
Astrocytomas diff er in brain location and tumor 
grade across age
Today, primary brain tumors constitute the leading cause 
of cancer-related mortality in children and adolescents 
aged 20 years and under, now surpassing leukemia, and 
the third leading cause of cancer-related death in young 
adults aged 20 to 39 years [1]. Th ese brain tumors have a 
devastating socio-economic impact on patients and their 
families, with signifi cant disease and treatment eff ects 
and healthcare costs, and with many if not most patients 
with higher-grade tumors dying after enduring the 1 to 
3 year course of their cancer and the side eff ects of their 
therapies.

Gliomas are the most common primary central nervous 
system tumors in both children and adults [2]. Th is 
hetero geneous group of tumors is classifi ed by the World 
Health Organization (WHO) [3] into four major groups: 
astrocytomas; oligodendrogliomas; mixed oligoastro-
cyto mas; and ependymal tumors. Th ey are then further 
segregated into distinct histological grades, ranging from 
WHO grade  I to grade  IV on the basis of defi ned 
cytologic and histologic features, including cellularity, 
mitotic activity, nuclear atypia, microvascular prolifera-
tion and necrosis (Table  1) [3]. Th e most important 
prognostic factors across the age spectrum are tumor 
grade, age at diagnosis, and completeness of surgical 
resection [2,4]; however, glioblastoma multiforme (GBM, 
grade IV astrocytoma) remains essentially incurable 
despite decades of concerted therapeutic eff orts.

Th e tumor location, pathological subtype and tumor 
grade, as well as the potential for a stepwise progression 
from lower to higher grade, have been shown to vary with 
age (Figure 1). For example, oligodendrogliomas and high-
grade gliomas (HGGs) are less common in children [2]. By 
contrast, grade I astrocytomas  - termed pilocytic astro-
cyto mas (PAs)  - are the most common primary brain 
tumor in childhood, accounting for approximately 25% of 
all pediatric brain tumors [2,3]. Th ey arise most frequently 
in the cerebellum, followed by the optic pathways, where 
they occur as sporadic tumors or in the context of neuro-
fi bromatosis type I, followed by the brainstem, thalamus 
and the spinal cord. Conversely, PAs rarely arise in the 
cerebral hemispheres or in patients older than 18 years [2,5].
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WHO grade II (diffuse) astrocytomas are more common 
in younger adults and usually progress to higher-grade 
tumors, that is, to anaplastic astrocytoma and secondary 
GBM in adults, whereas stepwise progression is rarely 
reported in children [6]. The majority of GBM tumors, 
however, are primary tumors that arise de novo and 
typically manifest in older patients (older than 60 years), 
where they account for the most common type of 
primary central nervous system tumor in that age group. 
In adults, gliomas occur mostly as supratentorial tumors, 
mainly in the cerebral cortex and the thalamus [1-3,5,7] 
(Figure 1). HGAs in children represent less than 15% of 
all primary central nervous system neoplasms and 
encompass tumors mainly located in supratentorial 
regions including the cortex and the thalamus, similar to 
adult high-grade tumors, but also in the brainstem, a 
tumor location that is almost exclusive to children, where 
they are named diffuse intrinsic pontine gliomas (DIPGs) 
[8]. The vast majority of pediatric GBM tumors will arise 
de novo, without evidence of a pre-existing lower-grade 
lesion and subsequent tumor progression to secondary 
GBM, in contrast to young adults with this disease.

Genetic alterations in gliomas vary according to 
age, histology and tumor grade
The neuroanatomical specificity of particular tumor sub
types within adult and pediatric age groups suggests that 
important, intrinsically unique biological factors, such as 

developmental constraints, cellular origin and tumor 
microenvironment, may contribute to specific forms of 
gliomagenesis in distinct brain regions [9-11]. Import
antly, this is exemplified in PA, which has been described 
as essentially a ‘single-pathway’ disease with defects 
primarily affecting the mitogen-activated protein kinase 
(MAPK) pathway, most commonly with defects in BRAF 
[12-18], a serine-threonine kinase member of the RAF 
kinase family that regulates MAPK signaling. Duplication 
of BRAF at chromosomal region 7q34 was shown to 
define the majority of PAs [18], and was further charac
terized in association with the formation of a variety of 
in-frame fusions between KIAA1549 and BRAF [14]. 
These fusions invariably lead to the loss of the N-terminal 
regulatory domain and/or constitutive activation of the 
RAF kinases, resulting in increased MAPK pathway 
signaling. The mechanism leading to 7q34 duplication 
and BRAF fusions, a defining feature of PAs, is unclear. 
Recent studies suggest that the process of micro
homology-mediated break-induced replication may be 
involved in the generation of these structural re
arrangements [19].

Interestingly, although KIAA1549-BRAF fusion was 
shown to characterize the vast majority of PA tumors, 
notably of the cerebellum and optic pathways [12], other 
mutations/alterations - or ‘hits’ - leading to activation of 
the MAPK pathway have been described, such as the 
BRAF V600E mutation, NF1 mutation or loss (in 

Table 1. Classification of pediatric and adult brain tumors

					     Prevalent 
Tumor type	 Subtype	 Grade	 Histology	 Location	 age group	 Therapy	 Prognosis

Astrocytomas Pilocytic 
astrocytoma 

I Pilocytic cell 
morphology, less 
infiltrative, low 
proliferative activity.

Cerebellum, 
optic pathway, 
brainstem, 
thalamus and 
spine.

Children  
(0 to 16)

Surgical resection, 
adjuvant therapies 
considered in the case 
of incomplete surgical 
resection.

Excellent (100% 
5-year survival; 
96% 10-year 
survival)

Diffuse 
astrocytoma

II Infiltrative with 
low proliferative 
potential but often 
recurs. Can progress 
to higher grades in 
adults.

Cerebrum, 
optic pathway, 
brainstem, 
hypothalamus, 
thalamus and 
spine.

Young adults  
(20 to 39 years)

Surgery; adjuvant 
therapies considered 
on a case by case basis.

Moderate (58% 
5-year survival)

Anaplastic 
astrocytoma

III Infiltrative, with 
nuclear atypia and 
higher mitotic 
activity.

Cerebrum, 
cerebellum, 
brainstem and 
spine

Adults Surgical resection when 
possible, followed by 
adjuvant radiation and 
chemotherapy.

Poor (11% 5-year 
survival)

Glioblastoma 
multiforme 

IV Infiltrative,nuclear 
atypia, high 
mitotic activity, 
pseudopalissading 
necroses, florid 
microvascular 
proliferation. 

Cerebrum, 
cerebellum 
and spine, 
but brainstem 
gliobastoma 
multiforme 
(DIPGs) are more 
frequent in 
children.

Adults, except 
DIPG, which 
is prevalent in 
children below 
10 years of age

Surgical resection when 
possible, followed by 
adjuvant radiation and 
chemotherapy.

Very poor (1.2% 
5-year survival)

DIPG, diffuse intrinsic pontine glioma.
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neurofi bromatosis-type-1-associated PA), and other 
RAF-family fusions, usually observed in non-cerebellar 
PA tumors [14-17]. Recently, Zhang et al. and Jones et al. 
described MAPK pathway hits in 95 to 100% of PAs, 
demonstrating the central importance of targeting 
specifi c pathway alterations in this tumor type [20,21]. 
Th is is of importance because BRAF and the MAPK 
pathway have been shown to have a key role in cerebellar 
development, with neural stem cells (NSCs) in this region 
demonstrating proliferation in response to expression of 
KIAA1549-BRAF, whereas NSCs in regions of the 
neocortex, for instance, do not (reviewed in [18,22]), 
paralleling incidence rates of KIAA1549-BRAF fusions 
detected in human tumors. Th ese fi ndings are being 
translated into clinical practice, as phase I/II clinical trials 
are currently assessing the benefi t of using MAPK 
inhibitors in cases where adjuvant therapies are required 
[23]. In the context of low-grade diff use astrocytoma, 
recent studies by Ramkissoon et al. have uncovered a 
chromosomal gain at 8q.13.1 in 28% of diff use 

astrocytoma patients (grade II) that leads to a partial 
duplication of MYBL1 with a simultaneous truncation of 
its C-terminal negative regulatory domain [24]. Th is 
lends insight into other molecular events that pre-
dominate in low-grade gliomas.

Prognosis of HGGs has remained dismal despite 
decades of concerted therapeutic eff orts. Current therapy 
across age comprises resection if possible, followed by 
radiotherapy. Adjuvant therapies include the alkylating 
agent temozolomide [25,26] and targeted therapeutic 
inhibitors, such as EGFR against receptor tyrosine 
kinases (RTKs) [27] and bevacizumab against the angio-
genic factor VEGF-A [28,29]. All demonstrate minimal 
impact on survival (Table  1) [2-4]. Here, we present an 
in-depth discussion of recent studies utilizing high-
throughput genome-wide methods such as next-genera-
tion sequencing, and integrating data with gene ex-
pression profi ling, DNA methylation and copy number 
analysis in HGGs, with a focus on GBM across the age 
spectrum. Th ese studies shed light on novel molecular 

Figure 1. Overview detailing the diff erences between astrocytomas in the pediatric and adult age groups. (a) Depiction of grade 
distribution in adults and children highlighting that the majority of astrocytomas in adults are grade IV astrocytomas (glioblastomas), whereas the 
majority in the pediatric years are grade I astrocytomas (pilocytic astrocytomas). (b) Depiction of tumor localization. In adults, astrocytomas are 
most likely to arise in the cortex and the thalamus whereas in the pediatric years, astrocytomas are most common in the cerebellum, optic nerve 
and brainstem. (c) Age distribution between the four astrocytoma grades in adults and children. Grade and age data summarized from [5].
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mechanisms and provide arguments for a paradigm shift 
in GBM treatment that will hopefully translate into 
individualized patient management and ultimately better 
therapeutic success for this deadly group of diseases.

Children are not simply ‘young’ adults: genomic 
and epigenomic analyses reveal clinical and 
biological subgroups of glioblastoma
Genome-wide technologies including sequencing, copy 
number analysis and gene expression profiling have 
revolutionized the analysis and subgrouping of tumors, 
including primary central nervous system tumors such as 
medulloblastoma [30-39], posterior fossa ependymoma 
[40] and GBM [9,41-46]. The Tumor Cancer Genome 
Atlas (TCGA) has been central in defining the molecular 
heterogeneity of adult GBM tumors and HGGs 
[41,42,46]. Initial efforts focused on the sequencing of 
600 candidate genes in 206 adult GBM tumors and 
identified somatic mutations in key tumor suppressor 
genes such as TP53, PTEN, NF1, RB and PIK3R1, as well 
as in the oncogenes EGFR, ERBB2 and PIK3CA [46] 
(Table 2). These and other large-scale sequencing efforts 
also identified recurrent, somatic, gain-of-function muta
tions in IDH1/2 (encoding isocitrate dehydrogenases of 
the citric acid cycle), which were shown to characterize 
the vast majority of adult secondary GBM tumors, but 
were rare in de novo/primary GBM tumors [47,48]. 
Patients with IDH mutations were younger adults (age 
range from 25 to 53 years in [47] and from 13 to 71 years 
in [9]) and had a better overall survival [47]. Identification 
of IDH mutations in lower-grade diffuse gliomas and 
secondary GBM tumors suggests that such a mutation 
might be an early initiating event in gliomagenesis that is 
also important in tumor progression [47-49]. Further 
integrated molecular analysis allowed the identification 
in adult GBM tumors of four expression subgroups 
defined by mutation/alteration in PDGRFA, EGFR, IDH1 
and NF1 [41]. Verhaak and colleagues utilized an 
840-gene signature to cluster adult GBM tumors into 
four subgroups, each defined by a gene expression subset 
encompassing neurodevelopment, traditional cancer-
associated pathways or markers of differentiation [41]. 
Further investigation into the epigenomes of HGGs 
through the analysis of global DNA methylation analysis 
led to the identification of three epigenetic clusters, one 
of which demonstrated global hypermethylation and was 
largely defined by IDH mutations with a ‘proneural’ gene 
signature, the CpG-island hypermethylator phenotype, 
G-CIMP [42].

Although pediatric and adult HGGs are indistin
guishable under the microscope [50], recent molecular 
characterization has demonstrated that they are in fact 
distinct molecular entities. Age-related differences in 
GBM tumors and HGGs are evident when considering 

molecular profiling studies based on global gene expres
sion and copy number analysis [44,51,52]. In pediatric 
GBM tumors, which occur largely de novo, IDH1, EGFR, 
PTEN and other classic driver mutations and alterations 
identified in adult GBM tumors are rare, affecting mainly 
adolescents [10,51] (Table 2), indicating that other critical 
elements are involved in pediatric gliomagenesis. Our 
group was able to characterize the differences in global 
gene expression between pediatric and adult GBM 
tumors and demonstrated that RAS/AKT activation 
correlates with worse overall survival in pediatric GBM 
[44]. In addition, overexpression of Y-box protein  1 
(YB‑1) was common to most pediatric GBM tumors, 
demonstrating age-related differences in brain tumors, as 
well as within-age-group heterogeneity when considering 
RAS/AKT clinical correlates [44,45]. Integrated copy 
number and gene expression profiling studies also 
suggest intrinsic biological differences in pediatric 
HGGs, notably with respect to the rarity of EGFR 
amplification or its recurrent gain-of-function variant 
(EGFRvIII), which occur frequently in adult GBM [51]. 
However, in pediatric GBM tumors, including DIPGs, 
PDGFRA amplification was detected in 10 to 15% of 
samples, with an increased frequency of 30% in 
irradiation-induced tumors, suggesting an early initiating 
role of this mutation in pediatric HGG tumorigenesis 
[51] (Table  2). In addition, the spectrum of high-level 
focal amplifications and homozygous deletions is also 
unique in pediatric and adult age groups (Table  2). 
Although limited EGFR amplification is present in 
pediatric GBM, overexpression of this RTK, PDFR-α and 
MET, another RTK, have been identified in a substantial 
number of cases, especially in DIPG, indicating that 
similar signaling pathways are activated, albeit through 
distinct molecular triggers.

However, similar to in adults, several clinical trials 
aiming to target these kinases in children have had 
limited therapeutic success [2], which may be partly due 
to poor bioavailability in the brainstem in addition to 
blood-brain barrier issues [53]. Intriguingly, pediatric 
GBM, despite its aggressive biological nature, shows far 
fewer focal amplifications and homozygous deletions 
than its adult counterpart [52]. The strikingly normal 
genome for one of the most aggressive human cancers 
highlights the distinct biology of pediatric GBM and 
HGG, and clearly indicates that alternative pathways to 
those associated with the traditional cancer hallmarks 
may be driving oncogenesis in children.

Chromatin remodeling defects characterize 
pediatric high grade astrocytomas
Several groups, including our own, have used next-
generation sequencing technologies and integrated the 
results with copy number, gene expression and DNA 
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methylation datasets in separate and independent 
‘TCGA-like’ pediatric initiatives. This has led to the 
identification of recurrent gain-of-function somatic 
mutations in H3F3A in pediatric GBM at critical residues 
involved in histone post-translational modifications 
[9,10,54,55] (Table  2). We further uncovered additional 
mutations in the histone H3.3 chaperone genes ATRX 
and DAXX [10,56], indicative of altered chromatin 
remodeling pathways in 44% of pediatric GBM tumors 
[10]. In a large adult and pediatric glioma cohort 
comprising 784 tumors ranging from WHO grade I PAs 
to grade IV GBM, H3F3A mutations were found to be 
highly specific to GBM in the pediatric setting (patients 
aged less than 20  years) [10], with recent studies 
confirming their specificity to diffuse high-grade tumors 
[57] but also identifying the presence of the H3F3A 
K27M mutation in a small percentage of low-grade 
diffuse gliomas of the thalamus (1.9% of the tumor series) 
[20]. Independently, as part of the International Cancer 
Genome Consortium PedBrain Tumor Project, the 

H3F3A K27M mutation was identified in a thalamic PA 
tumor (1 of 96) in conjunction with NF1 and an activating 
FGFR1 hotspot mutation; a constellation of mutations 
also seen in 3 of 48  thalamic GBM tumors upon re-
analysis, suggesting a potential mechanism for glioma
genesis in this brain region [21]. Further to this, 
individual H3F3A mutations were also described in 
distinct age groups, with K27M mutations being 
restricted to infant and childhood GBM (median age 
10.5 years, range 5 to 23 years), and G34R/V mutations 
defining GBM in adolescents and young adults (median 
age 18 years, range 9 to 42 years) [9,10]. Interestingly, in 
the context of DIPG, around 80% of samples carried the 
K27M mutation in either the non-canonical H3.3 
(approximately 60 to 70%) or the canonical H3.1 
(approximately 18%), while 80% of thalamic pediatric 
GBM samples carried the K27M H3.3 mutation, indica
tive of a midline (diencephalon/thalamus, brainstem, 
spinal cord) predilection for this specific amino acid 
substitution [10,11,54].

Table 2. The genomic landscape of adult and pediatric high-grade gliomas

Mutation/	 Frequency of alteration	 Frequency of alteration		   
alterations	 in adult patients	 in pediatric patients	 Type of alteration	 Gene function

ATRX/DAXX 7%, 26% [56,58] 31%, 34% [10,56] LOF mutations Subunits of a chromatin remodeling complex 
required for H3.3 incorporation at pericentric 
heterochromatin and telomeres

BRAF 0% [83] 8% [55] Mutations/indels (V600E, 
A598deInsAT)

Oncogene 

EGFR 20%, 45%[41,46] 6%,26% [10,84] Amplifications, GOF mutations 
(EGFR VIII) and fusions

Receptor tyrosine kinase of the ERBB family

FGFR1/3 3.1% [85] 6% [21] GOF mutations and fusions 
(FGFR1/3 and TACC1/3)

FGF receptors are thought to have a role in 
the development of the nervous system

H3F3A 3% [56] 36% [10] Mutations (K27M and G34R/V) Replication-independent histone H3 variant

IDH1/2 26%, 5% 12% [47,48,56] 10%, 16% [51,86] GOF recurrent mutations Enzyme that catalyzes the oxidative 
decarboxylation of isocitrate and, when 
mutated, produces 2-hydroxyglutarate 

NF1 18% [41, 46] 27% [10] Deletions and LOF mutations Tumor suppressor gene 

PIK3R1/PIK3CA 10%, 14%, 22% [10,41,46] 17% [10] Activating mutations (PIK3CA), 
LOF mutations (PIK3R1)

Involved in the regulation of the PI3K 
pathway, PTEN, and receptor trafficking

SETD2 8% [55] 15% [55] LOF mutations Histone trimethyltransferase specific to H3K36

TP53 32%, 35% [41,46] 54% [10,84] Deletions and LOF mutations Tumor suppressor gene 

PTEN 80%, 82% [43,51] 35% [51] Deletions and LOF mutations, 
chromosome 10p loss

Tumor suppressor gene 

CDKN2A 52% [46] 13% [10] Deletions Tumor suppressor gene 

CDK4 14%, 18% [10,46] 0% [10] Amplifications and GOF 
mutations

Serine/threonine kinase important for cell 
cycle progression

PDGFRA 4%,12%, 13% [10,41,46] 29% [51] Amplifications and GOF 
mutations

Cell surface tyrosine kinase receptor for the 
PDGF family

FGF, fibroblast growth factor; GOF, gain of function; LOF, loss of function; PDGF, platelet-derived growth factor; PI3K, phosphoinositide 3-kinase.
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Compound mutations identified in conjunction with 
H3F3A mutations can give great insight into additional 
genetic hits required for tumorigenesis. ATRX mutations 
were reported in association with both K27M and G34R/
V mutations in pediatric GBM, with an almost complete 
concordance in G34R/V-mutant tumors, which were also 
completely defined by mutations in TP53 [10]. ATRX 
mutations were present in more than 80% of thalamic 
K27M H3.3 tumors but, strikingly, were found in barely 
10% of brainstem K27M H3.3 tumors, where they seemed 
to mainly occur in older children with DIPG, further 
implicating this combination (H3F3A and ATRX 
mutations) in GBM in older children and adolescents 
[11]. Recent studies have explored the association between 
telomerase reverse transcriptase (TERT) promoter muta
tions and ATRX (shown to correlate with the alternative 
lengthening of telomeres phenotype in pediatric GBM 
[10] and pancreatic neuroendocrine tumors [58]). These 
studies have shown that these alterations appear to be 
highly mutually exclusive, with 0 of 83 gliomas (across 
glioma subtypes including GBM, grade II to III astro
cytoma, oligodendroglioma and oligoastrocytoma) with 
TERT promoter mutations demonstrating co-mutation 
with ATRX (P  <  0.0001) [59]. This provides insight into 
the mechanism of tumorigenesis and the manner in 
which glioma cells exploit the cellular telomere main
tenance machinery.

The reports that uncovered H3.3 mutations in pediatric 
HGA were the first to identify mutations in a regulatory 
histone in humans. Except for rare cases, these mutations 
seem to be specific to HGA [20,21], and have not been 
identified in any other cancer to date except for one 
sample from a child with acute lymphoblastic leukemia 
out of 1,004 leukemias and lymphomas sequenced [60]. 
Recurrent H3F3A mutations represent the pediatric 
counterpart of the recurrent IDH mutations identified in 
young adult GBM, with which they are mutually exclusive 
[9,10]. Intriguingly, IDH alterations, which are also gain-
of-function, heterozygous somatic mutations, have been 
shown to be initiating events in gliomas [41,47,61] and 
they also seem to require association with other genetic 
events to achieve full-blown tumorigenesis. They are 
associated with two mutually exclusive genetic altera
tions, TP53 alterations and 1p/19q co-deletions [6,62] 
that respectively characterize astrocytic and oligodendro
glial IDH-mutant gliomas. We [10,11,63] and others 
[64,65] recently showed that mutations in ATRX charac
terize IDH- and TP53-mutant astrocytomas in young 
adults with low- and high-grade tumors and that these 
ATRX mutations are mutually exclusive with CIC muta
tions, which characterize oligodendroglial tumors. 
Strikingly, the oncometabolite produced as an effect of 
neomorphic IDH mutations has been shown to affect the 
epigenome and post-translational modification of the 

specific lysines identified to be directly (K27) or indirectly 
(K36) affected in pediatric HGG [66-69], as well as to 
globally perturb DNA methylation patterns [9,42], similar 
to the impact of each of the H3.3 mutations that were 
identified [9]. Indeed, the incorporation of adult and 
pediatric GBM datasets obtained by utilizing the DNA 
methylation Illumina 450k platform allowed for further 
sub-classification of GBM across the age spectrum into 
six robust epigenetic clusters, three of which were 
defined by epigenetic driver mutations in H3F3A (K27M, 
G34R/V) or IDH1 [9], alluding to the importance of 
epigenomic dysregulation in pediatric and young adult 
HGGs specifically. We recently identified SETD2 muta
tions in nearly 15% of pediatric and young adult HGGs 
[55]. SETD2 mediates trimethylation at lysine 36 of 
histone H3 [70] and mutations in this gene correlated 
with a global decrease in H3K36me3 levels, thus affecting 
post-translational modification of the K36 mark, which is 
indirectly targeted by G34R/V mutations of H3F3A and 
IDH1 mutations [55,69]. SETD2 mutations occurred 
exclusively in tumors of the cerebral cortex, paralleling 
the age range of IDH1-mutant gliomas (SETD2-mutant 
tumors median age 16  years, range 1 to 58  years) [55]. 
These findings suggest that in the context of tumors 
arising in the cerebral cortex in children and young 
adults, mutations affecting H3K36 methylation appear to 
predominate, with H3F3A G34R/V, IDH1 and SETD2 
mutations defining about half of all pediatric high-grade 
gliomas of the cerebral cortex [55], whereas mutations 
affecting K27 (K27M H3.3 or H3.1) predominate in 
midline pediatric HGGs (Table 2). These findings define a 
spectrum of tumor heterogeneity with definable age 
ranges, demonstrating that distinct genetic alterations 
are associated with unique epigenetic profiles.Integrated 
profiling and biochemical approaches to elucidating the 
functional impact of H3F3A, SETD2 and IDH1 mutations 
are necessary to determine their mechanism of action 
and provide targets for therapeutic intervention. Recent 
efforts have demonstrated global decreases in H3K27me3 
levels in K27M-mutant pediatric DIPG and HGG tumors 
[69,71,72], and have shown mechanistically that H3.3 
K27M overexpression can cause a global decrease in 
H3K27me2/me3 levels in a cell-type-independent 
manner [69,72]. By utilizing in vitro assays with a bio
tinylated H3.3 K27M peptide, Lewis and colleagues [69] 
provided convincing evidence that global levels of H3K27 
trimethylation decrease through binding and inhibition 
of the H3K27 trimethyltransferase EZH2 (a component 
of the polycomb repressor complex 2) (Figure 2). Taken 
together, these findings provide a basis for the striking 
decrease in global H3K27 trimethylation in the context of 
H3.3 variant K27M mutations, which comprise only a 
small percentage of total cellular H3. Also, GBM cell lines 
possessing H3.3 G34 mutations demonstrate specific 
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transcriptional programs involved in stem cell fate and 
forebrain development and differences in the genomic 
distribution of the histone mark H3K36me3 [73]. In 
addition, upregulation of MYCN provides a subgroup-
specific target in future endeavors towards targeted 
therapeutics in H3.3 G34R/V-mutant GBM [73] 
(Figure  2). With further insights into the mechanism of 
action of H3.3 mutations and their role in subgroup-
specific tumorigenesis, individualized translational 
approaches can be investigated, with the potential for 
achieving clinical improvements in these patients.

Clinical correlates of epigenetic driver mutations in 
pediatric high-grade gliomas
Neuroanatomy is integral to assessing patient prognosis, 
surgical planning, and subsequent functional sequellae in 
brain tumor treatment. In this regard also, H3F3A 
mutations are significant, as K27M mutations charac
terize midline tumors in regions such as the thalamus/
diencephalon and brainstem whereas G34R/V mutations 
are confined to cortical regions of the hemispheres, as we 
have outlined earlier [9,10]. Studies of DIPG have shown 
that over 80% of these tumors are defined by recurrent 
mutations at K27 of H3.3 or H3.1 (K27M) [11]. In 
addition, K27M H3.3 mutation was associated with 
decreased overall survival in DIPG patients; data that 
support the use of stereotactic biopsy and a more 
personalized approach to attacking this aggressive tumor 
[11]. Complementary to this, G34R/V mutations in H3.3 
and IDH1 R132-mutant tumors, preferentially occurring 
in cortical areas, appear to be associated with better 
overall survival than their K27M counterparts, and this 
comparison of better overall survival in G34-mutant 
compared with K27M-mutant tumors is also true when 
controlling for better accessibility to surgical resection in 
G34-mutant cases [9]. This striking neuroanatomical 
specificity provides information with regard to the 
suspected cellular origins of particular GBM subgroups, 
as regions of the subgranular and subventricular zones 
are NSC-enriched locations [74]. Recent work in mice, 
using cell-type-specific lentiviral induction of gliomas, 
demonstrated subgranular and subventricular but not 
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Figure 2. Proposed schematic model detailing epigenetic driver 
mutations in H3F3A and related pathway mutations. (a) Under 
normal conditions, K27 and K36 act as repressive and activating 
marks, respectively. (b) Mutations in H3F3A at K27M lead to decreased 
trimethylation on K27 by EZH2, causing gene activation and leading 
to abnormal gene expression. (c) Mutations in H3F3A at G34R/V 
lead to an alteration of K36 methylation, and are associated with 
abnormal gene expression. (d) Mutations in SETD2 cause a decrease 
in trimethylation of K36 and may potentially lead to abnormal gene 
regulation. (e) ATRX/DAXX mutations have been shown to play a role 
in the alternative lengthening of telomeres. WT, wild type.
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cortical location preferences for NSC-mediated tumors 
[74]. Contrary to this, astrocytic tumors developed in 
cortical regions, as well as the hippocampus, striatum 
and subventricular zone [74]. A H3.3 K27M-mutant 
human DIPG xenograft has recently been shown to 
express nestin, a marker of NSCs [72]. In addition, 
differential expression of the OLIG1, OLIG2 and FOXG1 
transcription factors between K27M and G34R/V tumors 
not only provides opportunities for diagnostics, but also 
provides insight into the cellular origins of these epi
genetic driver mutations [9]. It is tempting to hypothesize 
that H3F3A mutations (K27M and G34R/V) and IDH1 
mutations constitute developmental defects and arise in 
unique precursor cells in different brain regions, explain
ing their substantial heterogeneity and differing clinical 
behavior. Taken together, neuroanatomical findings 
indicating cortical and midline compartments for G34R/
V and K27M tumors, respectively, and expression of stem 
cell and lineage markers suggest unique cellular origins 
and/or profound reprogramming that is characteristic of 
each histone mutation.

Re-evaluating pediatric high-grade glioma 
management with molecular pathology
Recent evidence has allowed clinicians and researchers to 
glimpse the unique genomic paradigm presented by 
pediatric HGG tumors. Incorporating these findings into 
the design of future clinical trials and as companion 
diagnostics to routine pathology will be essential in 
evaluating their significance in personalized approaches 
for patients with these deadly diseases. Large-scale 
projects in other pediatric central nervous system tumors 
such as medulloblastoma have permitted the identifi
cation of subgroup-specific targets, providing platforms 
for the development of targeted therapeutics in a 
personalized manner [35]. Similarly, using evidence 
provided by recent genomic studies, independent investi
gations and modeling of epigenetic and gene expression 
subgroups of GBM tumors and HGGs in both adult and 
pediatric settings will allow for investigations into 
mechanisms of tumorigenesis in a subgroup-specific 
fashion. As such, future in vitro and in vivo models of 
GBM tumors and HGGs possessing driver mutations, 
notably those involving RTKs, H3F3A K27M and G34R/
V, SETD2 and IDH1 will constitute invaluable tools to 
enable molecular profiling and eventual drug develop
ment and screening. Recent characterization of a con
ditional IDH1 knock-in mouse model demonstrated a 
comprehensive recapitulation of DNA methylation and 
signature histone marks seen in human acute myeloid 
leukemia, in which IDH1 and IDH2 R132 and R172 
mutations, respectively, have been described, in addition 
to gliomas [68,75]. Such models, which reproduce find
ings in human tumors, namely alterations in histone and 

DNA methylation patterns in the context of IDH1 
mutation [41,66], permit potentially reliable and accurate 
platforms for drug screening in pre-clinical research. 
Notably, recent characterization of a mutant IDH1 inhi
bitor and its ability to block growth and induce differ
entiation in IDH1-mutant glioma cells, independent of 
drastic global DNA methylation changes, raises addi
tional questions about the mechanism of action and 
oncogenicity of identified epigenetic driver mutations 
such as IDH1 R132H [76].

Accurate diagnostics and subgrouping enabled by 
genomic characterization of pediatric HGG tumors 
presents a potential avenue for further stratifying clinical 
management. Recent studies have demonstrated the 
diagnostic potential of H3F3A sequencing owing to the 
specificity of these mutations for diffuse, overwhelmingly 
high-grade tumors, albeit with a few exceptions 
[10,11,20,21,57,77]. In conjunction with immunohisto
chemical markers of FOXG1 and OLIG2 expression, the 
identification of K27M- and G34R/V-mutant tumors in 
parallel with routine molecular pathology analyses 
presents a potential means of identifying patients 
possessing these mutations that demonstrate different 
clinical courses [9]. Recently described IDH1 R132H- 
[78] and H3.3 K27M-specific [69] antibodies will un
doubtedly be of great benefit to neuropathologists 
complementing histology with translational tools as these 
become available. In the context of unresectable DIPG 
tumors, which currently have a dismal prognosis, patients 
with H3F3A K27M mutations demonstrated worse 
overall survival than H3F3A wild-type tumors [11]. As 
mentioned earlier, such findings indicate that stereotactic 
biopsy and tumor profiling may enable differential clini
cal management of H3F3A K27M-mutated and wild-type 
DIPG, which recent studies have shown are markedly 
distinct at the molecular level [11,69,72]. Additionally, in 
the context of pathologic biomarker development, recent 
advances in magnetic resonance detection offer valuable 
non-invasive approaches; this is exemplified in the 
context of 2-hydroxyglutarate detection in IDH1-mutant 
glioma patients by novel magnetic resonance and 
spectroscopic techniques [79-81]. Taken together, further 
genomic characterization and modeling of individual 
epigenetic subtypes of GBM and HGG and subsequent 
characterization of their clinical correlates may form the 
basis for stratification of future clinical trials.

Conclusions and future directions
At present, there are no effective therapies for childhood 
HGG, including GBM and DIPG, and these tumors 
remain lethal across the age spectrum. Recent genomic 
studies have succeeded in elucidating novel mutations 
and biochemical mechanisms at play in these tumors, 
with further studies into subgroup-specific mechanisms 
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forming the next critical step towards improvement in 
the clinical management of this deadly group of diseases. 
The identification of driver mutations in H3F3A, ATRX, 
DAXX, IDH1 and SETD2 has revamped the way we think 
about HGGs, and has placed chromatin remodeling 
defects center stage, notably in the context of pediatric 
and young adult disease [1]. As discussed earlier, recent 
genomic and epigenomic studies have not only begun to 
shed light on the subgroups of GBM, but additionally on 
how these groups vary according to clinical variables, 
with pediatric and younger adult patients demonstrating 
driver epigenetic defects, and older patients presenting 
more frequently with classical defects in RTK and 
growth-related pathways [9]. This speaks volumes with 
regard to patient management and the design of future 
clinical trials: specific patient recruitment and genomic 
profiling will increasingly be necessary to tackle the many 
facets of GBM and HGGs. Novel efforts to design 
therapeutics will undoubtedly benefit as new, exciting 
studies continue to emerge throughout oncology, out
lining the role of epigenetics and histone marks in 
regulating cellular processes [66,68], the function of 
dysregulated metabolism in cancer cells [67,82] and, 
importantly, the interaction of genomics, epigenomics, 
transcriptomics and metabolomics enabled by the 
continuous shift towards systems-biology-based approa
ches. Progress towards better management of patients 
with these tumors will necessitate a more personalized 
approach and the cooperation of clinicians, pathologists, 
researchers and bioinformaticians alike. Identification 
and mechanistic elucidation of the effects and profiles of 
driver mutations may form the basis of target discovery, 
and the development of in vitro and in vivo models will 
enable functional characterization and drug screening. 
Following this, translational approaches will enable us to 
better stratify clinical trials and adopt these molecular 
tools to maximize the benefits for patients and their 
families faced with HGG diagnoses.
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