiguous clearing leaving
the same habitat area A, but on a more species-rich landscape
constructed with a larger speciation rate. This result can again be
understood in terms of coalescence processes (Appendix 5).
Formula (8) gives a rescaling from random clearing to con-

tiguous clearing. Formula (2) gives a rescaling between con-
tiguous-clearing scenarios with different sets of parameters.
We can combine formulas (2) and (8) to get a rescaling
between random-clearing scenarios (Appendix 5):

Srandom Amax;A; m;r2
� �� 1

k Srandom Amax; kA; 1� 1� mð Þk; kr2
� �

ð9Þ
We verified numerically that this result holds true except for

r � 1 (Fig. 5).

Relating the results from all clearing patterns to the Preston

function

The function Scontig A; m;r2
� �

is already related to the two-
parameter Preston function by formula (1). The equivalent
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Figure 2 The SARs from Fig. 1 rescaled by 1/r2 on both axes. Solid curves

correspond to contiguous clearing (Fig. 1a); dashed and dash-dotted

curves correspond to clumped clearing with n = 16 and n = 256 clumps

respectively (Fig. 1b,c); dotted curves correspond to random clearing

(Fig. 1d). As predicted by formulas (2)–(4), there is a scaling collapse

within each of the four clearing types and the collapse is better for large r
(in this case, for r ≥ 2). The shaded grey region indicates the second phase

of the SAR: r2 < A < r2/m. (See Fig. 3a for a zoomed-in version of the

second and third SAR phases of this graph, without the r = 1 curve).
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result for Srandom Amax;A; m;r2
� �

comes from a combination of
formulas (1), (2) and (8):

Srandom Amax;A; m;r2
� �� r2W A

r2 ; 1� 1� mð ÞAmax
A

� �
ð10Þ

and is broadly valid for r ≫ 1 (Fig. S2). This shows that the
original four-parameter random-clearing function collapses on
to the well-studied two-parameter Preston function and allows
us to transfer knowledge about contiguous SARs to random-
clearing SARs. In the limits of large area and small speciation
rate, our formulas for Scontig and Srandom reduce to known
SAR and endemics–area results for the log-series distribution
(He & Legendre 2002; Green & Ostling 2003; Appendix 6).
For clumped clearing there are two scenarios depending on

the degree of dispersal limitation. If interpatch distance is large
compared to the average species range Amax/n ≫ r2/m, and
r2 ≫ 1, then we can combine formulas (1) and (5) to give

Sclump n; Amax;A; m;r2
� �� nr2W A

nr2 ; m
� � ð11Þ

In the opposite case Amax/n � r2/m, we can combine for-
mulas (7) and (10) to give

Sclump n;Amax;A; m;r2
� ��r2W A

r2 ; 1� 1� mð ÞAmax
A

� �
ð12Þ

Figure S3 summarises all the rescaling relationships derived
in this study. The lower bound on species richness after habi-
tat loss, and hence the upper bound on species loss, comes
directly from the classic contiguous-SAR approach by calcu-
lating Scontig A; m; r2

� �
. The upper bound on species richness,

and hence the lower bound on species loss, comes from ran-
dom-clearing SARs by calculating Srandom Amax;A; m;r2

� �
.

Importantly, both can now be expressed analytically in terms
of the well-studied Preston function.

Local-scale findings and case study: Barro Colorado Island,

Panama

We observed that on local scales, random and contiguous
clearing give qualitatively similar SARs (Fig. 6a); thus

fragmented SARs will be similar too, because random and
contiguous clearing are the bounding cases. Despite the quali-
tative similarity of the SARs, the quantitative differences in
species loss estimates between clearing scenarios can be fairly
large (e.g. by a factor of � 2.5 for 90% forest loss in the BCI
plot; Fig. 6b). When we compared the predictions from the
formulas to the results of simulated clearing on the spatial
census data, we found that the simulated results were within
the bounds from the formulas, but showed less variation
between the random and contiguous scenarios (Figs 6b; S4,
Appendix 8). This discrepancy is expected, given the known
limitations of current spatial neutral models at small scales,
that is, their failure to accurately reproduce small-scale beta
diversity patterns (Condit et al. 2002) and species abundance
distributions (O’Dwyer & Cornell 2017).

Regional-scale findings and case study: Singapore

When clearing occurs at a regional scale, qualitative differ-
ences between the random and contiguous scenarios emerge
(Fig. 6c), and the quantitative differences become larger. In
our application to Singapore, estimated species loss in the
contiguous-clearing scenario is five times that in the random-
clearing scenario, and empirical tree species loss is closer to
the random-clearing lower bound (Fig. 6d).

Continental-scale findings and case study: the Brazilian Amazon

At continental scales, where the third phase of the SAR domi-
nates, major qualitative differences arise in the SAR across
fragmentation types: while the contiguous model predicts that
the proportion of species lost equals the proportion of area
lost in the initial stages of habitat destruction, the random-
clearing model predicts very little species loss until the vast
majority of habitat has been destroyed (Fig. 6e). The stark
differences between the predictions of the random and con-
tiguous models leave a huge envelope of possible intermediate
outcomes for fragmented-clearing scenarios (Fig. 6f).
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Figure 5 Panel a: SARs resulting from random clearing with parameters m and r related by m ¼ 1� 1� m0ð Þk, where m0 = 0.01, r2 = 212k and k 2 {2�12,

2�10, . . . 20}. Panel b: The same SARs rescaled by 1/r2 on both axes. These graphs demonstrate a different scaling collapse from that in Figs 2–4, because
here the landscape extent is fixed (Amax = 222) and only habitat A varies along the horizontal axis, and because the speciation rate m now varies with

dispersal standard deviation r. As predicted by formula (9), a scaling collapse occurs in panel b and the collapse is better for large r.
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DISCUSSION

How many species are lost when an area of grassland goes
under the plough or a forest falls by the axe? Ecologists have
pondered the species–area question for almost a century
(Arrhenius 1921), but have only recently come to grapple with
the spatial nature of the problem, with the help of advanced
computer simulations and mathematics (Durrett & Levin
1996; Rosindell & Cornell 2007; O’Dwyer & Green 2010;
Grilli et al. 2012). Here, we have compartmentalised the prob-
lem by first designating the ‘Preston function’ to be the well-
studied triphasic contiguous SAR that emerges from a spatial
neutral model, and then deriving new formulas that relate this
existing work to a range of new fragmented SAR scenarios
(Fig. S3). Our results are derived from neutral models, but
their applicability extends to any situation where the spatial
patterns of species distributions are statistically similar to
those of neutral species – the actual mechanisms generating
the patterns need not be neutral.

The spatial pattern of habitat loss can have a major influ-
ence on species loss, and traditional contiguous SARs may
overestimate this loss (Kinzig & Harte 2000), but most studies
on fragmented SARs have been restricted to phenomenologi-
cal approaches or numerical simulations. Although useful,
simulations come with computational limitations that restrict
the spatial scale and resolution at which questions can be
asked and the generality of conclusions drawn. While our
local-scale case studies (Fig. 6a,b) could easily be investigated
numerically, our regional-scale case studies (Fig. 6c,d) would
be more difficult to simulate at the resolution of individuals,
and our continental-scale case studies (Fig. 6e,f) would be
impossible with present technology: we estimate that even effi-
cient neutral coalescence simulations of our Amazon case
study would take millennia on a modern desktop machine,
whereas our analytical formulas can be evaluated in millisec-
onds. Our method allows for rapid estimation of upper and
lower bounds on species loss from fragmented habitat clear-
ing, with the upper bound given by a contiguous SAR and
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the lower bound given by a random-clearing SAR (see Appen-
dix 7 for a technical discussion).
Our case studies reveal a strong scale-dependence to the

fragmented SAR problem: while the pattern of clearing makes
only a moderate difference to species loss on local scales
(Fig. 6a,b), the effect on regional and, especially, continental
scales can be enormous (Fig. 6c,f). The scale of observation
also affects whether empirical species loss from fragmented
clearing is closer to the theoretical lower or upper bound. In
the idealised case where species are distributed randomly at
the scale of observation, species loss is predicted exactly from
the lower bound, corresponding to the random SAR, under
any spatial pattern of habitat destruction (He & Hubbell
2011). In more realistic cases, where species distributions have
some characteristic scale, the random SAR formula will con-
tinue to work well providing that this characteristic scale is
substantially greater than the scale of clumping in the habitat
destruction spatial pattern (formula (7)). This explains why
empirical tree species loss in Singapore is close to the theoreti-
cal random-clearing lower bound (Fig. 6c,d): the average tree
species’ range is much larger than the distance between forest
clumps in Singapore.
At continental scales, the range of possible outcomes from

fragmented clearing becomes enormous (Fig. 6e) and, lacking
empirical data on species loss, we cannot be certain whether
our contiguous-clearing upper bound or the random-clearing
lower bound is more accurate. This is because the condition
for the clumped-to-random scaling collapse (formula (7)) may
fail at large scales: the typical species ranges may cover just
one or a few clumps. It is also at continental scales that the
power and utility of our methods become fully apparent. In
the Amazon, biologists lack certainty about the number of
extant tree species, let alone the extinct ones. In such cases, if
we want to estimate tree diversity and extinction, we must
leverage theoretical models, despite their inevitable caveats
(Hubbell et al. 2008).
Two important general lessons emerge from the application

of our new methods to the three case studies at different
scales. First, the relationship between fragmentation and
immediate species loss is fundamentally scale dependent: frag-
mentation has only moderate effects independent of area at
small scales (Fig. 6a), but enormous effects at large scales
(Fig. 6e). Second, the 16-fold difference between our lower
bound random-clearing and upper bound contiguous-clearing
predictions at the Amazon scale (Fig. 6f) illustrates starkly
that we can have no hope of even approximately characteris-
ing continental-scale species loss unless we come to grips with
the mathematics of fragmented SARs.
We focused on immediate species loss from habitat

destruction here, but there is also a need to study long-term
loss (e.g. Claudino et al. 2015). Immediate species loss may
be more relevant for communities of long-lived sedentary
organisms, such as trees, or small-bodied organisms that can
persist in tiny patches of habitat. But long-term loss is
important for communities of organisms that are mobile or
turn over relatively quickly, for example, birds and mam-
mals. Critically, the effects of fragmentation on long-term
loss can be opposite to those on immediate loss, with diver-
sity negatively related to fragmentation (Hanski et al. 2013).

Long-term loss is a more complex technical problem,
because it necessarily includes immediate loss as one compo-
nent, but also involves a richer cocktail of biological pro-
cesses, including edge effects and population structure. Our
methods can be extended to study cases where long-term
relaxation occurs via neutral drift, but a comprehensive eval-
uation of long-term loss will likely involve a broader suite of
modelling techniques.
In summary, we have introduced a suite of formulas that

allow for analytical, mechanistic estimation of lower and
upper bounds on immediate species loss at arbitrary spatial
scales. The resulting insights about fragmented SARs help
provide a foundation for future work on this topic. Our for-
mulas predict, consistent with other models and with intu-
ition, that immediate species loss is lower under random
clearing than under contiguous clearing, and in between for
other cases of fragmented clearing. We have shown that true
species loss will, all else being equal, be closer to the lower
bound (random clearing) than the upper bound (contiguous
clearing) for (1) well-dispersed taxa, (2) highly fragmented
landscapes and (3) small spatial scales. Our rescaling formulas
advance research on fragmented SARs by providing an ana-
lytical way forward on a topic where analytical solutions have
been scarce.

ACKNOWLEDGEMENTS

This work was supported by grants to R.A.C. from the
James. S. McDonnell Foundation (#220020470) and the Sin-
gapore Ministry of Education (WBS R-154-000-603-112). J.R.
was funded by fellowships from the Natural Environment
Research Council (NERC) (NE/I021179, NE/L011611/1). This
study is a contribution to Imperial College’s Grand Chal-
lenges in Ecosystems and the Environment initiative. We
thank Guy Ziv and Duane Loh for helpful discussions, and
James O’Dwyer and Tak Fung for comments on the manu-
script. We thank Will Symes for testing our R code. We thank
the editor and three anonymous reviewers for their helpful
feedback.

AUTHORSHIP

RAC and JR designed the study. RAC, JR and FL performed
the analyses. YSY, WWS and RC provided and collated the
data. RAC and JR wrote the paper. All authors revised the
paper.

REFERENCES

Arrhenius, O. (1921). Species and area. J. Ecol., 9, 95–99.
Campos, P.R.A., Neto, E.D.C., Oliveira, V.M. & Gomes, M.A.F. (2012).

Neutral communities in fragmented landscapes. Oikos, 121, 1737–1748.
Campos, P.R.A., Rosas, A., de Oliveira, V.M. & Gomes, M.A.F. (2013).

Effect of landscape structure on species diversity. PLoS ONE, 8,

e66495.

Chisholm, R.A., Giam, X., Sadanandan, K.R., Fung, T. & Rheindt, F.E.

(2016). A robust non-parametric method for quantifying undetected

extinctions. Conserv. Biol., 30, 610–617.
Claudino, E.S., Gomes, M.A.F. & Campos, P.R.A. (2015). Extinction

debt and the role of static and dynamical fragmentation on

biodiversity. Ecol. Complex., 21, 150–155.

© 2018 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd

812 R. A. Chisholm et al. Letter



Condit, R., Pitman, N., Leigh, E.G., Chave, J., Terborgh, J., Foster, R.B.

et al. (2002). Beta-diversity in tropical forest trees. Science, 295, 666–669.
Corlett, R.T. (1992). The ecological transformation of Singapore, 1819-

1990. J. Biogeogr., 19, 411–420.
Durrett, R. & Levin, S. (1996). Spatial models for species-area curves. J.

Theor. Biol., 179, 119–127.
Ewers, R.M. & Laurance, W.F. (2006). Scale-dependent patterns of

deforestation in the Brazilian Amazon. Environ. Conserv., 33, 203–211.
Gardner, R.H., Milne, B.T., Turner, M.G. & O’Neill, R.V. (1987).

Neutral models for the analysis of broad-scale landscape pattern.

Landsc. Ecol., 1, 19–28.
Green, J.L. & Ostling, A. (2003). Endemics-area relationships: the

influence of species dominance and spatial aggregation. Ecology, 84,

3090–3097.
Grilli, J., Azaele, S., Banavar, J. & Maritan, A. (2012). Absence of

detailed balance in ecology. EPL, 100, 38002.

Hanski, I., Zurita, G.A., Bellocq, M.I. & Rybicki, J. (2013). Species–
fragmented area relationship. Proc. Natl Acad. Sci., 110, 12715–12720.

Hargrove, W.W., Hoffman, F.M. & Schwartz, P.M. (2002). A fractal

landscape realizer for generating synthetic maps. Conservation Ecology,

6(1), 2. [online] URL: http://www.consecol.org/vol6/iss1/art2/

Harte, J., Smith, A.B. & Storch, D. (2009). Biodiversity scales from plots

to biomes with a universal species–area curve. Ecol. Lett., 12, 789–797.
He, F. & Hubbell, S.P. (2011). Species–area relationships always

overestimate extinction rates from habitat loss. Nature, 473, 368–371.
He, F. & Hubbell, S.P. (2013). Estimating extinction from species-area

relationships: why the numbers do not add up. Ecology, 94, 1905–1912.
He, F.L. & Legendre, P. (2002). Species diversity patterns derived from

species-area models. Ecology, 83, 1185–1198.
Hubbell, S.P. (2001). The Unified Neutral Theory of Biodiversity and

Biogeography. Princeton University Press, Princeton, NJ.

Hubbell, S.P., Condit, R. & Foster, R.B. (2005). Barro Colorado Forest

Census Plot Data, URL http://ctfs.si/edu/datasets/bci.

Hubbell, S.P., He, F.L., Condit, R., Borda-de-Agua, L., Kellner, J. & ter

Steege, H. (2008). How many tree species are there in the Amazon and

how many of them will go extinct? Proc. Natl Acad. Sci. USA, 105,

11498–11504.
Keil, P., Storch, D. & Jetz, W. (2015). On the decline of biodiversity due to

area loss. Nat. Commun., 6, 8837. https://doi.org/10.1038/ncomms9837.

Kinzig, A.P. & Harte, J. (2000). Implications of endemics-area relationships

for estimates of species extinctions. Ecology, 81, 3305–3311.
Lewis, O.T. (2006). Climate change, species-area curves and the extinction

crisis. Philosophical Transactions of the Royal Society B: Biological

Sciences, 361, 163–171.
Muller-Landau, H.C., Wright, S.J., Calderon, O., Condit, R. & Hubbell,

S.P. (2008). Interspecific variation in primary seed dispersal in a

tropical forest. J. Ecol., 96, 653–667.

O’Dwyer, J.P. & Chisholm, R.A. (2013). Neutral theory and beyond. In:

Encyclopedia of Biodiversity, 2nd edn (ed. Levin, S.A.). Academic Press,

Waltham, MA, 51pp.

O’Dwyer, J.P. & Cornell, S. (2017). Cross-scale ecological theory sheds

light on the maintenance of biodiversity. https://arxiv.org/abs/1705.

07856.

O’Dwyer, J.P. & Green, J.L. (2010). Field theory for biogeography: a

spatially explicit model for predicting patterns of biodiversity. Ecol.

Lett., 13, 87–95.
Pereira, H.M. & Daily, G.C. (2006). Modeling biodiversity dynamics in

countryside landscapes. Ecology, 87, 1877–1885.
Pereira, H.M., Borda-de-Agua, L. & Martins, I.S. (2012). Geometry and

scale in species-area relationships. Nature, 482, E3–E4.
Plotkin, J.B., Potts, M.D., Leslie, N., Manokaran, N., LaFrankie, J. &

Ashton, P.S. (2000). Species-area curves, spatial aggregation, and

habitat specialization in tropical forests. J. Theor. Biol., 207, 81–99.
Preston, F.W. (1960). Time and space and the variation of species.

Ecology, 41, 611–627.
Rosindell, J. & Cornell, S.J. (2007). Species-area relationships from a

spatially explicit neutral model in an infinite landscape. Ecol. Lett., 10,

586–595.
Rosindell, J., Wong, Y. & Etienne, R.S. (2008). A coalescence approach

to spatial neutral ecology. Ecological Informatics, 3, 259–271.
Storch, D., Keil, P. & Jetz, W. (2012). Universal species-area and

endemics-area relationships at continental scales. Nature, 488, 78–81.
Sugihara, G. & May, R.M. (1990). Applications of fractals in ecology.

Trends Ecol. Evol., 5, 79–86.
With, K.A. (1997). The application of neutral landscape models in

conservation biology. Conserv. Biol., 11, 1069–1080.
Zillio, T. & He, F. (2010). Modeling spatial aggregation of finite

populations. Ecology, 91, 3698–3706.

SUPPORTING INFORMATION

Additional Supporting Information may be found online in
the supporting information tab for this article.

Editor, Fangliang He
Manuscript received 19 December 2017
First decision made 27 January 2018
Manuscript accepted 13 February 2018

© 2018 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd

Letter Fragmented SARs 813

http://www.consecol.org/vol6/iss1/art2/
http://ctfs.si/edu/datasets/bci
https://doi.org/10.1038/ncomms9837
https://arxiv.org/abs/1705.07856
https://arxiv.org/abs/1705.07856

