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Abstract

Background: Heterogeneity in the definition and measurement of complex diseases in Genome-Wide Association
Studies (GWAS) may lead to misdiagnoses and misclassification errors that can significantly impact discovery of
disease loci. While well appreciated, almost all analyses of GWAS data consider reported disease phenotype values
as is without accounting for potential misclassification.

Results: Here, we introduce Phenotype Latent variable Extraction of disease misdiagnosis (PheLEx), a GWAS analysis
framework that learns and corrects misclassified phenotypes using structured genotype associations within a
dataset. PheLEx consists of a hierarchical Bayesian latent variable model, where inference of differential misclassification
is accomplished using filtered genotypes while implementing a full mixed model to account for population structure
and genetic relatedness in study populations. Through simulations, we show that the PheLEx framework dramatically
improves recovery of the correct disease state when considering realistic allele effect sizes compared to existing
methodologies designed for Bayesian recovery of disease phenotypes. We also demonstrate the potential of PheLEx
for extracting new potential loci from existing GWAS data by analyzing bipolar disorder and epilepsy phenotypes
available from the UK Biobank. From the PheLEx analysis of these data, we identified new candidate disease loci not
previously reported for these datasets that have value for supplemental hypothesis generation.

Conclusion: PheLEx shows promise in reanalyzing GWAS datasets to provide supplemental candidate loci that are
ignored by traditional GWAS analysis methodologies.
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Background
Identification of statistical associations between pheno-
types and genotypes within Genome-wide Association
Studies (GWAS) has resulted in the detection of numer-
ous candidate genetic loci that may impact human dis-
eases and other aspects of human physiology [1, 2].
Since the first major GWAS were published [3–6], there
has been an increased realization that for many diseases
and traits, it will be challenging to identify the bulk of
contributing genetic loci due to the nature of genetic

effects where issues include small allelic effect sizes, gen-
etic and environmental interactions, and segregation of
contributing loci for rare alleles [7, 8]. This realization
has driven improved strategies for GWAS discovery in-
cluding consortium studies with large sample sizes that
can detect small effect size loci [9–11], sampling of
understudied populations to identify loci with differen-
tial genetic and environmental impacts [12–15], and
whole-genome sequencing of individuals to assess the
impact of rare alleles [16–21]. These GWAS design
strategies have been paralleled and complemented by
continued innovation in GWAS analysis methodologies,
including methods that detect epistatic interactions
among genetic loci [22–24] and genotype by environment
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interactions [25–28], as well as methods aimed to extract
impact of loci with rare variants [29–33]. Together, these
innovations in GWAS design and methodology have led
to discovery of candidate loci where impact is particularly
noticeable in diseases such as type 2 diabetes and schizo-
phrenia where large-scale consortium studies have
enabled isolation of numerous causal loci with low fre-
quency and small effects [2, 34–37]. While these successes
justify continuous investment in GWAS, it is clear that
sustained rate of discovery of new loci for well-studied dis-
eases and phenotypes will depend on innovative strategies
that leverage underutilized aspects of GWAS.
A core aspect of GWAS that could be targeted with

improved strategies is the phenotype, where there are
opportunities for improved phenotype definition [38–40],
measurement [41–43], and analysis [44–46]. It is well
appreciated that the combination of inconsistency in
methods used to diagnose disease [47, 48] and the applica-
tion of imprecise measurement methodology [43] can
introduce phenotyping errors that can reduce discovery
potential of a GWAS [49–56]. For example, high misdiag-
nosis rates have been estimated for disease phenotypes
such as Alzheimer’s disease and bipolar disorder which
may be misdiagnosed with other forms of dementia and
unipolar depression/borderline personality disorder, re-
spectively, due to overlap of symptoms and/or lack of ap-
plication of Diagnostic Systems Manual criteria [57–64].
As another example, patients with migraine, fibromyalgia,
and psychogenic disorder may frequently be misdiagnosed
with multiple sclerosis due to overlap of symptoms and
mistakes in application of clinical and radiographic diag-
nostic criteria [65]. Though various strategies have been
proposed to help address these issues through the pro-
cessing of GWAS phenotype data [46, 66–69], a comple-
mentary strategy would be to consider alternative
phenotypes derived from leveraging structure of total
GWAS data. An underexplored analysis strategy that
follows this approach is to consider misclassification of
disease phenotypes [70–73], where error in disease pheno-
type would result in disease cases recorded as controls
and vice versa [74]. Considering disease misdiagnosis rates
[75, 76], there is significant potential for disease misclassi-
fication in GWAS phenotype data where even small num-
bers of these errors can have significant impact on GWAS
statistical power and Type I errors [49, 50]. Methods that
could reliably identify cases of misclassification in GWAS
could be a promising approach for improving candidate
loci discovery in GWAS, particularly when considering
the potential for immediate impact and implementation at
minimal cost.
There has been surprisingly little attention paid to

phenotype misclassification analysis in GWAS, where
misclassification errors could be inferred and corrected
by making use of genotype associations with phenotype

[49, 73, 77]. The only major published methods for
GWAS analysis are Bayesian approaches for recovering
non-differential misclassification (i.e. misclassification
rates are considered the same for cases and non-cases/
controls) [49, 73] and differential misclassification (mis-
classification rates are considered different for cases
versus non-cases/controls) [77]. These methods and
their extensions for gene expression data have since
been applied in several studies to demonstrate potential
benefits of misclassification analysis. Examples include
identifying misdiagnosis of Alzheimer’s patients based
on differential gene expression [78, 79], predicting dis-
ease subtypes in breast cancer using gene expression
data [80], and finding misclassified individuals and esti-
mating single nucleotide polymorphism (SNP) effects in
simulated GWAS data [49, 73, 77]. Still, a number of
gaps remain when considering these methods for the
analysis of GWAS data. For example, only one misclassi-
fication method has been proposed for the analysis of
GWAS data [49, 73, 77], where this method fails to ac-
count for inherent genetic relatedness and population
structure in sampled GWAS populations. Given that
ignoring this fundamental issue in GWAS analysis dra-
matically increases false positive rates, this seems a con-
siderable omission [81, 82]. What’s more, this method
was only shown to perform well on GWAS datasets
simulated with an artificially high number of disease-
associated SNPs out of the total number of SNPs (i.e.
150/1000) with genotype-specific disease-odds ratio in
the range 4–10 [49, 77]. Such simulation scenarios pro-
vide an unrealistic picture of the algorithm’s expected
performance on real GWAS datasets.
Here, we present a complete framework for Bayesian

latent variable misclassification analysis that can be used
to explore GWAS for new discoveries: Phenotype Latent
variable Extraction of disease misdiagnosis (PheLEx)
(Fig. 1). The core of PheLEx is a single modeling frame-
work allowing for differential misclassification in GWAS
phenotypes with an underlying full mixed model to ac-
count for genetic relatedness and population structure.
When concentrating only on the problem of phenotype
misclassification, we show that the PheLEx framework
dramatically improved performance when analyzing
simulated GWAS data that included realistic effect sizes
and proportions of disease-associated genotypes in a
genome-wide scan consistent with empirical observation
[83–87]. Other applications of PheLEx include exploring
differential patterns between misclassified and non-
misclassified cases within GWAS datasets that may point
to potential causes such as misdiagnosis or disease sub-
types. We also propose a novel strategy for applying the
PheLEx framework to explore new loci within a GWAS
dataset by making use of misclassification probabilities
for phenotype and strategic filtering of SNPs to improve
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accuracy and avoid model overfitting. We demonstrate
the potential of this application by using PheLEx to
analyze datasets for bipolar disorder and epilepsy pheno-
types, where we discover “PheLEx” supplementary candi-
date loci that were not identified in the traditional
analysis of these datasets and may contain information
about disease-genotype associations. While caution and
careful interpretation of such PheLEx driven discoveries
is critical, these results demonstrate the potential of Phe-
LEx for reanalyzing existing GWAS data to identify
novel discoveries that may be explored for biological
connections to disease phenotypes.

Results
PheLEx compared to existing methods
At present, there is only one existing misclassification
framework designed for the analysis of GWAS data
[49, 73, 77], referred to here as the “Rekaya” method
or framework (or just as “Rekaya”). The Rekaya framework
uses a Gibbs sampler to estimate misclassification rates
(false positive rate and false negative rate) and identify
misclassified samples from GWAS datasets, without ac-
counting for random effects due to genetic relatedness/
population structure. PheLEx addresses limitations of
Rekaya [49, 73, 77] for disease misclassification by intro-
ducing: (i) filtration of potentially uninformative genotypes
to address issue of the disproportionate (low) ratio of
disease-associated SNPs in human GWAS, (ii) a more
efficient Markov Chain Monte Carlo (MCMC) sampling
algorithm, and (iii) accounting for genetic relatedness and
population structure. Using Adaptive Metropolis-Hastings
within Gibbs sampling allows PheLEx more flexibility in
sampling from posterior probabilities. As accuracy of
misclassification probability under the misclassification
model depends on estimated function of SNP effects and

typically most SNPs in a linkage disequilibrium (LD-)
pruned GWAS dataset are not associated with the pheno-
type of interest, PheLEx filters out potentially uninforma-
tive SNPs by taking a subset of statistically significant
GWAS genotypes as input, which provides significant ad-
vantages in terms of computational expense and accuracy
in identifying misclassified samples. As genetic relatedness
and population structure are a reality of most GWAS
datasets [81, 82, 88], PheLEx accounts for these effects,
which is critical for estimating accurate misclassification
probabilities.
Beyond these methodology improvements for identify-

ing misclassified phenotypes within a GWAS dataset, we
also introduce a novel application of PheLEx for identi-
fying new potential GWAS associations when making
use of corrected phenotypes. PheLEx presents functions
that can be used to estimate misclassification probabil-
ities to produce a corrected phenotype, which in turn
can be used to perform association analysis with the ge-
notypes data. The corrected phenotype provides an al-
ternative phenotype for association analysis, potentially
allowing for new GWAS discoveries to be made with the
new phenotype. Given that PheLEx uses a subset of ge-
notypes to estimate misclassification probabilities, any
SNPs not included in this training set (and not in LD
with training SNPs) that are found to be statistically sig-
nificant are considered novel PheLEx discoveries when
analyzing the corrected phenotype. While clearly the
value of such PheLEx discoveries depends on the cor-
rectness of the identified misclassifications and should
therefore be considered in a separate class from the as-
sociations discovered when analyzing the original GWAS
phenotype, PheLEx discoveries represent a supplemental
set of hypotheses that can provide insight into genetic
and biological connections to disease phenotypes.

Fig. 1 Overview of the PheLEx framework. a Underlying graphical model for the PheLEx method shows input: genotypes matrix X, observed
phenotype Y, genetic relatedness matrix A, and architecture of model parameters used to infer misclassification probabilities in observed
phenotype. b Overview of steps used to extract misclassification probabilities and produce corrected phenotypes for reanalysis using GWAS with
the method PheLEx implemented in R package “phelex”. For detailed explanation, please refer to the main text
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Performance impact of PheLEx components
To investigate benefit of filtering SNPs in the PheLEx
framework compared to the Rekaya framework, we applied
Rekaya to datasets simulated without genetic relatedness/
population structure and used two different strategies for
deciding on SNP inputs: (i) “Rekaya with PheLEx input”
(filtered SNPs using PheLEx’s p threshold criteria) and (ii)
“Rekaya” with unfiltered input where top 1000 SNPs with
lowest p-values were used as input. As existing implemen-
tations of Rekaya suggest using all SNPs as input for the al-
gorithm, the latter approach provides a way to understand
the effect of adding potentially uninformative SNPs as
training input. Performance was evaluated based on preci-
sion and recall metrics for identifying misclassified samples
from simulated datasets. Comparison of Precision-Recall
(PR) curves for “Rekaya with PheLEx input” and Rekaya
(with unfiltered input) for these simulated data indicate that
the PheLEx approach to filtering SNPs results in better per-
formance overall (see Additional file 1: Figure S1 and Text
S1). While Rekaya (with unfiltered input) performed slightly
better than Rekaya with PheLEx input at lower misclassifi-
cation levels, at higher levels of misclassification Rekaya
with PheLEx input performed considerably better.
For these same simulated datasets, we also applied

PheLEx-mm, a variant of PheLEx without the mixed
model component (as in Rekaya), to isolate the impact on
performance by incorporating the Adaptive Metropolis-
Hastings step in MCMC algorithm of PheLEx compared
to the full Gibbs sampler MCMC algorithm of Rekaya (see
Additional file 1: Figure S1 and Text S1). When assessed

by PR curves, PheLEx-mm had dramatically improved
performance in identifying misclassified samples com-
pared to “Rekaya with PheLEx input” and Rekaya, indicat-
ing this component of the PheLEx MCMC leads to a
better exploration of the posterior of the underlying hier-
archical model used in both methods and results in better
performance overall.
Finally, to provide a comparison of performance when

considering GWAS data simulated with genetic related-
ness/population structure, we compared four methods,
PheLEx, PheLEx-mm, PheLEx-mh (a variant of PheLEx
that includes the mixed model component but with an
MCMC that does not include the Adaptive Metropolis-
Hastings step), and Rekaya (Fig. 2 and Additional file 1:
Text S2). The comparison of PheLEx versus PheLEx-mm
and Rekaya assessed by Receiver Operating Characteristic
(ROC) and PR curves indicates that not surprisingly
accounting for population structure, when present in a
GWAS, results in increased performance. The comparison
of PheLEx and PheLEx-mh also confirms the observation
that the Adaptive Metropolis-Hastings step is contributing
to improved performance, where dropping this step when
population structure is present results in performance
similar to Rekaya.

Identification of misclassified samples
We further investigated the overall performance im-
provement of the complete PheLEx framework com-
pared to Rekaya by analyzing simulated datasets with
genetic relatedness/population structure across varying

Fig. 2 Performance comparison between PheLEx and other misclassification extraction methods in identifying misclassified samples in
simulations. Misclassification extraction methods: PheLEx (red), PheLEx-mm (purple), PheLEx-mh (teal), and Rekaya (blue). a Box plots showing
area under Receiver Operating Characteristic (ROC) curves (AUC ROC) (y-axis) for identifying misclassified samples across simulations against
increasing misclassification rates (x-axis) for misclassification extraction methods. b Box plots showing area under Precision-Recall (PR) curves (AUC
PR) (y-axis) for identifying misclassified samples across simulations against increasing misclassification rates (x-axis) for misclassification extraction
methods. c Box plots for running time (hours) (y-axis) is shown for misclassification extraction methods (x-axis) across simulations
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degrees of misclassification (%false positives: 1, 3, 5, 8,
and 10%). For these analyses, PheLEx outperformed
Rekaya showing superior performance in both ROC
curves and PR curves in identifying misclassified samples
from misclassified phenotypes (Fig. 2). Area under curve
(AUC) for ROC (AUC ROC) values computed across
simulations were consistent on performance difference
observed with PheLEx having the highest median AUC
across misclassification levels, where median AUC values
for PheLEx were higher than median AUC values for
Rekaya (Table 1). Area under PR curve (AUC PR) values
mirrored these results (Table 1).
Across increasing misclassification rates, the AUC

ROC values were stable across increasing error in
phenotype for both methods even though the number of
training SNPs (that passed the p-value cut-off for filter-
ing training SNPs) decreased with increasing misclassifi-
cation rates (Additional file 1: Figure S2). AUC PR
values increased for both methods across increasing mis-
classification rates. Overall, PheLEx consistently showed
improved performance over Rekaya by use of Adaptive
Metropolis-Hastings within Gibbs sampling algorithm
and accounting for genetic relatedness/population struc-
ture instead of a full Gibbs sampler as used in existing
methods [49, 73, 77]. Increase in precision with increased
misclassification can be explained by the expectation of
the underlying model that assumes misclassification to be
present. Additional analyses showed that improvement in
performance of PheLEx over Rekaya was specifically at-
tributed to the use of alternative MCMC algorithm when
considering realistic simulations (Fig. 2). Consistent im-
proved performance of PheLEx over Rekaya in identifying
misclassified samples from simulated misclassified pheno-
types was also observed across differential thresholds on
filtering training SNPs (Additional file 1: Text S3).
Improvement in performance was accompanied by a

boost in speed for PheLEx (Fig. 2). Results from applying
PheLEx and Rekaya to simulation datasets (for the same
number of MCMC iterations) were used to track running
time for each method. Though accounting for mixed effects
due to genetic relatedness/population structure requires

additional time, across all simulations PheLEx (median
time: 37.2min) was around 11 times faster than Rekaya
(median time: 411.6min). Running time details for PheLEx-
mm and PheLEx-mh are included in Additional file 1
(Text S2).

Identification of novel GWAS associations by PheLEx
misclassification correction
To explore the impact of identifying misclassified sam-
ples on association analysis, corrected phenotypes were
computed using misclassification probabilities obtained
from PheLEx for simulated data. Corrected phenotypes
were produced from simulated misclassified phenotypes
by switching cases (phenotype = disease) with high mis-
classification probabilities (determined using misclassifi-
cation probability threshold t defined in the methods
section) to controls (phenotype = healthy) using PheLEx.
Association analyses were performed between genotypes
and (i) simulated true phenotypes (no misclassification),
(ii) misclassified phenotypes (%false positives: 1, 3, 5, 8,
and 10%), and (iii) PheLEx corrected phenotypes. Result-
ing p-values from each association analysis were used to
quantify GWAS performance in detecting true positive
SNPs (disease-associated SNPs).
As expected, with increasing misclassification the AUC

ROC values in detecting true positive SNPs for simu-
lated misclassified phenotypes decreased compared to
the AUC ROC values for the simulated true phenotype
(no misclassification) (Fig. 3 and Table 2). PheLEx cor-
rected phenotypes showed modest improvements in de-
tecting true positive SNPs over misclassified phenotypes
across increasing misclassification. AUC PR values for
PheLEx corrected phenotypes mirrored these improve-
ments over misclassified phenotypes. At higher mis-
classification levels, improvement in PheLEx corrected
phenotype AUC ROC values and AUC PR values over
misclassified phenotype AUC ROC and AUC PR values
was higher than at lower misclassification rates. This
might be attributed to the lower precision in identifying
misclassified samples at low misclassification rates (Fig. 2)
as lower precision of switching cases entails loss of true
cases (switched to controls by PheLEx) along with mis-
classified cases in corrected phenotype produced, limiting
PheLEx’s ability to recover additional true disease-
associated SNPs. However, precision of identifying mis-
classified individuals increased with misclassification rates,
resulting in greater improvements upon misclassified
phenotype AUC ROC and AUC PR values at higher mis-
classification rates.
Importantly, when using Bonferroni-corrected p-value

threshold on unadjusted p-values PheLEx identified sig-
nificant, novel, true positive SNPs defined as disease-
associated SNPs that were not statistically significant
when analyzing the simulated true phenotypes (no

Table 1 Performance evaluation of methods in identifying
misclassified samples

Misclassification Median AUC ROCa Median AUC PRb

PheLEx Rekaya PheLEx Rekaya

1% 0.795 0.527 0.276 0.0323

3% 0.783 0.523 0.418 0.09

5% 0.773 0.522 0.471 0.144

8% 0.776 0.514 0.565 0.205

10% 0.768 0.514 0.645 0.240
aAUC ROC = Area under Receiver Operating Characteristic curve
bAUC PR = Area under Precision Recall curve
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misclassification) or misclassified phenotypes (Fig. 4).
These novel discoveries were not accompanied by recov-
ery of large numbers of false positives. PheLEx showed
potential to improve discovery of statistically significant
disease-associated SNPs (including novel true positive

SNPs) with low false positives comparable to those
already found in simulated true phenotypes and misclas-
sified phenotypes. In the context of GWAS, this is espe-
cially important as any additional loci provide basis for
further investigation for their relationship with given

Fig. 3 Improvement in GWAS performance via PheLEx in simulations. Results are shown for simulated true phenotype (green; no misclassification),
simulated misclassified phenotype (blue), and PheLEx corrected phenotype (red). a Receiver Operating Characteristic (ROC) curves are shown with
mean Sensitivity (y-axis) and mean 1 - Specificity (x-axis) in identifying disease-associated SNPs using p-values obtained from association analyses. b
Box plots of area under ROC curve (AUC ROC) values (y-axis) are shown across increasing misclassification rates (x-axis). c Mean precision (y-axis) over
recall (x-axis) curves are shown for identifying disease-associated SNPs using p-values obtained from association analyses. d Box plots of area under
Precision-Recall curve (AUC PR) values (y-axis) are shown across increasing misclassification rates (x-axis)

Table 2 Performance evaluation of PheLEx in improving GWAS discovery

Misclassification Median AUC ROCa Median AUC PRb

Simulated Misclassified
phenotype

PheLEx corrected
phenotype

Simulated Misclassified
phenotype

PheLEx corrected
phenotype

0% (no misclassification) 0.701 0.697 0.0769 0.0739

1% 0.696 0.696 0.0710 0.0720

3% 0.686 0.688 0.0625 0.0651

5% 0.680 0.681 0.0527 0.0553

8% 0.669 0.669 0.0428 0.0458

10% 0.661 0.663 0.0359 0.0403
aAUC ROC = Area under Receiver Operating Characteristic curve
bAUC PR = Area under Precision Recall curve
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phenotype of interest. These results indicate SNP associ-
ations and loci discovered by PheLEx are viable hypoth-
eses for making new discoveries in existing GWAS
datasets.

Finding novel associations in real GWAS datasets
PheLEx was applied to UK Biobank GWAS datasets for
bipolar disorder (cases = 1177 and controls = 3531) and
epilepsy (cases = 3620 and controls = 10,860) to extract
misclassification probabilities for the disease phenotypes.
Though UK Biobank contained a larger set of individuals
for both disease phenotypes, only 1177 and 3620 cases
passed the quality control filters for bipolar disorder and
epilepsy original phenotypes, respectively. Using a
threshold on estimated misclassification probabilities,
misclassified cases were identified for each phenotype
and their respective phenotypes were switched from case
to control, resulting in corrected disease phenotypes.
Using these corrected phenotypes, association analyses
were performed to investigate genetic associations with
the corrected phenotypes. In both analyses, we observed
improvement in statistical power of association analysis
and identification of new “PheLEx” supplemental candi-
date loci in GWAS. It is important to note that associ-
ation analyses results for original bipolar disorder
phenotype and original epilepsy phenotype were consist-
ent with previous analyses where UK Biobank genotype
datasets were not imputed [89]. In this paper, Manhattan

plots shown for both UK Biobank phenotypes were on
LD-pruned genotypes with the expected impact on ob-
served peaks in these plots.

Bipolar disorder
UK Biobank data for original bipolar disorder phenotype
(cases = 1177 and controls = 3531) was analyzed using
PheLEx and n = 54 cases were identified as potentially
“misclassified”. “Corrected” bipolar disorder phenotype
(cases = 1123 and controls = 3585) was produced where
cases identified using PheLEx as “misclassified” were
changed to controls. Although, GWAS results with ori-
ginal bipolar disorder phenotype failed to produce any
statistically significant SNPs using Bonferroni-corrected
p-value threshold on unadjusted p-values for SNPs or
adjusted p-values less than 0.1 threshold on p-values ad-
justed using Benjamini-Hochberg procedure (consistent
with previous analysis [89]), results from the corrected
bipolar disorder phenotype identified candidate SNPs
with statistical significance at a Benjamini-Hochberg ad-
justed p-value < 0.1 (Fig. 5). After correction of pheno-
type, an overall improvement in statistical significance of
SNPs was also observed. Apart from training SNPs,
SNPs not used in training also gained statistical signifi-
cance at a Benjamini-Hochberg adjusted p-value < 0.1.
By computing the r2 measure of LD amongst these can-
didate SNPs and training SNPs, we were able to extract
PheLEx discoveries described as candidate SNPs not in

Fig. 4 Improving GWAS discovery using PheLEx in simulations. Simulated true phenotype (green; no misclassification), Simulated misclassified
phenotype (blue), and PheLEx corrected phenotype (red). a Box plots for number of true positive SNPs (disease-associated SNPs) (y-axis) found
(using Bonferroni-corrected p-value threshold on unadjusted p-values) in association analyses with phenotypes (x-axis): simulated true phenotypes
(no misclassification), misclassified phenotypes, and PheLEx corrected phenotypes. b Bar plot for number of simulations (y-axis) where number of
novel true positive SNPs (x-axis) were found (using Bonferroni-corrected p-value threshold on unadjusted p-values) in association analyses with
PheLEx corrected phenotypes. c Bar plot for number of simulations (y-axis) where number of false positive SNPs (x-axis) were found (using
Bonferroni-corrected p-value threshold on unadjusted p-values) in association analyses with simulated true phenotypes (no misclassification),
misclassified phenotypes, and PheLEx corrected phenotypes

Shafquat et al. BMC Bioinformatics          (2020) 21:178 Page 7 of 25



LD (r2 < k, k ~ 1e− 2) with training SNPs that gained stat-
istical significance at a Benjamini-Hochberg adjusted p-
value < 0.1 (Fig. 6). Even though most SNPs underwent
relatively small changes in their p-values (in either direc-
tion), PheLEx discoveries experienced a significant boost

from their original p-values indicating the potential of
PheLEx to discover new loci. Identified PheLEx discover-
ies were not in LD with training SNPs (r2 < k, k ~ 1e− 2)
and experienced substantial improvement in statistical sig-
nificance from original phenotype to PheLEx corrected

Fig. 5 Association analysis of bipolar disorder dataset using PheLEx. Manhattan plots (x-axis: SNP genomic position, y-axis: -log10 p-values of
association test > 2) of (a) GWAS results for original bipolar disorder phenotype with Bonferroni-corrected p-value threshold shown as dark gray
line, (b) GWAS results for PheLEx corrected bipolar disorder phenotype (where PheLEx-identified cases are switched to controls). Training SNPs
used as input for PheLEx are marked in blue whereas differentially significant SNPs are marked in red. Differentially significant SNPs are defined as
SNPs not included in training PheLEx that are statistically significant using Benjamini-Hochberg procedure (adjusted p-value < 0.1) in association
analysis with PheLEx corrected bipolar disorder phenotype and not with original bipolar disorder phenotype. Manhattan plots show linkage
disequilibrium (LD) pruned SNPs only
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phenotype (Fig. 6). Table 3 lists details for the PheLEx dis-
coveries including other genes whose SNPs were in LD
with them (PheLEx discoveries). One of the PheLEx dis-
coveries was found within the NTM gene and was in LD

with loci in OPCML and NTM-IT (Additional file 1:
Figure S3). Loci in NTM have been previously associated
with bipolar disorder and schizophrenia in an inde-
pendent GWAS [90–92], whereas OPCML has also

Fig. 6 PheLEx discoveries for bipolar disorder phenotype. a Heatmap showing r2 measure of linkage disequilibrium (LD) computed between the
two differentially significant candidate SNPs (rows) identified for corrected bipolar disorder phenotype and training SNPs used as input for PheLEx
(columns). Differentially significant SNPs between original and corrected bipolar disorder phenotype with r2 < k, k ~ 1e− 2 (not in LD with training
SNPs) are identified as PheLEx discoveries. b Log transformed p-values (y-axis) are reported for a subset of SNPs not in LD with training SNPs
plotted in genomic position (x-axis). The small dot for each SNP denotes -log10 (p-value) obtained from association analysis with original bipolar
disorder phenotype and large dot denotes -log10 (p-value) obtained from association analysis with the PheLEx corrected bipolar disorder
phenotype. Differentially significant SNPs (adjusted p-value < 0.1) in the PheLEx corrected bipolar disorder phenotype compared to original
bipolar disorder phenotype are represented in red

Table 3 PheLEx discoveries identified for UK Biobank bipolar disorder phenotype

UK Biobank phenotype SNP Locus p-valuea in
original
phenotype

p-valuea in
corrected
phenotype

r2b Genesc MAFd

Bipolar Disorder rs112071029 11:132129335 1.23e−5 6.74e−7 4e− 4 NTM, OPCML, NTM-IT, C11orf39 0.0423

rs17028986 3:11913699 1.13e−5 1.58e− 6 3.8e−4 TAMM41, SYN2, PPARG, TIMP4, ATG7, VGLL4 0.0925

Epilepsy rs114011598 3:11913699 2.90e−5 1.55e−6 1e−4 ZLPD1, LOC152225, NXPE3, NFKBIZ 0.036
a unadjusted p-values
b Maximum r2 with training SNPs
c Genes with loci in linkage disequilibrium with loci where all annotations were performed using web-resource LDLink
d MAF =Minor Allele Frequency
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been linked to schizophrenia [91]. The other locus was
found in LD with SNPs in SYN2, PPARG, and ATG
genes. SYN2 has been previously linked with bipolar
disorder [93–98] and in GWAS with schizophrenia
[99–101], whereas PPARG has also been linked to bipo-
lar disorder [102–104] and schizophrenia [105, 106] in
other research. ATG7 has been associated with fronto-
temporal dementia [107]. Given these previous associa-
tions with neurological and psychiatric phenotypes,
further investigation and exploration of these PheLEx
discoveries is recommended.

Epilepsy
UK Biobank dataset for epilepsy phenotype (cases =
3620 and controls = 10,860) was analyzed using PheLEx
to identify n = 395 individuals whose phenotypes might
be “misclassified”. These cases were identified as poten-
tially misclassified and their phenotype switched from
cases to controls to compute a “corrected” epilepsy
phenotype (cases = 3225 and controls = 11,255 con-
trols). GWAS was performed on original epilepsy
phenotype and corrected epilepsy phenotype produced
by PheLEx to compare results (Fig. 7). Although results
of the original analysis were similar to that produced
previously for this dataset [89] with no statistically sig-
nificant SNPs according to Bonferroni-corrected p-
value threshold or adjusted p-values less than 0.1 where
p-values were adjusted using Benjamini-Hochberg pro-
cedure, results from the corrected epilepsy phenotype
identified a locus with statistical significance at a
Benjamini-Hochberg adjusted p-value less than 0.1 and
not in LD with training SNPs (Fig. 8). This PheLEx dis-
covery was found in LD with loci within genes ZPLD1,
LOC152225, NXPE3, and NFKBIZ (Table 3, Additional
file 1: Figure S3). ZPLD1 has been associated with onset
of sensory disturbances in an independent GWAS [108]
and linked to cerebral cavernous malformations [109],
which in turn have been linked to high incidence of
epilepsy [110]. NFKBIZ has been previously associated
with amygdala reactivity [111], drug abuse [112], and in
GWAS of asthma [113]. Though none of these genes
are in the list of known epilepsy genes [114–116], the
results suggest a deeper exploration (through fine map-
ping) of the identified PheLEx discovery may lead to
supplemental associations between the epilepsy pheno-
type and the genomic region.

Discussion
PheLEx provides two advances when compared to
Rekaya, the only existing framework for Bayesian mis-
classification analysis in GWAS: (i) PheLEx has signifi-
cantly improved performance for identifying misclassified
phenotypes when considering allelic effect sizes in a

realistic range observed in GWAS and (ii) PheLEx pro-
vides a novel method for identifying potential new
phenotype-related loci not detectable with a standard
GWAS analysis. The complete PheLEx framework in-
cludes the capability to account for differential misclassifi-
cation (i.e. different rates of misclassification in cases
versus controls) while accounting for mixed effects due to
genetic relatedness/population structure, a combination
which is essential for GWAS analysis. We provide an R
package “phelex” [117] to allow application of the entire
PheLEx framework for GWAS analysis.
When considering the application of PheLEx in

extracting misclassification, there are two aspects of the
PheLEx framework that lead to significant improvements
in overall performance compared to existing methods
[49, 73, 77] in datasets simulated with realistic effect
sizes [86, 87]. First, PheLEx includes an Adaptive
Metropolis-Hastings step within Gibbs sampling that
improves posterior sampling resulting in improved per-
formance in detection of misclassified samples (Fig. 2).
Superior performance of PheLEx versus Rekaya in iden-
tifying misclassified samples and improving GWAS per-
formance in simulations showed the benefit in using
alternative MCMC algorithm (Adaptive Metropolis-
Hastings within Gibbs sampling over Gibbs Sampling)
along with accounting for mixed effects due to genetic
relatedness/population structure. Second, the PheLEx
framework uses filtered genotypes as input to prune out
SNPs that have a high probability of being uninformative
for learning which phenotypes are misclassified, where
using more extreme p-value thresholds to prune SNPs
increases the likelihood of training PheLEx on inform-
ative SNPs that will accurately identify misclassified
samples (Additional file 1 Text S3). This filtering ap-
proach not only provides dramatic savings in terms of
computational expense but also improves the accuracy
of identifying misclassified samples when considering
realistic disease allele effect sizes. Given existing
methods [49, 73, 77] do not have acceptable levels of
performance for misclassification analysis unless unreal-
istic allelic effect sizes are considered, PheLEx represents
the first Bayesian misclassification that is viable for mis-
classification analysis for real GWAS.
Though PheLEx showed success in identifying misclas-

sified samples and recovering novel true positive SNPs
in simulations, additional considerations should be made
in the application of the method and evaluation of Phe-
LEx discoveries. Given the genetic architecture (number
of cases = 1000, number of controls = 3000, number of
total simulated SNPs = 100,000, and number of simu-
lated disease-associated SNPs = 300) assumed in simula-
tions with realistic effect sizes [86, 87], phenotype
heritability values ranged between 0.46–0.57. PheLEx
successfully identified misclassified samples in the
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assumed genetic architecture, however, further investiga-
tion is needed to ensure PheLEx’s ability to recover mis-
classified samples across varied genetic architectures.
Moreover, the PheLEx framework makes the (implicit)

assumption that cases of misclassification are “random”
with respect to the genetic and/or population structure
in the data. While we implemented the simulations of
GWAS data under this assumption and found PheLEx

Fig. 7 Association analysis of epilepsy dataset using PheLEx. Manhattan plots (x-axis: SNP genomic position, y-axis: -log10 p-values of association
test > 2) of (a) GWAS results for original epilepsy phenotype with Bonferroni-corrected p-value threshold shown as dark gray line, (b) GWAS
results for PheLEx corrected epilepsy phenotype (where PheLEx-identified cases are switched to controls). Training SNPs used as input for PheLEx
are marked in blue whereas differentially significant SNPs are marked in red. Differentially significant SNPs are defined as SNPs not included in
training PheLEx that are statistically significant using Benjamini-Hochberg procedure (adjusted p-value < 0.1) in association analysis with the
PheLEx corrected epilepsy phenotype and not with original epilepsy phenotype. Manhattan plots show linkage disequilibrium (LD) pruned
SNPs only
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to have excellent performance for this scenario, there is
no question that this assumption won’t hold perfectly in
practice (e.g. subgroups of individuals will have higher
or lower misclassification rates than others due to shared
factors) and depending on how the random misclassifi-
cation assumption is violated, this could lead to lower
power to detect misclassified cases and/or false positives.
However, given that in a standard GWAS we will gener-
ally not have data available to detect such differences in
misclassification rates to correct for them in the analysis
framework, a random misclassification assumption is a
reasonable first approximation given this lack of infor-
mation. Finally, we note that PheLEx assumes training
SNPs are informative in identifying “misclassified” sam-
ples from the given phenotype, where results from this
method will not be reliable for datasets where this as-
sumption is not valid. Hence, caution is advised in iden-
tification and interpretation of misclassified samples as
well as interpretation of any resulting PheLEx driven

discoveries. Still, as demonstrated by the analysis of the
UK Biobank bipolar disorder phenotype, it is possible
for PheLEx to recover supplemental candidate loci for
which there is validation evidence (e.g. NTM which was
previously associated with bipolar disorder in GWAS
data independent of the data analyzed from the UK Bio-
bank [90]) indicating the approach has the ability to re-
cover known associations. This supports the assertion
that conservatively identified and interpreted PheLEx
supplemental candidate loci can potentially provide add-
itional exploratory value beyond candidate loci identified
by traditional GWAS analysis.
Considered more broadly, the PheLEx framework is

addressing a specific problem of misclassification of dis-
ease phenotypes in GWAS that is really a function of the
overlapping issues of measurement error and incomplete
understanding of disease etiology. These can manifest in
a number of ways, including misclassification due to (i)
disease similarity and inaccurately measured current

Fig. 8 PheLEx discoveries for epilepsy phenotype. a Heatmap showing r2 measure of linkage disequilibrium (LD) computed between the
differentially significant candidate SNP (row) identified for corrected epilepsy phenotype and training SNPs used as input for PheLEx (columns).
Differentially significant SNPs with r2 < k, k ~ 1e− 2 indicate one PheLEx discovery in corrected epilepsy phenotype that is not in LD with training
SNPs. b Log transformed p-values (y-axis) are reported for a subset of SNPs not in LD with training SNPs plotted in genomic position (x-axis). The
small dot for each SNP denotes -log10 (p-value) in association analysis with original epilepsy phenotype and large dot denotes -log10 (p-value) in
association analysis with the PheLEx corrected epilepsy phenotype. Differentially significant SNPs (adjusted p-value < 0.1) in the PheLEx corrected
epilepsy phenotype compared to original epilepsy phenotype are represented in red
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diagnosis protocols [57, 58, 118] and (ii) heterogeneous
diseases or disease complexes defined as the “same” dis-
ease with a single diagnosis protocol [119–122]. Though
misclassification may be modelled as a function of gen-
etic similarity across samples and/or other covariates
(e.g. disease comorbidity, race, and socioeconomic sta-
tus), PheLEx framework is agnostic to the cause of mis-
classification and rather assumes that the underlying
genetics can be leveraged to provide an accurate assess-
ment of misclassification, regardless of cause, and is of
value whether used purely for identifying misclassifica-
tion or potential loci for phenotypic associations. Hence,
samples marked as “misclassified” using PheLEx may be
a result of the underlying heterogeneity of the disease
complex (and not misclassification) whereas the “cor-
rected phenotype” may define a closely related pheno-
type, secondary phenotype or subtype of the disease. For
misclassification, there is clear value in identifying
healthy individuals who were misdiagnosed such that
PheLEx presents an opportunity to identify “false cases”
and investigate basis of their misclassification, which
may relate to diagnosis error, disease subtypes or differ-
ential patterns in diagnostic measurements.

Conclusion
Keeping an eye on its limitations, PheLEx has promise
as a novel analysis methodology for identifying explora-
tory loci in GWAS that can be applied to reanalyze
existing GWAS data.
Accounting for mixed effects due to genetic related-

ness/population structure and use of efficient MCMC
algorithm allows PheLEx to leverage association between
phenotype and genotypes to extract misclassification
from existing phenotypes. By defining more tractable
GWAS phenotypes, PheLEx can boost power of associ-
ation analyses and identify new loci of interest.

Methods
The PheLEx framework
PheLEx framework overview
The PheLEx analysis framework (Fig. 1), available as
a function in R package “phelex” [117], is designed
to identify misclassified disease phenotypes using
GWAS data. PheLEx requires three inputs: (i) a sam-
ple of n observed disease phenotypes Y, (ii) a set of
genotypes (SNP) identified as having a strong associ-
ation with phenotype in a GWAS analysis X, and
(iii) genetic relatedness or kinship matrix A (which
may reflect genetic relatedness and/or population
structure and can be estimated from the genotype
data of a GWAS). Using SNPs with strong associa-
tions with the disease phenotype as PheLEx input
provides a dual advantage of (i) making the frame-
work applicable to real GWAS data that include

genotypes on the scale of hundreds of thousands of
SNPs (where simultaneously analyzing all SNPs in
the underlying modeling framework would be com-
putationally prohibitive) and (ii) filtering of non-
informative GWAS genotypes from the PheLEx
training input that improves the performance of the
method (since the stronger the predictive ability of
the training SNPs, the greater the ability to detect a
case of misclassification). The phenotype-associated
SNPs used as input to PheLEx can be selected using
any GWAS statistical tests of association with some
threshold for selection p, which is a parameter of
the framework set by the user (see subsections
below for discussion of approaches for statistical
testing and values of p used for the current work).
The inputs to PheLEx are used in combination with

the underlying PheLEx model to identify cases of mis-
classification. The PheLEx model of misclassification
is a hierarchical probabilistic model that includes
parameters for true positive (α) and false positive
probabilities (λ) of misclassification in the observed
disease phenotype (see subsection below). For infer-
ence, a Bayesian approach is applied making use of
an MCMC algorithm, specifically a Gibbs Sampler
that includes an Adaptive Metropolis Hastings step.
The Adaptive Metropolis Hastings within Gibbs sam-
pler is used to estimate the posterior probability that
the phenotype of a sample is misclassified. This ap-
proach therefore produces a posterior probability of
misclassification for each sample, where a threshold t
is used to make a decision about which samples are
misclassified. The parameter t is set by the user to
control how conservative the framework is when de-
termining cases of misclassification (see subsections
below for discussion of values of t used for the
current work).
Samples determined to be misclassified by the PheLEx

framework could be the objective of a study (e.g. consid-
ered for removal from an analysis or investigated for
possible sources of misclassification in defining pheno-
types). These cases of misclassification could also be
used within an additional application of PheLEx by “cor-
recting” such cases (i.e. switching misclassified cases to
controls and/or misclassified controls to cases). The set
of phenotypes including these PheLEx corrections can
then be used to perform association analysis in a GWAS,
providing the potential to discover additional genotypes
associated with the phenotype that were not strongly as-
sociated when considering (uncorrected) misclassified
samples. We note that such new associated genotypes
should be considered with caution since they involve
possible errors in the identification of misclassified
phenotypes and are best used as a starting point for
additional investigation.
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PheLEx framework assumptions
The PheLEx misclassification framework makes a num-
ber of strong assumptions about the structure of the
data that can impact the misclassification inferences.
The first major assumption is that only a small fraction
of the GWAS phenotype is misclassified, where large es-
timates of misclassification could produce spurious asso-
ciations that could lead to false positive assessments of
misclassified phenotypes. The second major assumption
is that there are a number of phenotype-associated geno-
types (SNPs) with strong association with the phenotype
that can be identified in a GWAS analysis and used as
input to the algorithm (i.e. statistical significance of asso-
ciation between the SNP and phenotype passes the filter
parameter p). Since the ability to identify cases of mis-
classification improves with the phenotype predictive
ability of the set of SNPs selected as input, if the selected
SNPs have weak associations we would not expect the
framework to return any samples with a high posterior
probability of being classified. Conversely, if a large
number of SNPs identified with strong associations with
the phenotype that represent false positives are selected
as input, this could result in misclassification false posi-
tives. A third major assumption implicit to the PheLEx
underlying misclassification model is that the misclassi-
fied phenotypes are random with respect to the under-
lying genetics. If this is not the case, the result could be
lower power of the framework to detect cases of mis-
classification or if cases of misclassification are corre-
lated with some factor that is also correlated with sets of
genotypes, the result could be false positives. A fourth
major assumption of the framework is that the under-
lying PheLEx probability model provides a reasonable
approximation to the genetic and the misclassification
structure in the GWAS data (e.g. that the overall prob-
ability of misclassification can be captured with a latent
variable representation and the parameters α and λ)
where a poor approximating model and/or an MCMC
algorithm that results in poor inference given the ob-
served data can result in lower power and/or false posi-
tives. A fifth major assumption is that parameter t is not
set so low to allow lots of false positive assessments of
misclassification.
We note that while all of these are strong assump-

tions of the PheLEx framework that any user should
be both aware of and incorporate into their assess-
ments of the output given the unknowns in their
GWAS data, these are not uncommonly strong as-
sumptions. While the framework does make an as-
sumption that there is a small proportion of
misclassified cases in the given phenotype, this is rea-
sonable for numerous disease phenotypes where
established diagnosis criteria may lead to a small frac-
tion of misclassifications and is not expected to be so

poorly defined that cases of misclassification are in
the majority (and in turn drive large numbers of false
positives when analyzing SNP associations). The as-
sumption that there are strong SNP associations with
the phenotype appears to be reasonable for a large
number of diseases analyzed with GWAS. Given that
these SNPs are identified with a stringent enough cut-
off (i.e. the parameter p) using a GWAS analysis ap-
proach that accurately corrects for confounding
factors that may produce false positives is a core as-
sumption of the GWAS analysis approaches. While
cases of misclassification are almost certainly not ran-
dom and could, in theory, be detected with more
complete data (e.g. a rich clinical record or a family
history for each individual in the study), data required
to assess such patterns of misclassification is often
not available. Thus, it is reasonable to assume mis-
classification is random as a first approximation, par-
ticularly given the information required to make
stronger inferences on what is driving the patterns of
misclassification is typically missing/uncertain in data
provided. Although applying a single probabilistic
model of the genetics, population structure, and mis-
classification is also a strong assumption, it does not
seem overly strong given the unknown structure
present in GWAS data, particularly because we expect
better inference results when assuming a relatively
simple model that limits the number of parameters.
Finally, it is assumed in practice that the user will set
a relatively conservative value for the parameter t
such that only cases with a strong posterior probabil-
ity of being misclassified are designated as such,
where setting a conservative value for this parameter
also seems a reasonable policy in general when apply-
ing the PheLEx framework. However, setting the par-
ameter t (or p) is ultimately up to the user, where
setting a liberal threshold for these parameters is not
necessarily problematic as long as the user is aware
that the more liberal these parameters are set, the
higher the probability of false positives, such that the
results should be considered with greater caution.

PheLEx framework Bayesian vs. frequentist considerations
The PheLEx framework can be made into a fully
Bayesian approach by applying a Bayesian GWAS
analysis used to select the set of input SNPs X. For
example, a fully Bayesian approach that makes use of
the same mixed model incorporated into the PheLEx
hierarchical model could be applied by application of
a Bayesian Linear Mixed Model (BLMM) to GWAS
data and subsequent use of Bayes factor to assess as-
sociations, where the parameter p is set for an appro-
priate cutoff for the Bayes factor. This possibility was
explored by implementing a BLMM GWAS analysis
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as the initial step using the R package “GridLMM”
[123], and the option of applying such an approach
to make the framework completely Bayesian could be
implemented by the user. To note however, (as ex-
pected) high correlations (e.g. in the range 0.95–0.97,
results not shown) were observed when comparing
the ranking of SNP associations as assessed using
Bayes factor values from a BLMM analysis versus p-
values returned from a linear mixed model analysis
for simulated GWAS data. A qualitatively different re-
sult is therefore not expected when employing a fully
Bayesian approach. In the current study a frequentist
testing approach was applied to select the set of input
SNPs (training SNPs) and to analyze GWAS results
after “correcting” misclassified phenotypes identified
with the PheLEx framework. This strategy was used
because the vast majority of GWAS analyses make
use of p-values to identify associated SNPs, such that
using this approach (and setting a corresponding p-
value threshold for p) is a more natural fit given
usual GWAS workflow and therefore in a sense more
“natural” for a GWAS practitioner.

The PheLEx framework misclassification model
In the absence of misclassification in phenotype, the re-
lationship between genotypes matrix X (composed of m
SNPs) and observed phenotype Y (for n individuals) can
be stated as,

Pr Y jβ; uð Þ∝
Yn
i¼1

σ β; uð ÞY i 1−σ β;uð Þð Þ1−Y i

with

Y ¼ Y1;…;Yn½ �
X ¼ X1;…;Xm½ �

where:

Pr Y ¼ 1│β;u
� �

¼ σ βX þ uþ ϵð Þ

u ¼ MultivariateNormal 0; σ2uA
� �

and where Xj is a genotype vector for SNP j, σ(β, u) is a
function of SNP effects β and random effects u, σu

2 is the
variance parameter, and A is the genetic relatedness matrix.
In presence of misclassification, the relationship

between X and Y is modeled in PheLEx using a hierarch-
ical Bayesian latent variable model, where the relation-
ship between X and Y is intermediated through (i) a
latent variable representing true phenotype Y′, (ii) the
false positive rate in phenotype (λ) representing rate of
true controls recorded as cases, and (iii) the true positive
rate in phenotype (α) representing rate of true cases

recorded as cases. With these additional assumptions,
the relationship between genotypes X and true pheno-
type Y′ can be stated as:

PrðY ′jβ; uÞ∝
Yn

i¼1
σðβ;uÞY ′ið1−σðβ; uÞÞð1−Y i′Þ ð1Þ

with the resulting likelihood of observing the data (X
and Y) given unknown parameters:

Pr Y jY 0
; α; λ; β; u; σ2

u

� �
∝ Pr Y jλ;Y 0 ¼ 0

� �
Pr Y

0 ¼ 0jβ; u
� �

þ Pr Y jα;Y 0 ¼ 1
� �

Pr Y
0 ¼ 1jβ;u

� �

PrðY jY ′; α; λ; β; u; σ2
uÞ∝

Yn

i¼1
½λð1−σðβ; uÞÞ þ αðσðβ; uÞÞ�Y i

½ð1−λÞð1−σðβ; uÞÞ þ ð1−αÞðσðβ; uÞÞ�ð1−Y iÞ

ð2Þ

For this model, the posterior probability is:

PrðY ′; α; λ; β; u; σ2
ujY Þ∝

Yn

i¼1
½λð1−σðβ;uÞÞ þ αðσðβ;uÞÞ�Y i:

½ð1−λÞð1−σðβ;uÞÞ þ ð1−αÞσðβ; uÞ�ð1−Y iÞ PrðαÞ PrðλÞ

PrðβÞ Prðujσu
2Þ Prðσu2Þ

ð3Þ

For identification of cases that are misclassified in Phe-
LEx, the interest is not in the full posterior but rather in
the marginal posterior for an individual conditional on
the state of the phenotype and that the latent variable is
in the opposite state:

Misclassification in cases � Binomial n1; Pr Y 0 ¼ 0jY ¼ 1; α; λ; β; uð Þð Þ
ð4Þ

Misclassification in controls � Binomial n2; Pr Y 0 ¼ 1jY ¼ 0; α; λ; β; uð Þð Þ
ð5Þ

The posterior parameter probabilities in these eqs.
(4–5) are determined using the PheLEx MCMC algo-
rithm (see next subsection). At each iteration, the
marginal posterior probabilities of being misclassified
are calculated eqs. (10–11) and an individual is deter-
mined to be misclassified using eqs. 4–5. Across iter-
ations, average misclassification probability of each
individual is computed as the number of times the indi-
vidual was marked as misclassified divided by the total
number of iterations. An individual is determined to be
misclassified if the average misclassification probability ex-
ceeds the value t (set by the user).

Shafquat et al. BMC Bioinformatics          (2020) 21:178 Page 15 of 25



The PheLEx MCMC algorithm
The PheLEx MCMC is an Adaptive Metropolis-
Hastings within a Gibbs Sampler to estimate model
parameters. Parameters (α, λ, and β) are sampled with
Adaptive Metropolis-Hastings algorithm using the
following steps:

1. Initialize random starting values for parameters α,
λ, and β using the respective distributions to sample
starting values. Set u as a zero vector and σu

2 = 0.1
2. Define the proposal

a. Sample values for α and λ using truncated
normal distribution

b. Sample values for β using normal distribution
3. Calculate posterior probabilities from the current

parameter values and proposed parameter values
a. Compute σ(β, u) for current parameter values

and proposed parameter values
b. Compute posterior for current values and

proposed parameter values using Eq. 3:

Pr Y 0; α; λ; β; ujYð Þ∝
Yn

i¼1
λ 1−σ β;uð Þð Þ þ α σ β; uð Þð Þ½ �Y i:

1−λð Þ 1−σ β; uð Þð Þ þ 1−αð Þ σ β;uð Þð Þ½ � 1−Y ið Þ Pr αð Þ Pr λð Þ Pr βð Þ

c. Update values for parameters with proposed
parameter values with acceptance probability

p ¼ Posterior probability with proposed values
Posterior probability with current values

Parameters σu
2 and u are estimated in the following

Gibbs step using conditional probability distributions
for each parameter as defined in previous literature
[124–126]. At each iteration, misclassification in each
sample of the phenotype is also estimated.

1. Given li = Xiβ + ui (6)
2. ui j β; u−i; l; σu2;Y∼N ðbui; ð1þ ciiγÞ−1Þ ð7Þ where;

a. bui ¼ ð1þ ciiγÞ−1ððli−XβÞ−γci;−iuiÞ ð8Þ
b. cii = ith diagonal element of A−1

c. ci, − i = row i of A−1 with element i removed
d. u−i = vector u with element i removed
e. γ = (σu

2)−1

3. Prðσu
2jβ; u; l;Y 0Þ∝ðσu

2Þ−ðq2Þ exp ð− u
0
A−1u
2σu2

Þ1ð0; σumax
2Þ ð9Þ

a. σumax
2 = 100

4. Estimate misclassified phenotypes using
a. Misclassification in cases ~ Binomial (n1, Pr(Y’=

0|Y=1, α, λ, β, u)) (4)
i. PrðY 0

i ¼ 0jY i ¼ 1; α; λ; β;uiÞ ¼ 1
1þ α σð β;uiÞ

λ ð1−σðβ;uiÞÞ
ð10Þ

ii. n1 = total number of cases
b. Misclassification in controls ~ Binomial (n2,

Pr(Y’=1|Y=0, α, λ, β, u))) (5)
i. PrðY 0

i ¼ 1jY i ¼ 0; α; λ; β; uiÞ ¼ 1
1þð1−λÞð1−σð β;uiÞÞ

ð1−αÞðσðβ;uiÞÞ
ð11Þ

ii. n2 = total number of controls

At each iteration, the probabilities in eqs. (10–11) are
then used to determine whether an individual is consid-
ered to be misclassified through eqs. (4–5). Across itera-
tions, average misclassification probability of each
individual is computed as the number of times the indi-
vidual was marked as misclassified divided by the total
number of iterations. An individual is determined to be
misclassified if the average misclassification probability
exceeds the cutoff t.

PheLEx framework priors and identifiability considerations
Without placing priors on the misclassification parame-
ters, the full PheLEx model likelihood and therefore pos-
terior is unidentified. Such identifiability issues in
Bayesian mixture models are well appreciated due to the
“label switching problem” [127–129]. Following the ap-
proaches of others when using mixture models for Bayes-
ian inference [128, 129], we introduce identifiability
constraints to restrict the parameter space by defining
logit(P(Y = 1|Y′ = 1)) > logit(P(Y = 1|Y′ = 0)) where Y is the
observed (misclassified) phenotype and Y′ is the latent
true phenotype. This is implemented in the PheLEx
framework by using informed priors where the prior on
true positive probability α parameter follows a Beta distri-
bution Pr(α) ~ Beta(10, 1) whereas the prior on false posi-
tive probability λ parameter follows a Beta distribution
Pr(λ) ~ Beta(1, 1). For the prior on α this places a high
probability that controls in a GWAS are not misclassified,
which seems a reasonable assumption for most GWAS
studies where to be considered a case of disease, an indi-
vidual needs to adhere to a relatively complex set of
criteria. In contrast, for the case misclassification rate, we
assume a flat (uniform) prior, such that we are not making
a strong prior assumption on the probability that a case is
misclassified. We additionally note that we assume a flat
prior on variance parameter σu

2 [125, 126] and normal
prior Pr(β) ~ N(0, 1) on the distribution of SNP effects
with true genetic associations, where this latter assump-
tion seems justified given estimates of SNP associations in
GWAS [83–87].
The advantage of setting a flat prior on λ (i.e. the

probability of a true control being misclassified as a
case) is such prior does not have a strong impact on
the inference that an individual is misclassified, where
for simulated data, we found this assumption lead to
excellent performance of the PheLEx framework and
reasonable outcomes when analyzing real GWAS data
(see Results section). However, a disadvantage of a flat
prior on λ is the joint marginal posterior for α and λ is
bimodal, where there is a second mode that represents
a “label switch” such that the majority of cases and con-
trols are both considered to be misclassified. While the
posterior probability of this mode is low enough that it
does not dramatically impact performance of the overall
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framework, it does have the disadvantage that it is not in-
tuitively “interpretable” (i.e. in GWAS we don’t generally
assume almost all of the cases and controls are mis-
labeled). Given that this is a true label switch, a more
complete sampling of the posterior using efficient pro-
posals or adaptation mechanisms such as simulated tem-
pering [130] followed by traditional (i.e. median) Bayesian
inference of parameters would not produce better per-
formance because the impact of the modes would be to
“cancel” one another. There are two possible solutions to
this issue: the first is to apply stronger priors on the model
hyperparameters to assure the posterior is unimodal (e.g.
a non-flat prior on λ) and the second is to “throw-out”
posterior probability estimates returned by the algorithm
that are driven by the “switch” mode, which are easily
identified by looking at the values of α and λ. We apply
the latter approach for the current study, which while ad-
mittedly is a heuristic (and therefore not a true Bayesian
approach), we found that applying this approach with an
uninformative flat prior on λ produces excellent perform-
ance when assessing simulated data (see Results section),
where a framework that performs well in practice was our
goal when developing this method.

PheLEx framework inference
When running the PheLEx MCMC, the variance for jump-
ing distribution of effect sizes is adjusted across iterations
to maintain acceptance ratio for MCMC chains around 0.2
using established methods [131]. For the simulation and
real data analyses, an acceptance rate of 0.2 was used [132]
and the algorithm was run on each dataset for 100,000 iter-
ations with a burn-in of 20,000 iterations. At each iteration,
estimates for each parameter(α, λ, β, and u) were used to
calculate misclassification probability for each sample in the
phenotype, where the average misclassification probability
for each sample was computed by summing over the num-
ber of times a sample was deemed as misclassified (Step 4)
and dividing by total number of iterations. To assess con-
vergence, Geweke’s convergence diagnostic [133] was ap-
plied, where a convergence of parameters is indicated if the
Geweke z-scores lie within the 95% confidence interval (−
1.96 to 1.96). While we found that the heavy majority of
the chains we ran for simulated and real data converged
with the median z-score across parameter estimates close
to 0, a practical disadvantage introduced by bimodal struc-
ture of the joint marginal posterior of α and λ is chains do
not always converge. We therefore suggest running mul-
tiple chains and using chains that converge as indicated by
Geweke’s diagnostic [133].

The Rekaya misclassification framework and variants of
PheLEx
To provide a baseline for assessing performance of the
PheLEx framework, we compared PheLEx to the only

existing misclassification framework designed for the
analysis of GWAS data [49, 73, 77], which we have
denoted as Rekaya. Rekaya used a full Gibbs sampler to
estimate misclassification rates (false positive rate and
false negative rate) and identify misclassified samples
from GWAS datasets, without accounting for random
effects due to genetic relatedness/population structure.
In addition to the main comparison of PheLEx and
Rekaya [49, 73, 77] we also implemented two variants of
PheLEx to determine the impact of the two major differ-
ences between PheLEx and Rekaya: (i) PheLEx-mm
(PheLEx −/minus mixed model): includes an Adaptive
Metropolis-Hastings step in the MCMC algorithm not
present in Rekaya Gibbs sampler and excludes the mixed
model that accounts for genetic relatedness/population
structure and (ii) PheLEx-mh (PheLEx −/minus Metrop-
olis Hastings): includes a full mixed model that can ac-
count for genetic relatedness/population structure and
excludes the Adaptive Metropolis-Hastings step in the
Gibbs sampler. Implementation steps and parameter
initialization for the published Rekaya and the two vari-
ants of PheLEx, which either exclude the Adaptive
Metropolis-Hastings step (PheLEx-mh) or exclude the
mixed model (PheLEx-mm) are included in Additional
file 1: Text S4.

Simulation study
Simulation datasets
Two strategies were employed to simulate data for asses-
sing framework performance. For the first strategy, data-
sets were simulated to allow a comparison of the variant
of PheLEx without the mixed model (PheLEx-mm) to
Rekaya to provide fair assessment of the performance im-
pact of the Adaptive Metropolis-Hastings step in PheLEx
compared to Rekaya when considering a GWAS scenario
where there is no genetic relatedness/population struc-
ture. For these simulations, genotypes were simulated
using “simulateGenotypes” function from R package Phe-
notypeSimulator [134] for 2000 samples and 10,000 inde-
pendent SNPs. Minor allele frequency (MAF) for
simulated SNPs was sampled from multinomial distribu-
tion with means 0.1, 0.2, and 0.4 (default parameters for
“simulateGenotypes” function). One hundred true disease
phenotypes (Y′) were simulated with 30 randomly selected
simulated genotypes using the following relationship:

Pr Y 0 ¼ 1jβð Þ ¼ σ βX þ ϵð Þ ð12Þ

where ϵ ∼ N ð0; 1Þ; β ∼ N ð2; 0:3Þ ð13Þ
Here, σ is a probit link function, β are fixed effect sizes of

disease-associated SNPs X, and ε represents noise. Thirty
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SNPs were randomly selected to be disease-associated SNPs
X for all true phenotypes Y′. Fixed effects β for X were
sampled for each disease phenotype separately from normal
distribution with mean and variance parameter values
stated above. For each simulated true disease phenotype Y′
(1000 cases and 1000 controls), differential misclassification
was introduced at varying degrees by switching a fraction
of randomly selected controls to cases. Fraction of controls
switched to cases varied from 5, 10, 20, 30, and 40% repre-
senting increasing rates of misclassification in “observed
phenotype” denoted as Y. Resulting datasets consisted of
100 datasets for each misclassification rate (5, 10, 20, 30,
and 40%).
For the second strategy, data were simulated for the

comparisons of PheLEx and Rekaya when including genetic
relatedness/population structure. For these simulations, ge-
notypes were simulated using simulateGenotypes function
from the R package “PhenotypeSimulator” [134] for 10,000
samples and 100,000 independent SNPs, i.e. SNPs not in
LD. MAF for simulated SNPs was sampled from uniform
distribution with range between 0 and 0.5. One hun-
dred true disease phenotypes for the population (Ypop’)
with disease prevalence in range 0.1–0.5 were simulated
for n = 10,000 samples using the following relationship:

PrðY 0
pop ¼ 1jβ; uÞ ¼ σðβX þ uþ ϵÞ ð14Þ

where ε∼Nð0; 1Þ; β∼Nð0; σ2g ½2 f ð1− f Þ�αÞ; u∼Nð0; σu2AÞ;
σu

2 ¼ 2; σ2g ¼ :1; α ¼ −0:38

Here, σ is a probit link function, β are fixed effect sizes of
disease-associated SNPs X, u is a simulated random effects
vector, ε represents noise and f is the MAF of disease-
associated SNPs. A is a square genetic relatedness matrix
(n = 10,000) computed using getKinship function from R
package “PhenotypeSimulator”. Random effects vector u
was simulated from multivariate normal distribution using
function mvrnorm from R package “MASS” with variance
parameter σu

2, relatedness matrix A and mean as zero
vector. This configuration of simulated GWAS datasets
was in stark contrast to simulated data analyzed previ-
ously, where 150 out of 1000 simulated SNPs were as-
sociated with true disease phenotype with unrealistic
maximum genotype-specific disease odds-ratio in range
4–10 in each dataset [49, 77].
Three hundred SNPs were randomly selected to be

disease-associated SNPs X for all simulated true popula-
tion phenotypes Ypop’ (n = 10,000 samples). The same
computed random effects vector was used to simulate all
true population disease phenotypes Ypop’. Fixed effects β
for X were sampled for each simulation from a normal
distribution with mean and variance parameter values

stated above, following a previously suggested model [86,
135, 136], whereas percentage phenotypic variance ex-
plained by each disease-associated SNP (X) was calculated
using the relationship [137]:

Phenotypic variance explained by SNP l

¼ Var Xlβl
� �

Var
Pm

j¼1X jβ j

� �
þ uþ ϵ

� �

The genetic model with 300 disease-associated SNPs
with realistic effect sizes out of total 100,000 SNPs pre-
serves the characteristic sparsity of “true signal” in
GWAS datasets, with phenotypic variance explained by
each SNP in the empirically observed range of 1e− 9%–
3%. Overall, the number of SNPs, number of disease-
associated SNPs, phenotype heritability values, and
simulated effect sizes were set in accordance with prece-
dence in literature [86, 87, 138–140].
From each of the 100 simulated true population phe-

notypes Ypop’, a total of 1000 cases and 3000 controls
were sampled to produce simulated true phenotypes Y′
with n = 4000 samples for GWAS analysis. For each
GWAS, differential misclassification was introduced to
alter the simulated true phenotype Y′ at varying degrees
by switching a fraction (1, 3, 5, 8, and 10%) of randomly
selected controls to cases, resulting in 1, 3, 5, 8, and 10%
false positives in “observed phenotype” or “simulated
misclassified phenotype” denoted as Y. The overall simula-
tion analysis therefore considered 100 simulated GWAS
datasets with true phenotypes (no misclassification) and
100 simulated GWAS datasets with misclassified pheno-
types at each misclassification rate, all simulated with
mixed effects of genetic relatedness/population structure.

Comparison of PheLEx and Rekaya
Misclassification extraction methods PheLEx and Rekaya
were applied to the simulation datasets to identify misclas-
sified samples from each simulated misclassified phenotype.
We performed standard GWAS analysis between each sim-
ulated misclassified phenotype against genotype data and
used the Bonferroni-corrected genome-wide p-value
threshold (p < 10–6.3) to filter out potentially uninformative
SNPs. For PheLEx and Rekaya, resulting input genotypes
matrix (training SNPs) contained SNPs whose unadjusted
p-values were lower than Bonferroni-corrected genome-
wide threshold for the dataset. For all analyses with PheLEx,
inputs included simulated misclassified phenotype, training
SNPs, and a genetic relatedness matrix computed using R
function getKinship on all SNPs for that dataset with
MAF > 5% [134]. Input for Rekaya only included the train-
ing SNPs and each misclassified phenotype. For each simu-
lated misclassified phenotype, training SNPs (along with
other input information) were processed through PheLEx
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and Rekaya for 100,000 iterations, and misclassification
probabilities for each case and control in simulated misclas-
sified phenotype was returned as output. For all analyses, a
misclassification probability threshold (t = 99th percentile
of misclassification probabilities estimated for cases in Y)
was selected, where all cases (i.e. Y = 1) with misclassifica-
tion probabilities greater than t were marked as misclassi-
fied. Precision, recall/true positive rate, and false positive
rate were calculated for misclassified cases identified
by PheLEx in simulations and compared to Rekaya’s
performance.
Misclassified samples/cases found in simulations

(where training SNPs were filtered using p < 10–6.3 and
misclassification probability threshold t = 99th percent-
ile) by PheLEx were further used to create respective
corrected phenotypes by switching phenotype of misclas-
sified cases from case to control. Association analyses
were performed with corrected phenotypes produced by
PheLEx against genotype data. Performance metrics (i.e.
precision, recall/true positive rate, and false positive rate)
were computed on resulting p-values produced from asso-
ciation analyses and compared between phenotypes: simu-
lated true phenotypes, simulated misclassified phenotypes,
and PheLEx corrected phenotypes. Additional analyses
were performed to observe the impact of varying (i)
p-value threshold for filtering training SNPs (p < 10− 4,
p < 10− 5, and p < 10–6.3) and (ii) misclassification
probability threshold t (t = 99th percentile, t = 95th
percentile, t = 90th percentile, t = 85th percentile, t =
80th percentile, and t = 75th percentile) on method’s
performance to identify misclassified samples and
disease-associated SNPs (Additional file 1: Text S3).
Performance for each method applied was measured

by each misclassification extraction method’s ability to
identify misclassified cases. Using average misclassifica-
tion probabilities estimated by PheLEx and Rekaya over
100 simulated datasets at each misclassification level (1
to 10%), performance metrics such as recall/true positive
rates, false positive rates, and precision were calculated
for each method. For decreasing threshold values in
range 0.0–1.0, cases with misclassification probability
higher than threshold were marked as misclassified by
the method. Recall/true positive rate was calculated as
the fraction of correctly identified misclassified cases out
of all misclassified cases in the dataset and false positive
rate was calculated as fraction of true cases labeled as
misclassified out of all true cases. Precision was calcu-
lated as the fraction of correctly identified misclassified
cases in the set of misclassified cases marked by each
method. For visualization of ROC curves, mean true
positive rate across 100 simulations at each false positive
rate value was calculated per method. Similarly, for PR
curves, mean precision across 100 simulations at each
recall value was calculated per method. AUC ROC and

AUC PR values were computed by calculating the area
under all 100 ROC and PR curves across misclassifica-
tion levels for each method respectively.

Performance of PheLEx when identifying new associations
in GWAS
For each simulated misclassified phenotype (in simulations
with genetic relatedness/population structure) per mis-
classification level (1 to 10%), corrected phenotypes were
produced using misclassification probabilities estimated by
PheLEx. Cases identified as misclassified by PheLEx were
switched to controls to result in PheLEx corrected pheno-
types. Association analyses were performed for corrected
phenotypes produced by PheLEx and resulting p-values
were used to compute performance metrics. Unadjusted
p-values computed using association analysis over 100
simulated datasets for each simulated true phenotype (no
misclassification), simulated misclassified phenotype, and
PheLEx corrected phenotype (at each misclassification
level) were used to calculate performance metrics (i.e. re-
call/true positive rate, false positive rate, and precision).
For increasing threshold values (range specified as mini-
mum and maximum unadjusted p-values for a given ana-
lysis), SNPs with unadjusted p-values less than threshold
were marked as disease-associated SNPs by the method.
Recall/true positive rate was calculated as the fraction of
correctly identified disease-associated SNPs out of all
disease-associated SNPs in the dataset and false positive
rate was calculated as fraction of non-disease associated
SNPs with unadjusted p-value less than threshold over the
total non-disease associated SNPs. Precision was calculated
as the fraction of correctly identified disease-associated
SNPs in the set of SNPs with unadjusted p-values less than
threshold. For visualization of ROC curves mean true posi-
tive rate across all simulations at each false positive rate
value was calculated for association analysis results from
simulated true phenotypes (no misclassification), simu-
lated misclassified phenotypes, and PheLEx corrected phe-
notypes. Similarly, for PR curves, mean precision across all
simulations at each recall value was calculated. Area under
curve for ROC and PR curves were computed by calculat-
ing the area under all 100 ROC curves and 100 PR curves
across misclassification levels respectively.

GWAS case studies: PheLEx analysis of UK Biobank data
Case study datasets
Phenotype and genotype data for bipolar disorder and
epilepsy were obtained from UK Biobank [141]. Data
preprocessing steps used were similar to those adapted
in previous analysis for UK Biobank datasets where any
differences made no significant impact on results obtained
from previous analyses of these GWAS data [89]. For a
previous analysis of UK Biobank phenotypes, filtration
steps included removing genotypes based on genotyping
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missingness rate > 2% across samples, MAF < 10− 4, and
departure from Hardy-Weinberg equilibrium p < 10− 50,
while samples were removed based on missingness rate >
5% across variants, inconsistency between self-reported
gender and genetic sex inferred, and non-British white an-
cestry. For the current analysis of both phenotypes, the
UK Biobank dataset was filtered using steps described
above with the exception of MAF threshold which was
replaced with a more conservative threshold of 10− 3.
Additionally, all genotypes in LD were pruned from the
dataset using PLINK [23] with specific parameters (flag:
--indep-pairwise, window size: 50 kb, step size: 5, r2

threshold: 0.20). This resulted in 287,425 SNPs in the UK
Biobank dataset, which was then divided into datasets for
bipolar disorder and epilepsy phenotypes based on diag-
nosis record. Cases were selected based on diagnosis re-
cords where any individual containing diagnosis code for
phenotype was labeled a case (bipolar disorder code: 1291
and epilepsy code: 1264). For bipolar disorder, 1177 cases
were identified and 3531 controls (three times the number
of identified cases) were randomly selected from a pool of
individuals who did not have bipolar disorder as their
diagnosis in the UK Biobank dataset. For epilepsy, 3620
cases were identified and 10,860 controls (three times the
number of identified cases) were randomly selected from
a pool of individuals who did not have epilepsy as their
diagnosis in the UK Biobank dataset. Distribution of phe-
notypes and sex within these datasets is described in
Table 4. Although previous studies used all the controls
provided in the UK Biobank dataset (number of controls =
500,000 – number of cases), number of controls were se-
lected to keep the dataset size manageable and consistent
with typical GWAS.

Genome-wide association analysis
The following procedure was used to perform associ-
ation analyses for simulated phenotypes and real case
studies’ phenotypes (UK Biobank bipolar disorder and
epilepsy phenotypes). Standard association analysis was
applied using a linear mixed model as implemented in R
package “lrgpr” [142], where for simulations no add-
itional covariates were used in association analyses
whereas for bipolar disorder and epilepsy datasets,
GWAS was performed using sex (Male/Female) and age
as additional fixed covariates in the association model.

The function used for association analyses was lrgprAp-
ply, which uses cross-validation and model selection
criteria to estimate a genetic relatedness matrix to be
used in association analyses [142]. Association analyses
for bipolar disorder and epilepsy phenotypes were simi-
lar to those performed previously for UK Biobank phe-
notypes [89], however, some covariates (e.g. batch)
previously included [89] were removed from our ana-
lyses based on little improvement to quality of Quantile-
Quantile plots and GWAS results (Additional file 1:
Figure S5). Resulting p-values for SNPs from association
analyses were also used to filter input for misclassifica-
tion analyses of simulations and real case studies
(Additional file 2).

Misclassification analysis of UK Biobank
PheLEx was applied to bipolar disorder and epilepsy data-
sets to identify potentially misclassified samples in the
phenotypes. Consistent with previous GWAS results [89]
for both real phenotypes, association analyses failed to
produce any statistically significant SNPs using either
criteria: (i) Unadjusted p-values less than Bonferroni-
corrected genome-wide p-value threshold or (ii) adjusted
p-values < 0.1 criteria (p-values adjusted using Benjamini-
Hochberg procedure). A threshold (unadjusted p-value <
10− 5) was selected as a heuristic to filter training SNPs
used as input for PheLEx for both original bipolar disorder
and epilepsy phenotypes (Additional file 1: Text S5). A
genetic relatedness matrix was also computed for each
dataset using R function getKinship on all SNPs with
MAF > 5% [134]. Training SNPs, genetic relatedness
matrix, and each original disease phenotype were provided
as input to PheLEx. The average misclassification prob-
abilities for cases in each phenotype estimated by PheLEx
were used to produce corrected phenotypes for bipolar
disorder and epilepsy datasets. PheLEx analysis was per-
formed ten times on each bipolar disorder and epilepsy
dataset to produce ten sets of average misclassification
probabilities for each phenotype. For bipolar disorder and
epilepsy, all samples with average misclassification prob-
ability greater than t = 95th percentile of misclassification
probabilities across sets of misclassification probabilities
were marked as misclassified. For both bipolar disorder
and epilepsy datasets, phenotypes for samples identified as
misclassified were switched from cases to controls to

Table 4 Distribution of attributes for UK Biobank bipolar disorder and epilepsy datasets

Phenotype Case Control Female Male

Original bipolar disorder phenotype 1177 3531 2521 2187

PheLEx corrected bipolar disorder phenotypea 1123 3585 2521 2187

Original epilepsy phenotype 3620 10,860 7757 6723

PheLEx corrected epilepsy phenotypea 3225 11,255 7757 6723
a corrected refers to the dataset where phenotype of individuals identified by PheLEx as misclassified was changed from cases to controls
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compute corrected phenotypes. Association analyses were
performed with corrected phenotypes where SNPs differ-
entially significant according to adjusted p-values less than
0.1 (p-values were adjusted using Benjamini-Hochberg
procedure) and not in LD (r2 < k, k ~ 1e− 2) with training
SNPs in association analysis with corrected phenotype
versus original disease phenotype were considered PheLEx
discoveries and investigated for biological significance as
described below. Additional details on identification of
“misclassified” samples are described in Additional file 1:
Text S5.

Application of PheLEx to identify new associations
For bipolar disorder and epilepsy datasets, PheLEx was
applied on these datasets to estimate misclassification
probabilities and compute corrected phenotypes. P-
values produced from association analyses of corrected
phenotypes were adjusted using the Benjamini-
Hochberg procedure. SNPs that passed statistical signifi-
cance threshold (Benjamini-Hochberg adjusted p-value
< 0.1) were identified and the r2 measure of LD was
computed between these SNPs and those used for train-
ing PheLEx (training SNPs). All non-training SNPs
where r2 <k, k ~ 1e− 2 with training SNPs and adjusted
p-value < 0.1 in GWAS with the corrected phenotypes
were considered PheLEx discoveries. PheLEx discoveries
were further analyzed using web-based resource LDLink
[143, 144] where SNPs in LD with PheLEx discoveries
were identified and annotated. Additional file 1: Figure
S3 was generated using LDLink [143, 144].
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