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ABSTRACT

Motivation: The identification of genes involved in specific
phenotypes, such as human hereditary diseases, often requires the
time-consuming and expensive examination of a large number of
positional candidates selected by genome-wide techniques such
as linkage analysis and association studies. Even considering the
positive impact of next-generation sequencing technologies, the
prioritization of these positional candidates may be an important step
for disease-gene identification.
Results: Here, we report a large-scale analysis of spatial, i.e.
3D, gene-expression data from an entire organ (the mouse brain)
for the purpose of evaluating and ranking positional candidate
genes, showing that the spatial gene-expression patterns can
be successfully exploited for the prediction of gene–phenotype
associations not only for mouse phenotypes, but also for human
central nervous system-related Mendelian disorders. We apply our
method to the case of X-linked mental retardation, compare the
predictions to the results obtained from a previous large-scale
resequencing study of chromosome X and discuss some promising
novel candidates.
Contact: rosario.piro@unito.it
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Individuals belonging to the same species show not only phenotypic
variations that influence all biological aspects of the organism
in more or less profound ways, including physiology, metabolic
pathways and development, but also susceptibility to diseases.

In the last years, genome-wide techniques such as linkage
analysis and association studies have been very successful in
establishing the molecular basis of many phenotypic traits. However,
these approaches often select loci containing many hundreds
of positional candidates, the experimental evaluation of which
can be time-consuming and expensive. Therefore, computational
approaches to disease-gene prediction or prioritization can be an
important step prior to further empirical analysis in a laboratory.
In silico disease-gene prediction can be based on different
types of information, such as sequence properties (López-Bigas
and Ouzounis, 2004), functional annotation (Freudenberg and
Propping, 2002; Turner et al., 2003), text-mining of biomedical
literature (Perez-Iratxeta et al., 2002; Tiffin et al., 2005),
protein–protein interactions (Lage et al., 2007; Oti et al., 2006),
high-throughput gene-expression data (Ala et al., 2008; Miozzi et al.,
2008; Mootha et al., 2003) or combinations of these (Aerts et al.,
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2006; Rossi et al., 2006). While some of these approaches are clearly
biased towards already consolidated knowledge, e.g. the mining of
functional annotations and biomedical literature, others allow for a
less biased evaluation of candidate genes. Avoiding such a bias, that
tends to diminish the value of all candidate genes about which little
or nothing is known, is a key problem of disease gene prediction
methodologies. For this reason, approaches that rely on (or at least
include) genome-wide high-throughput data, like the one proposed
in this article, are generally preferable.

The introduction of next-generation sequencing technologies
is likely to have a significant impact on disease-gene discovery
by speeding up the identification of potentially disease-relevant
mutations (Mardis, 2007). However, especially if large sets of
positional candidates are involved, a high number of sequence
variations can be expected to be found. Cargill et al. (1999),
for example, found 185 non-synonymous and 207 synonymous
polymorphisms in a screen of the coding regions of 106 human
genes relevant to cardiovascular disease, endocrinology and
neuropsychiatry. During a screen of the coding exons of 718 genes
on chromosome X from 208 families for mutations causing X-linked
mental retardation (XLMR), Tarpey et al. (2009) found mutations
in three novel and several known disease genes, but could not, for
most families, identify the genetic cause of XLMR, despite the
identification of a large number of missense and even truncating
mutations. These results illustrate that even with the aid of novel
technologies candidate evaluation remains a difficult task, thus
providing a rationale for the inclusion of computational predictions
or prioritizations in the evaluation process.

High-throughput expression data from microarray experiments
are valuable as a potentially unbiased source of information for
comparing the expression profiles of candidate genes with those
of ‘reference genes’ known to be (directly or indirectly) associated
to a phenotype. This ‘guilt-by-association’ approach, however, has
usually been applied to heterogeneous datasets containing samples
from multiple tissues and cell types (Aerts et al., 2006; Ala et al.,
2008; Miozzi et al., 2008; Rossi et al., 2006).

Traditional high-throughput expression data, although being
highly informative, have the shortcoming of carrying only limited
spatial information: although samples are usually associated to
specific tissues and organs, often no detailed 3D localization of
samples within a tissue or organ is recorded. This may be a problem,
especially for tissues or organs characterized by a high degree of
spatial organization, such as the central nervous system (CNS).
Some of the microarray or EST expression datasets that have so
far been used for disease gene prediction—see for example Aerts
et al. (2006) and Ala et al. (2008)—contain subsets for the brain or
the CNS that have a somewhat more detailed anatomical (and hence
in some sense spatial) annotation, associating the expression data to
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specific brain or CNS regions, but coverage is mostly sparse, that is,
only samples from arbitrary, non-consecutive positions within these
regions are available.

Also, due to limitations in sample dissection, most available
datasets represent ‘average’ expression levels over several cell types
within a complex, heterogeneous tissue. More selective sample
preparation, e.g. based on laser capture microdissection (Emmert-
Buck et al., 1996), that yields better resolutions, is still uncommon.

In the last few years, different high-throughput methods have
been implemented on a genome-wide scale to provide detailed
spatial maps of gene expression, both at the mRNA and protein
levels. For instance, high resolution (1 mm3) voxelation, followed by
microarray or mass spectrometry analysis, has led to the production
of an expression map of a single coronal slice of the mouse brain for
approximately 20 000 genes and 1028 proteins (Chin et al., 2007).
Moreover, multi-dimensional fluorescence microscopy (Schubert
et al., 2006) and imaging mass spectrometry (Stoeckli et al., 2001)
have recently shown their potential. Finally, although being based
on the more traditional in situ hybridization (ISH) technology,
the mRNA gene-expression map of the entire adult mouse brain
provided by the Allen Brain Atlas (ABA) project (Lein et al., 2007)
is a particularly important resource, both for its high resolution
and for its great anatomical coverage. The potential usefulness of
this resource for disease-gene identification is underscored by a
previous pilot study, which established that genes sharing similar 3D
expression profiles in the ABA are likely to share similar biological
function (Liu et al., 2007).

The aim of this article is to provide a proof-of-concept for
the suitability of spatially mapped gene expression for candidate
gene prioritization. For this purpose, we first use a leave-one-
out procedure to show how the involvement of genes in mouse
phenotypes can be predicted. We extend the scope of our work
by demonstrating that the co-expression of genes across the mouse
atlas is also relevant for the prioritization of candidate genes for
human CNS-related Mendelian disorders. Finally, we apply the
method to the particularly complex case-study of XLMR, evaluating
its performance on genes already known to be involved in the
syndrome and using this knowledge to pinpoint some outstanding
novel candidates.

2 METHODS

2.1 Spatial mouse brain gene-expression data
We downloaded spatial gene-expression data for 18 389 of around 20 000
genes from the Allen Mouse Brain Atlas (10 November 2009), using the
Application Programming Interface (API) provided by the ABA website.
Only sagittal ISH image series with antisense probes for genes with defined
Entrez gene IDs were considered. In case of multiple image series per gene,
only the most recent was used, since ISH for about 15% of the genes had
been repeated with redesigned probes (e.g. due to higher specificity) or
other process improvements (Jones et al., 2009). The downloaded expression
patterns provide expression levels for the entire brain, smoothed over evenly
spaced voxels (cubes) with a side length of 200 µm.

2.2 Mapping to human homologs
For the purpose of prioritizing human disease genes, the expression profiles
from the mouse brain were mapped to human Entrez gene IDs using NCBI’s
HomoloGene build 64 (Sayers et al., 2010). Only unambiguous mappings

were considered, yielding a total of 14 916 human Entrez gene IDs with an
associated expression pattern from the mouse brain.

2.3 Mouse phenotypes
Information about mouse phenotypes was obtained from the Mouse Genome
Database (MGD), release 4.32 (Bult et al., 2008). All 131 phenotypes
containing the expressions ‘central nervous system’ and ‘brain’ (this includes
‘brainstem’, ‘forebrain’, etc.) in their denomination or short description and
having at least two directly associated genes were considered (such that one
can be taken as a candidate and one as a reference gene in the leave-one-
out validation); the 77 CNS- or brain-related phenotypes with more than
20 genes were excluded, restricting the search to cases with less available
information. This choice reflects the fact that predictions are likely to be
particularly important for less well-characterized phenotypes. On average
7.8 genes were associated to each of the 131 phenotypes.

2.4 Human Mendelian disease
Information on human Mendelian disease phenotypes was obtained from
OMIM (Amberger et al., 2009; Sayers et al., 2010) on 17 June 2009. Only
the 749 phenotype entries of known molecular basis (OMIM symbol: #)
containing the term ‘central nervous system’ in their Clinical Synopsis
section were considered. The lists of known associated disease genes
(mim2gene) were obtained from Entrez Gene (Sayers et al., 2010) on 16
June 2009. Between 1 and 25 genes (on average 1.3 genes) were associated
to each OMIM phenotype ID; only six phenotypes (<1%) had 10 or more
associated genes. The 659 phenotypes with a single associated gene (88%)
were not excluded because reference genes for the leave-one-out validation
can be taken from similar phenotypes (see below).

2.5 Similarity of human disorders
To measure the pairwise similarity of OMIM phenotype entries, we processed
the textual descriptions of all OMIM phenotype entries (not limited to brain-
or CNS-related disorders) using MimMiner, essentially as described by van
Driel et al. (2006).

MimMiner scores are normalized and range from 0 (unrelated) to 1 (highly
related or identical). Since is was established that similar phenotypes can be
identified with reasonable accuracy considering a minimum score of 0.4 (van
Driel et al., 2006), we used the same threshold for our work. Therefore, with
exception of the XLMR case study (Section 3), we consider as ‘similar
phenotypes’ those pairs of OMIM phenotype entries that have a similarity
score of at least 0.4 in our updated MimMiner database.

2.6 Candidate gene prioritization
Given a set of candidate genes Cp (e.g. positional candidates from linkage
analysis) that have to be prioritized, i.e. ranked according to their probability
of being involved in a given phenotype p, the following procedure is applied
(Fig. 1).

First, a set of ‘reference genes’ Rp is selected for the given phenotype.
These are genes known to be involved in p and/or similar phenotypes (e.g.
via MimMiner, see above).

Then, for each reference gene r ∈Rp a genome-wide, ranked co-expression
list is determined by listing all other genes according to their decreasing co-
expression with the reference gene. As a measure of co-expression, we apply
the widely used Pearson correlation coefficient.

The rank/position k(c,r) of each candidate gene c∈Cp within each of
the co-expression lists of the reference genes r is determined, and a relative
rank k(c,r)/kmax computed, where kmax is the total number of genes in each
co-expression list (all genes but the reference gene r itself).

Each candidate gene is assigned an overall score sc defined as the product
of its relative ranks within the reference genes’ co-expression lists:

sc =
∏

r∈Rp

k(c,r)

kmax
(1)
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Fig. 1. Schematic representation of the candidate prioritization method. The
procedure is exemplified with two of the hypothetical candidate genes. The
list of candidate genes, the phenotype p and the spatial gene expression
profiles are considered as given.

Under the assumption of independence of the correlation coefficients of
different gene pairs,1 this score would be equivalent to a P-value of having
by chance ranks k(c,r) or better.

Finally, candidate genes are prioritized, i.e. sorted, according to their
increasing scores, since lower scores indicate a higher probability of being
involved in the given phenotype.

2.7 Leave-one-out
Two large-scale leave-one-out validations were performed: one considering
mouse phenotypes from MGD and one considering human Mendelian
disorders from OMIM.

For each known gene–phenotype (g–p) pair, a set of reference genes Rp

was defined as all genes known to be involved in the given phenotype p
(except g itself) and/or all genes associated to similar phenotypes (for human
disorders). Then, using gene coordinates obtained from the UCSC Genome
Browser (Kent et al., 2002), an artificial locus was constructed on the mouse
or human chromosome, respectively, comprising the N genes flanking on
both sides of g (containing thus up to 2N+1 genes centered around g). In
case of g being close to a chromosome terminal, the number of genes in
the artificial locus could also be <2N+1 (but in any case ≥N+1). Three
representative sizes N for artificial loci were chosen: 50, 100, and 200 (with
a maximum number of 101, 201 and 401 positional candidates, respectively).

Those genes within the artificial locus for which spatial brain expression
data was available were considered as candidate genes (simulating an
‘orphan’ locus obtained by linkage analysis or comparable techniques),
and the prioritization method was applied as described above. The relative
rank/position Rrel

g of the phenotype-causing gene g among the prioritized

1This assumption does not hold due to the biological interdependence of
gene regulation. We mention it here only to underline the rationale of the
scoring procedure we have chosen.

candidates c∈Cp from the artificial locus was recorded:

Rrel
g = Rg

|Cp| with 1≤Rg ≤|Cp|⇒0<Rrel
g ≤1 (2)

where Rg is the rank of g within the prioritized genes and |Cp|≤2N+1 is
the number of candidates for which spatial expression data was available.

The analysis, however, was limited to gene–phenotype pairs whose
corresponding artificial loci contained at least 50 ‘effective’ candidate genes
for which ABA expression profiles were available—one of which was
required to be the true phenotype-related gene—since only these can be
evaluated and thus prioritized. We reasoned that a lower number of effective
candidate genes would introduce an undesired bias by automatically placing
the true phenotype-causing gene in higher ranks.

3 RESULTS AND DISCUSSION
The anatomically comprehensive Allen Mouse Brain Atlas (Lein
et al., 2007), is composed of series of ISH images that form layered,
3D gene expression profiles covering the entire adult C57BL/6J
mouse brain at a very fine resolution (cellular but not single cell).

Since the notion of co-expression can be effectively exploited
for predicting disease genes (Aerts et al., 2006; Ala et al., 2008;
Miozzi et al., 2008; Mootha et al., 2003; Rossi et al., 2006), or
more in general gene–phenotype relationships, we reasoned that
the spatially mapped gene expression provided by the ABA would
be of particular interest for predicting the involvement of genes in
CNS-related phenotypes.

3.1 Evaluation by leave-one-out
We evaluated the possibility to predict gene–phenotype associations
using a leave-one-out procedure (Section 2) that simulates the case
where a limited set of candidate genes (e.g. obtained through linkage
analysis) is to be ranked according to their relation to a given
phenotype.

For this purpose, we used 3D ABA gene expression patterns that
report ‘expression energies’ determined from grey-scale values of
ISH image intensities, summed over evenly spaced voxels of 200 µm
side length (Section 2).

Known gene–phenotype (g–p) relations were processed in leave-
one-out tests by constructing artificial loci of varying sizes on the
mouse or human chromosome, respectively, followed by scoring
of the ‘candidate’ genes lying within these loci against the set of
reference genes composed of all other genes known to cause the
given phenotype (Section 2). For human disorders also genes known
to be involved in similar phenotypes were considered as reference
genes.

In contrast to some related work (Aerts et al., 2006), we did
not determine a single ‘representative’ reference expression pattern
by averaging over the set of reference genes. Especially for the
more complex phenotypes, it cannot be expected that candidates
are highly co-expressed with all reference genes, questioning the
biological meaning of an arbitrarily constructed average reference
profile. Instead, we compared the expression of the candidate genes
to all single reference genes, such that a significant co-expression
with only a subset of the reference genes could in theory already
yield a high rank among the prioritized candidates (Section 2).

For each leave-one-out test, the rank of the true phenotype-
related gene within the list of prioritized candidates was recorded.
Supposing that only the highest ranking candidates would be
considered for further study in a laboratory, we verified how often
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Table 1. Results of the leave-one-out tests

Organism, phenotypes N Candidates
(average)

g–p pairs Ranked first Ranked 1st–10th Ranked ≤10%

Obs. Exp. P-value Obs. Exp. P-value Obs. Exp. P-value

Mouse 50 85.1 860 26 10 1.57e-05∗∗∗ 169 101 1.38e-11∗∗∗ 144 86 5.95e-10∗∗∗
Mouse 100 160.4 877 18 5 1.47e-05∗∗∗ 115 55 6.77e-14∗∗∗ 152 88 1.78e-11∗∗∗
Mouse 200 298.8 880 13 3 1.20e-05∗∗∗ 65 29 4.79e-09∗∗∗ 147 88 5.67e-10∗∗∗
Human, mol.basis unkn. (%) 50 73.8 797 16 11 7.95e-02 149 108 2.64e-05∗∗∗ 126 80 1.80e-07∗∗∗
Human, mol.basis unkn. (%) 100 137.7 844 13 6 9.84e-03∗∗ 105 61 6.26e-08∗∗∗ 132 84 1.93e-07∗∗∗
Human, mol.basis unkn. (%) 200 256.6 847 6 3 1.16e-01 61 33 4.84e-06∗∗∗ 139 85 5.08e-09∗∗∗

N represents the size of the artificial loci having a maximum of 2N+1 genes. The average numbers of effective candidates with ABA profiles and the numbers of evaluated g–p pairs
are shown. The observed and expected numbers of g–p pairs, for which the true phenotype-causing gene g ranks first, among the top 10 and within the best 10% of the prioritized
list, is reported along with the corresponding P-values (one-tailed Fisher exact test). Significant P-values are highlighted (∗P<0.05; ∗∗P<0.01; ∗∗∗P<0.001).

the true phenotype-causing gene was ranked first (Rg =1), among
the top ten (Rg ≤10), and among the upper 10% (Rrel

g ≤0.1) of
the prioritized list. The corresponding ROC curves can be found in
Supplementary Figure S1.

3.2 Mouse phenotypes
A total of 18 389 3D gene expression profiles and 1025 known gene–
phenotype pairs for 131 mouse brain- and CNS-related phenotypes
(Section 2) were considered for the leave-one-out procedure.
As can be seen in Table 1, the procedure yielded for all three
locus sizes a significantly higher number of positive results than
expected by chance. The number of true phenotype-related genes
found among the top 10 candidates, for example, was highly
significant (P=1.38e-11 for N =50, P=6.77e-14 for N =100, and
P=4.79e-09 for N =200). This suggests that spatial gene expression
data from a complex organ, like the mouse brain, can be an important
source of information to predict novel gene–phenotype associations.
The areas under the ROC curves (AUCs) ranged from 0.547 to 0.562
(see Supplementary Table S4).

The same procedure was applied to 12 676 microarray gene
expression profiles for the mouse brain, extracted from the GNF
expression atlas (Su et al., 2004; see Supplementary Methods and
Table S1). The results are far less significant than the ones obtained
from the Allen Brain Atlas. However, the microarray dataset is much
smaller in terms of genes and especially of number of experimental
points. Therefore, we cannot draw any firm conclusion on the
superiority of spatial gene expression data over microarray data for
the identification of disease genes.

3.3 Human disorders
We asked whether spatial expression from the mouse brain would
also be helpful when applied to the prediction of human disease
genes for Mendelian disorders described in OMIM. We therefore
mapped the ABA expression profiles of 14 916 mouse genes to their
human homologs and applied the same leave-one-out procedure
to known human gene–disease associations. Since the CNS-related
OMIM phenotypes can be very detailed and have on average only
1.3 associated disease genes we used MimMiner to extend the sets
of reference genes, in order to include also genes involved in similar
phenotypes (see Section 2).

We executed the leave-one-out procedure twice: once excluding
all known disease genes from the set of reference genes for a

given phenotype (relying only on reference genes from similar
phenotypes) to simulate disorders that are classified in OMIM as
having ‘unknown molecular basis’ (OMIM class: %); and once
including all known disease genes, with exception of the gene
around which the artificial locus was constructed, to simulate OMIM
phenotypes with (at least partly) ‘known molecular basis’ (OMIM
class: #). The results for the two cases were almost identical, since
similar phenotypes contributed most if not all of the reference
genes, even when the molecular basis was known. Therefore, we
present here only those regarding the leave-one-out procedure for
phenotypes with unknown molecular basis (see Supplementary
Table S1 for the results of class #).

As shown in Table 1, the use of spatial expression patterns
of the adult mouse brain yields good results even for human
CNS-related Mendelian disorders. The number of true phenotype-
related genes found among the top 10 candidates, for example, was
significant for all locus sizes: P-values obtained were P=2.64e-05
for N =50, P=6.26e-08 for N =100 and P=4.84e-06 for N =200.
Non-significant results, for the phenotype-causing gene g ranking
first at N =50 and N =100, likely depend on a lack of statistical
power, since their fold-enrichments are similar to those obtained
for g ranking among the top 10 and among the best 10%. AUCs
ranged from 0.549 to 0.571 for human disorders (see Supplementary
Table S4).

3.4 Case study: XLMR
As a specific case study, we selected XLMR. This disorder is
particularly challenging, if considered that 90 genes on the X
chromosome are known to be associated to some form of intellectual
disability and that a similar number probably remains to be identified
(Cécz et al., 2009). We used as a set of hypothetical candidate genes
the 718 genes on chromosome X whose coding exons had recently
been resequenced by Tarpey et al. (2009) in a search for the causes
of XLMR in 208 affected families. Of these genes, we could map
471 to ABA expression profiles from the mouse brain for further
evaluation. A total of 73 (15.5%) of these mapped genes were known
to be involved in XLMR (including two, SYP and CASK, of the three
novel XLMR genes that had been discovered by Tarpey et al.).

3.5 Evaluation
For a first evaluation, none of the 471 resequenced candidates on
chromosome X were included among the reference genes, thus
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Fig. 2. Distribution of relative ranks k(c,r)/kmax of the three best XLMR candidates (within the co-expression lists of the 58 references genes), compared to
the distribution of relative ranks of all 471 candidates. Data points represent bins of width 0.025.

pretending XLMR to be a disorder with unknown molecular basis.
The reference genes were instead selected from similar phenotypes.
As the number of reference genes was still very high (several
hundreds) with the standard 0.4 cutoff, we increased the threshold
of the MimMiner similarity score to 0.5, obtaining a total of
58 reference genes with mapped ABA expression data.

We ranked the 471 candidates using our prioritization procedure.
In spite of the restrictive assumption of XLMR being a disorder
with unknown molecular basis and the fact that we relied on
gene expression from the mouse brain to evaluate candidates for
a human disease, the 47 (10%) best scoring candidate genes (see
Supplementary Table S2) contained 13 confirmed XLMR genes
(P=0.0177). Most notably, the best scoring gene (BRWD3) and
the gene at rank 3 (SYP), shown in Table 2, are both known
XLMR genes, the latter having only recently been discovered by
the mentioned resequencing study (Field et al., 2007; Tarpey et al.,
2009). Therefore, without a priori considering known XLMR genes,
our procedure would have suggested at least two valid candidates
among the first three of the prioritized list.

Figure 2 illustrates that the three best candidates (BRWD3,
IRAK1 and SYP) rank significantly higher in the co-expression
lists of the 58 reference genes, compared to the average rankings
of all 471 candidates. BRWD3, for example, ranks among the 2.5%
most co-expressed genes for one third of the references genes
(P=1.34e-16), SYP among the 7.5% most co-expressed genes
for over half of the reference genes (P=6.276e-19), and IRAK1
among the 25% most co-expressed genes for all reference genes

(P=1.20e-35). In contrast, the distribution of the relative ranks of
all candidates is, as expected, close to a uniform distribution.

3.6 Prediction
Since we were able to ‘rediscover’ several known XLMR genes
(Table 2) we used the same pipeline for predicting novel candidate
genes based on current knowledge of causes of XLMR. For this
purpose, we considered all 73 resequenced XLMR genes for which
ABA expression profiles were available as reference genes (without
including genes involved in similar phenotypes) and considered
only the remaining 398 resequenced genes as candidates. The 20
best scoring candidates are shown in Table 3 (see Supplementary
Table S3 for the best 10%).

The overlap between the two prioritizations—taking XLMR as
a disorder with unknown molecular basis or relying instead on
consolidated knowledge—is striking: 11 out of 14 of the best ranking
non-XLMR genes with the first prioritization (evaluation) have also
been found among the top 20 of the prediction via true XLMR
genes (P=6.62e-14). We must emphasize the fact that the two sets
of reference genes were completely distinct and only related via
the concept of phenotype similarity. This strongly suggests that the
results are robust and that we can therefore consider the best ranking
genes of the two prioritizations as promising novel candidates for
XLMR.

Interestingly, missense mutations of highly conserved residues
were found by Tarpey et al. in some of our candidates
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Table 2. Best 20 candidates of the prioritization (evaluation via similar
phenotypes) of the chromosome X genes resequenced by Tarpey et al. (2009)
(see also Supplementary Table S2)

Rank Gene Entrez ID Disorder Mut. score Score sc

1 BRWD3 254065 XLMR 2.86 7.16e-78
2 IRAK1 3654 – 1.94 1.84e-71
3 SYP 6855 XLMR − 8.97e-69
4 BIRC4 331 other 37.04 4.28e-68
5 MAGED1 9500 – 5.14 5.63e-68
6 MORF4L2 9643 – − 3.37e-66
7 ZNF280C 55609 – − 5.07e-65
8 SYN1 6853 XLMR − 1.15e-64
9 CXorf6 10046 other 12.00 1.19e-64
10 ATP6AP2 10159 XLMR − 2.70e-64
11 HCFC1 3054 – 27.82 1.65e-61
12 PJA1 64219 – 2.44 1.82e-61
13 NGFRAP1 27018 – − 1.91e-61
14 FAM50A 9130 – 11.62 5.63e-61
15 HUWE1 10075 XLMR 46.75 1.62e-60
16 GRIA3 2892 XLMR 13.00 1.14e-59
17 PIGA 5277 other − 3.24e-59
18 OGT 8473 – 15.90 4.15e-59
19 GNL3L 54552 – 22.49 1.68e-58
20 WDR40C 340578 – 0.22 3.35e-58

Associations to disorders and mutation scores are as reported by Tarpey et al. Mutation
scores reflect the conservation scores at missense positions and are summed over the
single missense mutations found for each gene. Genes in bold face overlap with those
in Table 3.

Table 3. Best 20 candidates of the prioritization (prediction via true XLMR
genes) of the chromosome X genes resequenced by Tarpey et al. (2009) (see
also Supplementary Table S3)

Rank Gene Entrez ID Disorder Mut. score Score sc

1 MORF4L2 9643 – − 5.09e-99
2 PJA1 64219 – 2.44 7.70e-97
3 ZNF280C 55609 – − 1.91e-93
4 MAGED1 9500 – 5.14 1.55e-91
5 MAGEE1 57692 – 2.04 1.60e-85
6 BIRC4 331 other 37.04 1.02e-84
7 GRIPAP1 56850 – 8.17 3.13e-82
8 CXorf6 10046 other 12.00 3.75e-81
9 GNL3L 54552 – 22.49 4.07e-81
10 FAM50A 9130 – 11.62 7.72e-81
11 PGRMC1 10857 – 9.70 8.65e-81
12 GPM6B 2824 – − 4.12e-79
13 IRAK1 3654 – 1.94 8.19e-79
14 HCFC1 3054 – 27.82 1.28e-78
15 PIGA 5277 other − 1.65e-78
16 RPS4X 6191 – − 4.97e-78
17 REPS2 9185 – − 2.81e-77
18 ARMCX2 9823 – − 1.67e-75
19 DRP2 1821 – 41.79 3.64e-74
20 MED14 9282 – 9.54 1.41e-73

Associations to disorders and mutation scores are as reported by Tarpey et al. Mutation
scores reflect the conservation scores at missense positions and are summed over the
single missense mutations found for each gene. Genes in bold face overlap with those
in Table 2.

(Tables 2 and 3), although these mutations could not, in many
cases, be unambiguously linked to XLMR. Nevertheless, our results
suggest that at least some of them may be the true cause of XLMR.

3.7 Novel candidates
It is important to notice that most of our top scoring genes are not
very obvious candidates for a role in intellectual disability, on the
basis of their functional characterization. Indeed, for many of them,
no information at all is available from the literature. Moreover, in
the case of BIRC4, HCFC1, CXorf6, PGRMC1 and PIGA, the genes
have been characterized for their involvement in diseases or disease-
related processes not specifically connected to the CNS.

However, some interesting remark can be made in other cases.
For instance, GRIPAP1, also known as GRASP-1, is a neuronally
enriched protein that interacts with the AMPA-type glutamate
receptor/GRIP and acts as a scaffold for the JNK signalling
pathway (Ye et al., 2007), that may be involved in mental
retardation downstream of the IL1 receptor (Pavlowsky et al.,
2010). Interestingly, IRAK1 is another component of the IL1R-
JNK pathway (Vig et al., 1999) and has been recently found to
be upregulated in a mouse model of Rett syndrome (Urdinguio
et al., 2008). The p75 neurotrophin receptor-mediated programmed
cell death pathway, that may play an important role in memory
and attentional processes by regulating survival of the cholinergic
neurons (Niewiadomska et al., 2010), is also well represented
among our candidates by NGFRAP1 and MAGED1 (Bertrand et al.,
2008); and in a recent report MAGED1 has been also found to
functionally interact with PJA1 (Sasaki et al., 2002). Finally, DRP2
and MAGEE1 are components of the dystrophins/dystroglycans
complex (Albrecht and Froehner, 2004; Jin et al., 2007), whose
dysfunction results in a high incidence of intellectual disability
and psychiatric disorders (Waite et al., 2009), besides to muscular
dystrophy. The very high conservation score of the missense
mutations of DRP2 found in XLMR families (Tarpey et al., 2009) is
particularly intriguing. Indeed, although the complete inactivation
of the gene in mice has revealed that it plays a specific role in
peripheral myelination (Sherman et al., 2001), a previous report
showed that the encoded protein is associated to the post-synaptic
density, a neuronal structure strongly involved in learning and
memory processes (Roberts and Sheng, 2000). On this basis, it is
conceivable that subtle mutations of some of the mentioned genes
may contribute to intellectual disability in humans.

4 CONCLUSION
Taken together, our results are very promising, demonstrating the
value of high-resolution spatial gene expression data for the purpose
of candidate gene prioritization and disease-gene prediction.

We have shown that spatial expression data from the mouse brain
can be successfully used to predict not only genes involved in
mouse phenotypes, but also genes involved in human CNS-related
disorders. The robustness of our results led us to suggest novel
candidates for X-linked mental retardation.

Unfortunately, 3D expression data remain an exception, and
many potentially powerful applications (such as a hypothetical
‘differential spatial expression’ of case versus control samples)
are currently impossible, but as our study hopefully illustrates,
further effort to advance relevant technologies and experimental
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procedures will not be wasted. The ongoing preparation of the Allen
Human Brain Atlas, scheduled to be completed in 2013, promises
an additional rich source of information for disease gene prediction.
The proof-of-concept that we present here, can be understood as a
pioneer study towards a more direct analysis of spatial co-expression
in the human brain.
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