
antibiotics

Article

Comparison of Immunological Profiles of SARS-CoV-2
Variants in the COVID-19 Pandemic Trends: An
Immunoinformatics Approach

Jenifer Mallavarpu Ambrose 1, Vishnu Priya Veeraraghavan 2, Malathi Kullappan 1 , Poongodi Chellapandiyan 3,
Surapaneni Krishna Mohan 1,4,* and Vivek Anand Manivel 1,5,*

����������
�������

Citation: Mallavarpu Ambrose, J.;

Priya Veeraraghavan, V.; Kullappan,

M.; Chellapandiyan, P.; Krishna

Mohan, S.; Manivel, V.A. Comparison

of Immunological Profiles of

SARS-CoV-2 Variants in the

COVID-19 Pandemic Trends: An

Immunoinformatics Approach.

Antibiotics 2021, 10, 535. https://

doi.org/10.3390/antibiotics10050535

Academic Editors: Kandasamy

Saravanakumar and Marc Maresca

Received: 15 March 2021

Accepted: 4 May 2021

Published: 6 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Research, Panimalar Medical College Hospital & Research Institute, Varadharajapuram,
Poonamallee, Chennai 600 123, Tamil Nadu, India; jenifer.research@pmchri.ac.in (J.M.A.);
malathi.research@pmchri.ac.in (M.K.)

2 Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical and Technical
Sciences (SIMATS), Saveetha University, Velappanchavadi, Chennai 600 077, Tamil Nadu, India;
vishnupriya@saveetha.com

3 Department of Obstetrics & Gynaecological Nursing, Panimalar College of Nursing, Varadharajapuram,
Poonamallee, Chennai 600 123, Tamil Nadu, India; cpoongodi@pcon.ac.in

4 Departments of Biochemistry, Molecular Virology, Clinical Skills and Simulation, Panimalar Medical College
Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai 600 123, Tamil Nadu, India

5 Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University,
75185 Uppsala, Sweden

* Correspondence: head.research@pmchri.ac.in (S.K.M.); vivekanand.manivel@igp.uu.se (V.A.M.);
Tel.: +91-9789099989 (S.K.M.); +46-700433864 (V.A.M.)

Abstract: The current dynamics of the COVID-19 pandemic have become a serious concern with
the emergence of a series of mutant variants of the SARS-CoV-2 virus. Unlike the previous strain, it
is reported that the descendants are associated with increased risk of transmission yet causing less
impact in terms of hospital admission, the severity of illness, or mortality. Moreover, the vaccine
efficacy is also not believed to vary among the population depending on the variants of the virus
and ethnicity. It has been determined that the mutations recorded in the spike gene and protein
of the newly evolved viruses are specificallyresponsible for this transformation in the behavior of
the virus and its disease condition. Hence, this study aimed to compare the immunogenic profiles
of the spike protein from the latest variants of the SARS-CoV-2 virus concerning the probability
of COVID-19 severity. Genome sequences of the latest SARS-CoV-2 variants were obtained from
GISAID and NCBI repositories. The translated protein sequences were run against T-cell and B-cell
epitope prediction tools. Subsequently, antigenicity, immunogenicity, allergenicity, toxicity, and
conservancy of the identified epitopes were ascertained using various prediction servers. Only
the non-allergic and non-toxic potential epitopes were matched for population relevance by using
the Human Leucocyte Antigen population registry in IEDB. Finally, the selected epitopes were
validated by docking and simulation studies. The evaluated immunological parameters would
concurrently reveal the severity of COVID-19, determining the infection rate of the pathogen. Our
immunoinformatics approach disclosed that spike protein of the five variants was capable of forming
potential T and B-cell epitopes with varying immune responses. Although the Wuhan strain showed
a high number of epitope/HLA combinations, relatively less antigenicity and higher immunogenicity
results in poor neutralizing capacity, which could be associated with increased disease severity.
Our data demonstrate that increased viral antigenicity with moderate to high immunogenicity,
and several potential epitope/HLA combinations in England strain, the USA, India, and South
Africa variants, could possess a high neutralizing ability. Therefore, our findings reinforce that the
newly circulating variants of SARS-CoV-2 might be associated with more infectiousness and less
severe disease condition despite their greater viremia, as reported in the recent COVID-19 cases,
whichconsequently determine their increased epidemiological fitness.
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1. Introduction

The recently emerged SARS-Cov-2 is an RNA virus with high mutating efficiency, and
the infection is transmissible between humans [1]. It enters with the help of angiotensin-
converting enzyme-2 (ACE-2) receptors present in the upper respiratory tract of the host,
which are highly expressed in individuals with comorbidities including old age, diabetes,
obesity, and high blood pressure [2–4]. Further, there are reports regarding the recently
evolved variants and strains of SARS-CoV-2 around the world causing more infections
with higher transmissible efficiency. At the same time, the availability of prophylactic
vaccine has also been helpingto curb the progression of this infectious disease among the
public. It is believed that several single nucleotide variations (SNVs) or the point mutations
observed in the SARS-CoV-2 genome and proteome have increased the viability of the
pathogen to the environmental stress, efficiency of transmission, and subsequently alter
the clinical outcomes [5]. In particular, pathogen–host interaction is a complex process
where the pathogen is processed by the pattern recognition receptors and presented by
antigen-presenting cells to T and B-cells to elicit an effective immune response [6,7]. The
immune response as evaluated by detectable IgG antibody levels and cytotoxic T-cell
activity depends on the antigen that cancause varying symptoms ranging from mild fever
to lethality [8–10]. Such an immune response elicited towards the virus is affected by several
factors such as the evolution of the virus, ethnicity, and geography [11]. However, the
immunological profiles that the antigens of the variant and specific strains of SARS-CoV-2
present to the host immune system remain unclear. Comparing the various mutants of
SARS-CoV-2 in light of antigenicity, immunogenicity, epitope/HLA combinations, and
ethnicity will hint not only at the efficacy of the existing and the developing vaccines but
also the severity of COVID-19 and its infection rate. In other words, we hypothesized
that the comparative analysis of epitope/human leukocyte allele (HLA) combinations
recognized in each SARS-CoV-2 variant and their immunological parameters would reveal
the severity of COVID-19, determining its epidemiological fitness.

Although reverse vaccinology techniques have been conventionally used to design
peptide-based vaccines [12], advanced bioinformatics tools can also be leveraged to predict
the immunogenicity of the emerging pathogens within a short period. Mutations such
as D614G and N501Y [13,14] have been commonly observed in the S protein of the vari-
ants reported from several countries as correlating with higher transmissibility rates of
30–70% [15]. Moreover, of all the structural and non-structural proteins in the SARS-CoV-2
proteome, the spike protein is the major antigen inducing protective immune responses
and transmission in the hosts. Hence, it is important to closely monitor the antigenic
evolution of the spike in the recently emerged and circulating variants [16–18]. A concrete
understanding of the antigen that the isolates present to the host immune system and their
ability to elicit an increased cell-mediated immune response in the human host are lacking.
Therefore, this study aimed at identifying and comparing the immunogenic cytotoxic
T lymphocyte (CTL), helper T lymphocyte (HTL) epitopes, and B-cell epitopes in five
different isolates.

2. Results
2.1. Analysis of the SARS-CoV-2 Spike Glycoprotein Target Sequences

Since the so-called UK variant with mutations like N501Y, D614G, etc., has been
widely reported in many countries from October 2020, four representative sequences of the
S protein with the characteristic mutations deposited from England, Karnataka in India,
Georgia in the United States, and Western Capein South Africa were retrieved. Among the
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sequences retrieved, three were genome sequences obtained from GISAID submitted by
England, India, and South Africa. The protein sequence of the USA variant was instantly
obtained from the NCBI-Protein database. To compare these latest variants, the primary
Wuhan SARS-CoV-2 genome and the sequence of S glycoprotein were separately retrieved
from the NCBI-Protein database. The spike gene of England, India, and South African
variants were translated into protein sequences using the BioEdit-translate program.

All five sequences chosen for the study were 1273 amino acids long. Protparam
results for physicochemical properties revealed that the composition of the acidic and basic
amino acids in the S protein of England, the USA, India, and South Africa showed a slight
variation when compared to the Wuhan reference strain.Due to the high number of basic
amino acids in all the isolates, they were found to be acidic. Although the instability index
value of all five SARS-CoV-2 isolates was found to be within the stable range, it was slightly
increased in the spike protein of the recently evolved variants. Interestingly, the negative
GRAVY index values of the spike protein in all the five isolates indicated their hydrophilic
nature (Table 1).The conservation of the selected proteins at the majority of the sites in
the three recently emerged variants indicated the cross-protection ability of their potential
epitope candidates (Supplementary Figure S1). However, as represented in the protein
variability test results (Table S1), we suggest that the antigenic and immunogenic properties
of the protein might be altered in the latest variants based on those few variations observed
in their sequences.

Table 1. Physico-chemical parameters of SARS-CoV-2 isolates studied.

SARS-CoV-2
Isolate Length

Molecular
Weight

(Dalton)
Theoretical

PI
Total no of −ve

and +ve
Aminoacids

Extinction
Coefficient
(M−1cm−1)

Estimated
Half-Life

(h)
Instability

Index
Aliphatic

Index GRAVY

Wuhan 1273 141,178.47 6.24 110/103 148,960 30 33.01 84.67 −0.079

England 1273 141,169.51 6.32 109/103 150,450 30 33.03 84.67 −0.075

USA 1273 141,120.43 6.32 109/103 148,960 30 32.86 84.67 −0.77

India 1273 141,280.46. 6.35 109/103 150,450 30 32.82 84.45 −0.078

South Africa 1273 141,120.43 6.32 109/103 148,960 30 32.86 84.67 −0.077

To gain insight into their phylogenetic relationships, a maximum likelihood phyloge-
netic tree was generated for the genome sequences of all the SARS-CoV-2 variants isolated
from England (EPI_ISL_655762), India (EPI_ISL_1708422), South Africa (EPI_ISL_1706561),
USA (MW494124.1), and China (NC_045512.2) in comparison with Bat Coronavirus
(MW251308.1), SARS-CoV-1 (MK062180.1) and MERS virus (MW086530.1). The resulting
cladogram revealed that all the SARS-CoV-2 isolates were in clade I while the SARS-CoV-1
strain remained in clade II, indicating close evolutionary relationships shared by the
SARS-CoV-2 isolates with each other (Figure 1). It was evident that the MERS virus in
clade III shares a common ancestral relationship with SARS-CoV-1, Bat coronavirus, and
SARS-CoV-2 respectively.
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Figure 1. Maximum likelihood phylogenetic tree of SARS-CoV-2 genomes isolated from different
geographical locations, namely Wuhan, England, the USA, India, and South Africa with reference to
Bat Coronavirus, SARS-CoV-1, and MERS Virus.

2.2. CTL and HTL Epitope Identification
2.2.1. CTL Epitope Prediction

The identification of cytotoxic and helper T-cell epitopes in the target antigens is one
of the key steps not only in the epitope-driven vaccine design process but also crucial for
understanding the immunologic profiles of each SARS-CoV-2 variant. Undoubtedly, it
is important to identify and compare the immuno-dominant epitopes that are capable of
eliciting an immune response in the host and are responsible for the clinical outcome.Thus,
T-cell epitopes were computationally identified on the S protein sequences of the SARS-CoV-
2 isolates collected from China, England, the United States, India, and South Africa.With
the selected threshold value of 1.00, NetCTL 1.2 server initially predicted 167 CD8+ unique
T-cell epitopes from the S protein sequence of the Wuhan isolate.After evaluating their
antigenicity based on the VaxiJen scores, only 77 epitopes were found to be above the
threshold value of 0.5. When the qualified 77 antigenic epitopes were further evaluated,
only 35 of them possessed immunogenicity scores greater than 0.00. Besides this, the results
revealed that 28 of the 77 epitopes were non-allergic and non-toxic peptides in the Wuhan
isolate. All the identified peptides were 9mers. The final set of immunogenic, non-allergic,
and non-toxic peptides was evaluated for their MHC I binding affinity using the IEDB
recommended NetMHCpanEL 4.1 prediction method. With a reference panel of 27 alleles,
this prediction step facilitated the selection of good-quality cytotoxic T-cell epitopes. About
20 CTL epitopes with the percentile rank less than or equal to 1.5 for the MHC I allele
binding were filtered out, which were further narrowed down to the 11 best CTL epitopes.

Similarly, from the 86 unique CTL epitopes that were identified on the spike protein of
the England isolate, we selected 36 epitopes that exhibited increasedantigenicity, 21 of them
with positive immunogenicity scores. Based on the binding affinity of the epitopes with the
highest number of MHC-I alleles, seven immuno-dominant epitopes of the England variant
wereselected as highly antigenic epitopes. They could potentially interact with a set of the
class I MHC alleles with high affinity and elicit the desired humoral immune response in
the host system. When the latest variant isolated from the USA was analyzed, 159 unique
CTL epitopes were initially recognized, which were further narrowed down to 75 qualified
antigens from the VaxiJen scores. Out of the 75 epitopes, 38 peptides were either allergic
or toxic. Those antigens with positive immunogenicity scores were selected to be highly
antigenic peptides that could interact with the MHC I alleles with high binding affinity.
Herein, for the 39 peptides that were predicted to be immunogenic, MHCI binding ability
was evaluated. The sevenbest epitopes were identified, and their associated alleles were
cataloged. Similarly, 67 of the 146 unique CTL epitopes that were initially identified from
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the Indian isolate were antigenic, and 41 were immunogenic candidates. Twenty-eight
out of the 40 epitopes were discovered to be non-allergic and non-toxic peptides. In the
end, 14 were qualified to be the best epitopes based on their binding affinity to the MHC I
molecules. Lastly, when we analyzed the spike protein of the South African SARS-CoV-2
isolate, it possessed 162 unique CTL epitopes. Of all the variants, the S protein of the
South African isolate showed the highest number of 70 antigenic and 37 immunogenic
peptides. Finally, 17 out of 28 non-allergic and non-toxic peptides qualified as potential
CTL epitope candidates (Supplementary Table S2). Although the number of epitope/HLA
combinations was revealed to be higher in the best epitopes of the Wuhan variant, it was
carefully observed that only 27% of them were highly antigenic, whereas, in the England
variant, 57% of the top-ranked peptides exhibited higher antigenicity. Similarly, 60%
of the high-ranking epitopes were revealed to be highly antigenic in the Indian variant.
In the South African variant, which encompassed the maximum number of potential
CTL epitopes as high as 17, only 50% of them were identified to be highly antigenic.
Conversely, 42% of the selected peptides displayed increased antigenicity in the USA
isolate. Besides this, variants of England, India, South Africa, and the USA showed a
high number of epitopes with positive immunogenicity scores. However, all the predicted
epitopes were discovered to be 100% conserved across the variants evaluated.(Table 2).
The CTL epitopes ‘ILDITPCSF’ and STQDLFLPF’ of Wuhan isolate, ‘IAIPTNFTI’ and
‘WTAGAAAYY’ of England variant, and the epitopes ‘VVFLHVTYV’, ‘ILDITPCSF, and
‘FTISVTTEI’ of the USA isolate, ‘FTISVTTEI’ and ‘VVFLHVTYV’ of the Indian isolate, and
‘IAIPTNFTI’ and ‘FTISVTTEI’ of the South African variant, showed the highest affinity
for about 9 to16 MHC I molecules, including HLA-B*15:01, HLA-A*01:01, HLA-A*02:06,
HLA-A*30:02, HLA-A*32:01, HLA-B*35:01, HLA-B*57:01, HLA-B*58:01, HLA-B*44:03, and
HLA-B*44:02 in all five SARS-CoV-2 isolates. The HLAs mentioned above denote the
acronym HLA, the gene name such as A, B or C, followed by ‘*’, a two digit number that
corresponds to antigen specificity, and assigned allele number. It was also observed that
‘WTAGAAAYY’, ‘GVVFLHVTY’, and ‘GAAAYYVGY’ were commonly found CTL epitopes
in all three isolates. The epitope ‘ILDITPCSF’ exhibited the highest affinity in Wuhan
and USA isolates. Besides this, the epitope ‘IAIPTNFTI’ was recognized to be a common
epitope of England and USA variants with the highest affinity for the MHC I molecules.
Likewise, ‘VVFLHVTYV’ was noticed to be common between the USA and Indian isolates.
Though there were common epitopes exhibited by all three variants, a few of them were
distinguished. Particularly, the epitope ‘STQDLFLPF’ was unique to the Wuhan type only.
Similarly, ‘QYIKWPWYI’ was unique to England type only. In the same way, the epitopes
‘YQPYRVVVL’ and ‘YSKHTPINL’ were unique to Indian and South African variants only.
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Table 2. Best cytotoxic T lymphocyte epitope 9mers and their immunogenic characteristics predicted for the three different SARS-CoV-2 variants from the IEDB tool.

SARS-CoV-2
Variant Epitope Position Antigenicity

Score
Immunogenicity

Score MHC I Alleles No of MHC I
Binding Alleles

Conservancy at
100% Sequence

Identity
Allergenicity Toxicity

Wuhan, China

ILDITPCSF 584–592 1.184 0.02632

HLA-B*15:01,
HLA-A*01:01,
HLA-A*02:06,
HLA-B*35:01,
HLA-B*08:01,
HLA-A*02:01,
HLA-A*32:01,
HLA-A*24:02,
HLA-A*23:01,
HLA-A*30:02,
HLA-B*58:01,
HLA-B*53:01

12 100% Non-allergen Non-toxic

STQDLFLPF 50–58 0.662 0.06828

HLA-A*32:01,
HLA-B*57:01,
HLA-B*15:01,
HLA-A*26:01,
HLA-B*58:01,
HLA-B*35:01,
HLA-A*30:02,
HLA-A*23:01,
HLA-A*24:02,
HLA-A*01:01,
HLA-A*11:01,
HLA-B*53:01

12 100% Non-allergen Non-toxic

VVFLHVTYV 1060–1068 1.512 0.1278

HLA-A*02:06,
HLA-A*02:03,
HLA-A*02:01,
HLA-A*68:02,
HLA-B*51:01,
HLA-A*30:01,
HLA-A*32:01,
HLA-B*08:01,
HLA-A*26:01

9 100% Non-allergen Non-toxic
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Table 2. Cont.

SARS-CoV-2
Variant Epitope Position Antigenicity

Score
Immunogenicity

Score MHC I Alleles No of MHC I
Binding Alleles

Conservancy at
100% Sequence

Identity
Allergenicity Toxicity

GVVFLHVTY 1059–1067 1.410 0.20837

HLA-B*15:01,
HLA-A*30:02,
HLA-A*26:01,
HLA-B*35:01,
HLA-A*32:01,
HLA-B*57:01,
HLA-A*11:01,
HLA-A*01:01,
HLA-B*58:01

9 100% Non-allergen Non-toxic

WTAGAAAYY 258–266 0.662 0.15259

HLA-A*26:01,
HLA-A*01:01,
HLA-A*30:02,
HLA-A*68:01,
HLA-B*35:01,
HLA-B*15:01,
HLA-B*58:01,
HLA-B*57:01

8 100% Non-allergen Non-toxic

GAAAYYVGY 261–269 0.660 0.09963

HLA-A*30:02,
HLA-B*15:01,
HLA-B*35:01,
HLA-A*26:01,
HLA-A*01:01,
HLA-A*11:01,
HLA-B*58:01

7 100% Non-allergen Non-toxic

RVVVLSFEL 509–517 1.192 0.046

HLA-A*32:01,
HLA-A*02:06,
HLA-B*57:01,
HLA-B*58:01,
HLA-A*02:01

5 100% Non-allergen Non-toxic



Antibiotics 2021, 10, 535 8 of 36

Table 2. Cont.

SARS-CoV-2
Variant Epitope Position Antigenicity

Score
Immunogenicity

Score MHC I Alleles No of MHC I
Binding Alleles

Conservancy at
100% Sequence

Identity
Allergenicity Toxicity

England

WTAGAAAY 258–266 0.826 0.15259

HLA-A*26:01,
HLA-A*01:01,
HLA-A*30:02,
HLA-A*68:01,
HLA-B*35:01,
HLA-B*15:01,
HLA-B*58:01,
HLA-B*53:01,
HLA-B*57:01

9 100% Non-allergen Non-toxic

QYIKWPWYI 1208–1216 1.664 0.21624

HLA-A*24:02,
HLA-A*23:01,
HLA-C*06:02,
HLA-C*07:02,
HLA-C*14:02,
HLA-A*32:01,
HLA-C*07:01

7 100% Non-allergen Non-toxic

GVYFASTEK 89–97 0.664 0.09023

HLA-A*11:01,
HLA-A*30:01,
HLA-A*68:01,
HLA-A*31:01

4 100% Non-allergen Non-toxic

NGVEGFNCY 481–489 1.182 0.22039
HLA-B*35:01,
HLA-A*26:01,
HLA-C*12:02

3 100% Non-allergen Non-toxic

PYRVVVLSF 507–515 1.028 0.03138
HLA-A*23:01,
HLA-A*24:02,
HLA-C*14:02

3 100% Non-allergen Non-toxic

VYAWNRKRI 350–358 0.813 0.12625
HLA-A*24:02,
HLA-C*14:02,
HLA-A*23:01

3 100% Non-allergen Non-toxic

SPRRARSVA 680–688 0.511 0.0402 HLA-B*07:02,
HLA-B*08:01 2 100% Non-allergen Non-toxic
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Table 2. Cont.

SARS-CoV-2
Variant Epitope Position Antigenicity

Score
Immunogenicity

Score MHC I Alleles No of MHC I
Binding Alleles

Conservancy at
100% Sequence

Identity
Allergenicity Toxicity

USA

VVFLHVTYV 1060–1068 1.51 0.1278

HLA-A*02:06,
HLA-A*02:03,
HLA-A*02:01,
HLA-A*68:02,
HLA-B*51:01,
HLA-A*30:01,
HLA-A*30:02,
HLA-A*32:01,
HLA-B*08:01,
HLA-A*26:01,
HLA-A*33:01,
HLA-A*03:01,
HLA-A*31:01,
HLA-B*57:01,
HLA-B*15:01,
HLA-A*68:01

16 100% Non-allergen Non-toxic

ILDITPCSF 584–592 1.184 0.02632

HLA-B*15:01,
HLA-A*01:01,
HLA-A*02:06,
HLA-B*35:01,
HLA-B*08:01,
HLA-A*02:01,
HLA-A*32:01,
HLA-A*24:02,
HLA-A*23:01,
HLA-A*30:02,
HLA-B*58:01,
HLA-B*53:01

12 100% Non-allergen Non-toxic
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Table 2. Cont.

SARS-CoV-2
Variant Epitope Position Antigenicity

Score
Immunogenicity

Score MHC I Alleles No of MHC I
Binding Alleles

Conservancy at
100% Sequence

Identity
Allergenicity Toxicity

GVVFLHVTY 1059–1067 1.140 0.20837

HLA-B*15:01,
HLA-A*30:02,
HLA-A*26:01,
HLA-B*35:01,
HLA-A*32:01,
HLA-B*57:01,
HLA-A*11:01,
HLA-B*58:01

8 100% Non-allergen Non-toxic

GAAAYYVGY 1060–1068 0.661 0.09963

HLA-A*30:02,
HLA-B*15:01,
HLA-B*35:01,
HLA-A*26:01,
HLA-A*01:01,
HLA-A*11:01,
HLA-B*58:01

7 100% Non-allergen Non-toxic

WTAGAAAYY 258–266 0.631 0.15259

HLA-A*26:01,
HLA-A*01:01,
HLA-A*30:02,
HLA-A*68:01,
HLA-B*35:01,
HLA-B*15:01,
HLA-B*58:01

7 100% Non-allergen Non-toxic

LPFNDGVYF 84–92 0.559 0.11767

HLA-B*35:01,
HLA-B*53:01,
HLA-B*51:01,
HLA-B*07:02,
HLA-A*26:01

5 100% Non-allergen Non-toxic

IAIVMVTIM 1225–1233 1.134 0.06312 HLA-B*51:01,
HLA-B*35:01 2 100% Non-allergen Non-toxic
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Table 2. Cont.

SARS-CoV-2
Variant Epitope Position Antigenicity

Score
Immunogenicity

Score MHC I Alleles No of MHC I
Binding Alleles

Conservancy at
100% Sequence

Identity
Allergenicity Toxicity

India

FTISVTTEI 718–726 0.8535 0.04473

HLA-A*68:02;
HLA-A*02:06;
HLA-A*02:03;
HLA-A*02:01;
HLA-B*51:01;
HLA-A*26:01;
HLA-B*58:01;
HLA-A*32:01;
HLA-B*53:01

9 100% Non-allergen Non-toxic

VVFLHVTYV 1060–1068 1.512 0.1278

HLA-A*02:06;
HLA-A*02:03;
HLA-A*02:01;
HLA-A*68:02;
HLA-B*51:01;
HLA-A*30:01;
HLA-A*32:01;
HLA-B*08:01;
HLA-A*26:01

9 100% Non-allergen Non-toxic

YQPYRVVVL 505–513 0.5964 0.1409

HLA-B*08:01;
HLA-A*02:06;
HLA-B*15:01;
HLA-A*02:03;
HLA-A*02:01;
HLA-A*24:02;
HLA-B*40:01;
HLA-A*23:01

8 100% Non-allergen Non-toxic
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Table 2. Cont.

SARS-CoV-2
Variant Epitope Position Antigenicity

Score
Immunogenicity

Score MHC I Alleles No of MHC I
Binding Alleles

Conservancy at
100% Sequence

Identity
Allergenicity Toxicity

YSKHTPINL 204–212 1.0547 0.9845

HLA-B*57:01;
HLA-A*30:01;
HLA-B*08:01;
HLA-B*58:01;
HLA-A*68:02;
HLA-B*51:01;
HLA-B*15:01;
HLA-A*32:01

8 100% Non-allergen Non-toxic

WTAGAAAYY 258–266 0.6306 0.1525

HLA-A*26:01;
HLA-A*01:01;
HLA-A*30:02;
HLA-A*68:01;
HLA-B*35:01;
HLA-B*15:01;
HLA-B*58:01

7 100% Non-allergen Non-toxic

LPFNDGVYF 84–92 0.5593 0.11767

HLA-B*35:01;
HLA-B*53:01;
HLA-B*51:01;
HLA-B*07:02;
HLA-A*26:01

5 100% Non-allergen Non-toxic

GAAAYYVGY 261–269 0.6604 0.9963

HLA-A*30:02;
HLA-B*15:01;
HLA-B*35:01;
HLA-A*26:01;
HLA-A*01:01

5 100% Non-allergen Non-toxic
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Table 2. Cont.

SARS-CoV-2
Variant Epitope Position Antigenicity

Score
Immunogenicity

Score MHC I Alleles No of MHC I
Binding Alleles

Conservancy at
100% Sequence

Identity
Allergenicity Toxicity

South Africa

IAIPINFTI 712–720 1.5131 0.27703

HLA-B*51:01;
HLA-B*58:01;
HLA-B*57:01;
HLA-A*02:06;
HLA-A*68:02;
HLA-B*53:01;
HLA-A*32:01;
HLA-A*02:01;
HLA-A*23:01;
HLA-B*35:01;
HLA-A*24:02

11 100% Non-allergen Non-toxic

FTISVTTEI 718–726 0.8534 0.04473

HLA-A*68:02;
HLA-A*02:06;
HLA-A*02:03;
HLA-A*02:01;
HLA-B*51:01;
HLA-A*26:01;
HLA-B*58:01;
HLA-A*32:01;
HLA-B*53:01

9 100% Non-allergen Non-toxic

YQPYRVVVL 505–513 0.5964 0.1409

HLA-B*08:01;
HLA-A*02:06;
HLA-B*15:01;
HLA-A*02:03;
HLA-A*02:01;
HLA-A*24:02;
HLA-B*40:01
HLA-A*23:01

8 100% Non-allergen Non-toxic
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Table 2. Cont.

SARS-CoV-2
Variant Epitope Position Antigenicity

Score
Immunogenicity

Score MHC I Alleles No of MHC I
Binding Alleles

Conservancy at
100% Sequence

Identity
Allergenicity Toxicity

WTAGAAAYY 258–266 0.6306 0.15259

HLA-A*26:01;
HLA-A*01:01;
HLA-A*30:02;
HLA-A*68:01;
HLA-B*35:01;
HLA-B*15:01;
HLA-B*58:01

7 100% Non-allergen Non-toxic

YSKHTPINL 204–212 1.0547 0.09845

HLA-B*57:01;
HLA-A*30:01;
HLA-B*08:01;
HLA-B*58:01;
HLA-A*68:02;
HLA-B*51:01;
HLA-A*32:01

7 100% Non-allergen Non-toxic

LPFNDGVYF 84–92 0.5593 0.11767

HLA-B*35:01;
HLA-B*53:01;
HLA-B*51:01;
HLA-B*07:02;
HLA-A*26:01

5 100% Non-allergen Non-toxic

GVVFLHVTY 1059–1067 1.4104 0.20837

HLA-B*15:01;
HLA-A*30:02;
HLA-A*26:01;
HLA-B*35:01;
HLA-A*32:01

5 100% Non-allergen Non-toxic
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2.2.2. HTL Epitope Prediction

We used the IEDB server to determine the binding affinity of the class II MHC human
leukocyte antigen alleles with the helper T lymphocytes using human HLA-DR, HLA-DP,
and HLA-DQ combinations. Witha reference panel of 29 HLA alleles, we predicted the
binding affinity of MHC II allele-associated 15mers for the spike glycoprotein of the three
different SARS-CoV-2 variants with the help of the IEDB recommended method. The
epitopes identified were ranked based on their percentile rank scores given in the output.
The lower the percentile ranked score, the higher the binding affinity of the epitopes
for HTL receptors. Only those peptides with the percentile score threshold ≤ 1.5 were
considered as having higher binding affinity for MHC II alleles and thus were selected as
the best helper T-cell epitopes (Table 3). The IEDB-MHC II prediction tool returned about
300 unique HTL epitopes in the glycoprotein of each of the strains studied within the ≤1.5
percentile rank threshold. However, when analyzed, the results revealed that the HTL
peptides identified were overlapping 15mer fragments sharing their core antigenic peptides.
Further, a majority of the core HTL peptides recognized were also identified as the best
CTL epitope 9mers in the previous step. About 10–20 best HTL epitopes with the percentile
rank less than or equal to1.5 in each of the variants studied are tabulated below. VaxiJen
scores confirmed that 14 HTL peptides identified in the Wuhan isolatewere antigens, while
the variants, on average, displayed eight peptides as the best HTL epitopes. The results
showed that the 15mer peptides such as ‘MFVFLVLLPLVSSQC, ‘PYRVVVLSFELLHAP’,
and ‘REFVFKNIDGYFKIY’ possessed the highest affinity to the MHC II molecules in all the
three variants analyzed. Among the 62 HTL epitopes, 37 peptides exhibited a strong affinity
with HLA-DR alleles, including ‘HLA-DRB1*01:01′, ‘HLA-DPA1*03:01/DPB1*04:02, ‘HLA-
DRB1*09:01′, ‘HLA-DRB1*13:02′, and ‘HLA-DRB1*15:01′, suggesting that HLA-DR alleles
could be the best grooves for the predicted peptides in all the three variants analyzed.
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Table 3. List of helper T-cell epitopes with encountering MHC II alleles with their positional, prediction method, antigenicity, allergenicity, and toxicity information.

Sl. No. Peptide MHC II Binding Allele Start End Method Percentile Rank Vaxijen Score Allergenicity Toxicity

Wuhan Isolate

1 MFVFLVLLPLVSSQC HLA-DRB1*01:01 1 15 Consensus 0.24 Antigen (0.5741) Non-allergen Non-toxic

2 MFVFLVLLPLVSSQC HLA-DPA1*03:01/DPB1*04:02 1 15 Consensus 0.34 Antigen (0.5741) Non-allergen Non-toxic

3 VLLPLVSSQCVNLTT HLA-DRB4*01:01 6 20 Consensus 1.5 Antigen (0.8957) Non-allergen Non-toxic

4 LHSTQDLFLPFFSNV HLA-DPA1*01:03/DPB1*02:01 48 62 Consensus 1.4 Antigen (0.2110) Allergen Non-toxic

5 LFLPFFSNVTWFHAI HLA-DPA1*01:03/DPB1*04:01 54 68 NetMHCIIpan 0.81 Antigen (0.2477) Non-allergen Non-toxic

6 KTQSLLIVNNATNVV HLA-DRB3*02:02 113 127 NetMHCIIpan 0.17 Antigen (0.6303) Allergen Non-toxic

7 SFVIRGDEVRQIAPG HLA-DRB3*01:01 399 413 Consensus 0.51 Antigen (0.5882) Non-allergen Non-toxic

8 GNYNYLYRLFRKSNL HLA-DRB1*11:01 447 461 Consensus 0.22 Non-antigen (0.1808) Allergen Non-toxic

9 PYRVVVLSFELLHAP HLA-DPA1*03:01/DPB1*04:02 507 521 Consensus 0.25 Antigen (0.8161) Non-allergen Non-toxic

10 FNFNGLTGTGVLTES HLA-DRB1*09:01 541 555 Consensus 0.75 Antigen (0.7797) Non-allergen Non-toxic

11 DIPIGAGICASYQTQ HLA-DQA1*05:01/DQB1*03:01 633 677 Consensus 1.2 Antigen (1.1088) Non-allergen Non-toxic

12 IAIPTNFTISVTTEI HLA-DRB1*07:01 712 726 Consensus 0.47 Antigen (0.7719) Allergen Non-toxic

133 CSNLLLQYGSFCTQL HLA-DRB1*15:01 749 763 Consensus 0.58 Antigen (0.6336) Non-allergen Non-toxic

14 WYIWLGFIAGLIAIV HLA-DQA1*05:01/DQB1*03:01 1214 1228 Consensus 0.58 Antigen (0.5770) Non-allergen Non-toxic

15 IWLGFIAGLIAIVMV HLA-DQA1*05:01/DQB1*03:01 1216 1230 Consensus 0.51 Antigen (0.6150) Non-allergen Non-toxic

England Variant

16 FVFLVLLPLVSSQCV HLA-DRB1*01:01 2 16 Consensus 0.24 Antigen (0.7185) Non-allergen Non-toxic

17 KTQSLLIVNNATNVV HLA-DRB1*13:02 113 127 Consensus 0.01 Antigen (0.6303) Allergen Non-toxic

18 YRVVVLSFELLHAPA HLA-DPA1*01:03/DPB1*04:01 508 522 NetMHCIIpan 0.95 Antigen (0.7072) Non-allergen Non-toxic

19 VVLSFELLHAPATVC HLA-DRB1*01:01 511 525 Consensus 0.03 Antigen (0.8618) Non-allergen Non-toxic

20 DIPIGAGICASYQTQ HLA-DQA1*05:01/DQB1*03:01 663 677 Consensus 1.2 Antigen (1.1088) Non-allergen Non-toxic

21 PRRARSVASQSIIAY HLA-DPA1*02:01/DPB1*14:01 681 695 NetMHCIIpan 1.2 Non-antigen (0.2408) Non-allergen Non-toxic

22 YIWLGFIAGLIAIVM HLA-DQA1*05:01/DQB1*03:01 1215 1229 Consensus 0.51 Antigen (0.6090) Non-allergen Non-toxic
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Table 3. Cont.

Sl. No. Peptide MHC II Binding Allele Start End Method Percentile Rank Vaxijen Score Allergenicity Toxicity

USA Variant

23 SSGWTAGAAAYYVGY HLA-DQA1*05:01/DQB1*03:01 255 269 Consensus 0.94 Antigen (0.6604) Non-allergen Non-toxic

24 SGWTAGAAAYYVGYL HLA-DQA1*05:01/DQB1*03:01 256 270 Consensus 1.2 Antigen (0.6604) Non-allergen Non-toxic

25 VVVLSFELLHAPATV HLA-DPA1*03:01/DPB1*04:02 510 524 Consensus 0.9 Antigen (0.8083) Non-allergen Non-toxic

26 DIPIGAGICASYQTQ HLA-DQA1*05:01/DQB1*03:01 663 677 Consensus 1.2 Antigen (1.1088) Non-allergen Non-toxic

27 IAIPTNFTISVTTEI HLA-DRB1*07:01 712 726 Consensus 0.47 Antigen (0.7719) Allergen Non-toxic

28 RSFIEDLLFNKVTLA HLA-DPA1*02:01/DPB1*05:01 815 829 Consensus 1.4 Non-antigen
(−0.0341) Allergen Non-toxic

29 GWTFGAGAALQIPFA HLA-DRB1*09:01 885 899 Consensus 0.35 Non-antigen (0.4665) Non-allergen Non-toxic

30 PREGVFVSNGTHWFV HLA-DRB1*13:02 1090 1104 Consensus 1.2 Antigen (1.0165) Non-allergen Non-toxic

31 REGVFVSNGTHWFVT HLA-DRB3*02:02 1091 1105 NetMHCIIpan 0.2 Antigen (1.0165) Non-allergen Non-toxic

32 SGNCDVVIGIVNNTV HLA-DRB1*13:02 1123 1137 Consensus 1.3 Antigen (0.5968) Non-allergen Non-toxic

33 CDVVIGIVNNTVYDP HLA-DRB1*13:02 1126 1140 Consensus 0.7 Antigen (0.7320) Non-allergen Non-toxic

34 WYIWLGFIAGLIAIV HLA-DQA1*05:01/DQB1*03:01 1214 1228 Consensus 0.58 Antigen (0.5770) Non-allergen Non-toxic

Indian Variant

35 MFVFLVLLPLVSSQC HLA-DRB1*01:01 1 15 Consensus 0.24 Antigen (0.5741) Non-allergen Non-toxic

36 DLFLPFFSNVTWFHA HLA-DRB1*04:01 53 67 Consensus 1.1 Non-antigen (0.2472) Non-allergen Non-toxic

37 KTQSLLIVNNATNVV HLA-DRB1*13:02 113 127 Consensus 0.01 Antigen (0.6303) Allergen Non-toxic

38 REFVFKNIDGYFKIY HLA-DRB5*01:01 190 204 Consensus 0.17 Non-antigen
(−0.1712) Allergen Non-toxic

39 TRFASVYAWNRKRIS HLA-DPA1*02:01/DPB1*14:01 232 246 Consensus 0.52 Non-antigen (0.4963) Allergen Non-toxic

40 NYNYLYRLFRKSNLK HLA-DRB1*11:01 448 462 Consensus 0.42 Non-antigen (0.1089) Allergen Non-toxic

41 PYRVVVLSFELLHAP HLA-DPA1*01:03/DPB1*02:01 507 521 Consensus 0.36 Antigen (0.8161) Non-allergen Non-toxic

42 AIPINFTISVTTEIL HLA-DRB1*07:01 713 727 Consensus 0.29 Antigen (1.1305) Non-allergen Non-toxic
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Table 3. Cont.

Sl. No. Peptide MHC II Binding Allele Start End Method Percentile Rank Vaxijen Score Allergenicity Toxicity

43 LQIPFAMQMAYRFNG HLA-DRB4*01:01 894 908 Consensus 0.73 Antigen (0.7205) Non-allergen Non-toxic

44 QQLIRAAEIRASANL HLA-DPA1*02:01/DPB1*14:01 1010 1024 NetMHCIIpan 0.2 Non-antigen (0.1269) Allergen Non-toxic

45 REGVFVSNGTHWFVT HLA-DRB3*02:02 1091 1195 NetMHCIIpan 0.2 Non-antigen (0.4461) Allergen Non-toxic

46 IWLGFIAGLIAIVMV HLA-DQA1*05:01/DQB1*03:01 1216 1230 Consensus 0.51 Antigen (0.6150) Non-allergen Non-toxic

South African Variant

47 MFVFLVLLPLVSSQC HLA-DRB1*01:01 1 15 Consensus 0.24 Antigen (0.5741) Non-allergen Non-toxic

48 FVFLVLLPLVSSQCV HLA-DRB1*01:01 2 16 Consensus 0.24 Antigen (0.7185) Non-allergen Non-toxic

49 LHSTQDLFLPFFSNV HLA-DPA1*01:03/DPB1*02:01 48 62 Consensus 1.4 Non-antigen (0.2110) Allergen Non-toxic

50 KTQSLLIVNNATNVV HLA-DRB1*13:02 113 127 Consensus 0.01 Antigen (0.6303) Allergen Non-toxic

51 REFVFKNIDGYFKIY HLA-DRB5*01:01 190 204 Consensus 0.17 Non-antigen
(−0.1712) Allergen Non-toxic

52 NITRFQTLLALHRSY HLA-DRB5*01:01 234 248 Consensus 0.32 Non-antigen (0.1775) Non-allergen Non-toxic

53 ATRFASVYAWNRKRI HLA-DRB5*01:01 344 358 Consensus 0.49 Non-antigen (0.3489) Allergen Non-toxic

54 NYNYLYRLFRKSNLK HLA-DRB1*11:01 448 462 Consensus 0.42 Non-antigen (0.1089) Allergen Non-toxic

55 PYRVVVLSFELLHAP HLA-DPA1*02:01/DPB1*01:01 507 521 Consensus 0.3 Antigen (0.8161) Non-allergen Non-toxic

56 IAIPTNFTISVTTEI HLA-DRB1*07:01 712 726 Consensus 0.47 Antigen (0.7719) Non-allergen Non-toxic

57 TSGWTFGAGAALQIP HLA-DRB1*09:01 883 897 Consensus 0.34 Non-antigen
(−0.0178) Non-allergen Non-toxic

58 ALQIPFAMQMAYRFN HLA-DRB4*01:01 893 907 Consensus 0.81 Antigen (1.0112) Allergen Non-toxic

59 QQLIRAAEIRASANL HLA-DPA1*02:01/DPB1*14:01 1010 1024 NetMHCIIpan 0.2 Non-antigen (0.1269) Allergen Non-toxic

60 REGVFVSNGTHWFVT HLA-DRB3*02:02 1091 1105 NetMHCIIpan 0.2 Non-antigen (0.4461) Non-allergen Non-toxic

61 CDVVIGIVNNTVYDP HLA-DRB1*13:02 1126 1140 Consensus 0.7 Antigen (0.7320) Non-allergen Non-toxic

62 YIWLGFIAGLIAIVM HLA-DQA1*05:01/DQB1*03:01 1215 1229 Consensus 0.51 Antigen (0.6090) Non-allergen Non-toxic



Antibiotics 2021, 10, 535 19 of 36

2.3. Analysis of Linear and Conformational B-Cell Epitopes

Since the spike glycoprotein of SARS-CoV-2 is structurally oriented on its outer surface,
it optimally enhances the specific binding of the pathogen to the ACE II host receptor.
For this reason, it was considered an ideal target for B-cell epitope screening. Potential
B-cell linear and discontinuous epitopes were identified within the regions they exist in
the S protein structure models of China, England, the USA, India, and South Africa using
the IEDB-Bepipred linear epitope prediction tool. According to the Bepipred results, out
of 35 epitopes predicted, we identified six linear antigenic, non-allergic, and non-toxic
epitopes in the S protein of the Wuhan isolate (Supplementary Table S3), which were
represented by yellow peaks in the graph, while green-colored slopes indicate the non-
epitopic regions within the sequence (Figure 2).Similarly, 8 out of 33 and 6 out of 35 linear
epitopes were predicted as the best B-cell epitopes on the S proteins of the England and
USA isolates, respectively. Likewise, 7 out of 37 and 9 out of 33 non-allergic and non-toxic
peptides were determined to be potential linear epitopes of Indian and South African
variants respectively. The predicted epitopes contained regions spanning from 13 to 1269.
Overall, out of the 103 linear epitopes predicted in total, only 40 (38%) were antigenic
peptides, of which only 18 (17%) were non-allergic and non-toxic epitopes shortlisted
from this prediction. It was observed that the epitopes identified within the S protein of
the England variant and South African variants were a little morethan those of the other
two variants.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Graphical representation of B-cell linear epitopes of spike protein of SARS-CoV-2 variants isolated 
from A) Wuhan, China, B) England, C) USA, D) India, and E) South Africa predicted by Ellipro with a 
threshold of 0.5, wherein X axis represents sequence position number and Y axis represents Ellipro score. 
Sequences stretching between the positions 14 and 1162 harbor potential B-cell linear epitopes. 

Figure 2. Graphical representation of B-cell linear epitopes of the spike protein of SARS-CoV-2 variants
isolated from (A) Wuhan, China, (B) England, (C) USA, (D) India, and (E) South Africa predicted
by Ellipro with a threshold of 0.5, wherein X axis represents sequence position number and Y axis
represents Ellipro score. Sequences stretching between the positions 14 and 1162 harbor potential B-cell
linear epitopes.
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Using IEDB—ElliPro, we obtained a total of 88 linear B-cell epitopes with 12, 15, 17, 22,
and 22 epitopes identified in China, England, the USA, Indian, and South African variants,
respectively. When compared, we noticed that some of the sequential B-cell epitopes
predicted in all the five SARS-CoV-2 isolates were similar in terms of length and amino
acid composition. The length of the epitopes predicted ranged from 6 to 104. However, cer-
tain peptides such as ‘STEKSNIIRGWI’ and ‘TNSPRRARSVA’ were identified in England
and USA isolates alone. The conformational epitopes predicted in the Indian and South
African variants were noticeably the same. Peptides such as ‘PREGVFVSNGTHWFV’,
‘IAIPTNFTISVTTEI’, ‘SGWTAGAAAYYVG’, ‘VVVLSFELLHAPA’, and ‘SPRRARSVA’ were
recognized as overlapping helper T-cell epitopes, which shows the comprehensive im-
munogenic potential of the epitope candidates against SARS-CoV-2 infection.As far as the
B-cell epitopes were concerned, peptides identified as the best epitopes within Wuhan
isolate were unique when compared to the recently evolved England and the USA variants,
as expected. The peptides predicted in England and the USA variants were the same with
the peptide ‘TESNKKFLPFQQF’ unique to the USA isolate only. Interestingly, the B-cell
epitopes identified in the Indian and South African isolates exhibited the same patterns,
which were different from the England and USA variants (Table 4).

Table 4. Potential linear B-cell epitopes identified in each variant predicted by Ellipro.

Position Epitope Sequence Score Antigenicity

Wuhan Isolate

14–28 QCVNLTTRTQLPPAY 0.772 1.4548

109–114 TLDSKT 0.529 1.1073

1033–1039 VLGQSKR 0.523 1.6008

England Isolate

392–429 FTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDF 0.695 0.5786

576–585 VRDPQTLEIL 0.644 0.5446

872–928 QYTSALLAGTITSGWTFGAGAALQIPFAMQMAYRFNGIGVTQNVLYENQKLIANQFN 0.649 0.5394

USA Isolate

392–429 FTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDF 0.695 0.5786

553–565 TESNKKFLPFQQF 0.666 0.5056

872–928 QYTSALLAGTITSGWTFGAGAALQIPFAMQMAYRFNGIGVTQNVLYENQKLIANQFN 0.649 0.5394

576–585 VRDPQTLEIL 0.644 0.5449

Indian Isolate

239–265 QTLLALHRSYLTPGDSSSGWTAGAAAY 0.816 0.4822

14–27 QCVNLTTRTQLPPA 0.771 1.4983

64–83 WFHAGASSGTNGTKRFDNPV 0.763 0.4097

169–190 EYVSQPFLMDLEGKQGNFKNLR
LIVNNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCT 0.75 0.7830

118–167 RFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFK 0.732 0.3023

South African Isolate

239–265 QTLLALHRSYLTPGDSSSGWTAGAAAY 0.815 0.4822

14–27 QCVNLTTRTQLPPA 0.769 1.4983

64–83 WFHAIHVSGTNGTKRFDNPV 0.763 0.4100

169–190 EYVSQPFLMDLEGKQGNFKNLR 0.75 0.7830

118–167 LIVNNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCT 0.731 0.1177

328–378 RFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFK 0.728 0.3023

A total of 11, 13, 19, 15, and 26 discontinuous epitopes were calculated at the same
exposed surface areas in China, England the USA, Indian, and South African isolates
respectively, with a few extra unique epitopes predicted in the mutants, particularly Indian
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and South African isolates around the same surface regions (Table 5). While most epi-
topes predicted were exposed on the surface of the spike monomer analyzed, spike147–154
(‘KNNKSWME’), spike496–501(’GFQPTN’/‘GFQPTY’),and spike1142–1149(‘QPELDSFK’) ex-
hibited excellent surface accessibility in the spike trimer. Spike72–75(‘GTNG’) was found
to be commonly predicted in both England and USA variants, while spike181–183(‘GKQ’)
was noticed to be unique to the Wuhan isolate only. In parallel, spike460–462(‘NLK’) was
observed to be unique to the Indian isolate only.However, spike1158–1161 (‘NHTS’) peptide
was recognized to be a common segment between the Indian and the South African vari-
ants. The conformation of these residues was visualized in the Pymol graphics system
and highlighted as a sphere (Figure 3). Overall, processing with a combination of B-cell
epitope scanning and peptide analysis resulted in the recognition of potential linear and
discontinuous epitopes as involved in the epitope formation with slight variation in the
Wuhan isolate. Showing distinct variation, England and USA isolates exhibited a few
similarities and differences between each other. Surprisingly, Indian andSouth African
variants shared close similarities between each other. It is worth mentioning that the
top-ranked B-cell epitopes ofall the mutant forms possessed higher antigenicity than that
of the Wuhan isolate, similar to the predicted T-cell epitope antigenicity patterns.

Table 5. Discontinuous B-cell epitopes of SARS-CoV variants predicted by IEDB-DiscoTope.

Residue Position Residue Name Contact Number Propensity Score DiscotopeScore

Wuhan Isolate

181 GLY 6 0.026 −0.667

183 GLN 19 1.817 −0.577

444 LYS 9 1.701 0.47

447 GLY 5 1.651 0.886

449 TYR 4 −0.223 −0.667

496 GLY 3 0.343 −0.041

501 ASN 27 3.051 −0.405

679 ASN 15 1.01 −0.831

684 ALA 11 1.663 0.206

1144 GLU 7 0.215 −0.615

1145 LEU 4 −0.092 −0.541

England Isolate

72 GLY 11 0.723 −0.625

75 GLY 10 1.381 0.072

147 LYS 10 1.503 0.18

148 ASN 13 1.34 −0.309

149 ASN 17 1.084 −0.996

152 TRP 14 2.444 0.553

498 GLN 6 0.354 −0.377

499 PRO 9 1.027 −0.126

1142 GLN 7 0.467 −0.392

1144 GLU 3 1.177 0.697

1145 LEU 5 0.608 −0.037

1147 SER 6 0.413 −0.325

1148 PHE 5 0.591 −0.052

USA Isolate

72 GLY 11 0.718 −0.629

75 GLY 10 1.379 0.071
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Table 5. Cont.

Residue Position Residue Name Contact Number Propensity Score DiscotopeScore

147 LYS 10 1.502 0.179

148 ASN 13 1.336 −0.313

150 LYS 10 2.307 0.891

152 TRP 14 2.443 0.552

154 GLU 2 −0.24 −0.442

444 LYS 9 0.883 −0.253

447 GLY 6 0.901 0.107

496 GLY 4 0.289 −0.204

498 GLN 6 1.323 0.481

499 PRO 9 1.995 0.731

501 ASN 24 3.012 −0.095

1141 LEU 3 −0.549 −0.831

1142 GLN 7 0.466 −0.393

1145 LEU 5 0.608 −0.037

1147 SER 6 0.412 −0.325

1148 PHE 5 0.59 −0.053

1149 LYS 5 0.797 0.13

Indian Isolate

147 LYS 10 4.318 −0.682

149 ASN 9 4.399 −0.101

153 MET 18 1.485 −7.515

424 LYS 24 4.315 −7.685

460 ASN 18 2.804 −6.196

461 LEU 17 3.048 −5.452

462 LYS 16 3.219 −4.781

501 TYR 15 1.556 −5.944

563 GLN 11 1.367 −4.133

679 ASN 10 3.455 −1.545

809 PRO 11 4.234 −1.266

1158 ASN 10 4.027 −0.973

1159 HIS 10 4.027 −0.973

1160 THR 8 3.607 −0.393

1161 SER 7 3.308 −0.192

South African Isolate

146 HIS 14 3.276 3.724

147 LYS 11 4.084 −1.416

148 ASN 8 4.194 0.194

149 ASN 9 4.399 −0.101

150 LYS 8 4.194 0.194

151 SER 13 4.108 −2.392

152 TRP 18 3.747 −5.253

409 GLN 20 2.989 −7.011

414 GLN 18 2.979 −6.021

424 LYS 9 4.399 −0.101

498 GLN 21 3.461 −7.039
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Table 5. Cont.

Residue Position Residue Name Contact Number Propensity Score DiscotopeScore

499 PRO 20 3.536 −6.464

501 ASN 15 2.768 −4.732

679 ASN 9 3.115 −1.385

680 SER 9 3.115 −1.385

809 PRO 11 4.234 −1.266

810 SER 13 3.958 −0.542

811 LYS 12 3.646 −2.354

1155 TYR 11 2.84 −2.66

1156 PHE 12 3.55 −2.45

1157 LYS 10 3.353 −1.647

1158 ASN 10 4.027 −0.973

1159 HIS 10 4.027 −0.973

1160 THR 8 3.607 −0.393

1160 THR 8 3.607 −0.393

1161 SER 7 3.308 −0.192

Figure 3. Representations of potential discontinuous B-cell epitopic regions mapped onto the spike protein of the SARS-
CoV-2 variants: (A) Wuhan, (B) England, (C) USA, (D) India, and (E) South Africahighlighted as spheres.

2.4. Analysis of Population Coverage

HLA composition of a protein varies with diverse ethnic groups and geographical
regions aroundthe world. As we focused to compare the epitopes predicted in the five
SARS-CoV-2 isolates taken for the study, population coverage was taken into account to
evaluate the differences in the candidate epitopes of each variant among diverse popula-
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tions. In this study, all the potential epitopes identified and their binding MHC I alleles of
Wuhan, England, the USA, Indian, and South African isolateswere analyzed for their global
population coverage including regions/countries, namely South Asia, India, England,
France, Italy, Sweden, United States, and South Africa. The results revealed that all the
epitopes exhibited a significant population coverage in different geographic regions of the
world, with negligible differences in each of the variants studied.

The allele distribution of the epitopes identified from the Wuhan isolate covered
93.65% of the global population, while the South Asian population coverage was 88.23%
with 80.22% coverage exclusively for the Indian population in particular (Figure 4A). The
population coverage for England population was discovered to be 97.08%, and that of other
European countries such as France, Italy, and Sweden for the selected alleles was 96.42%,
95.12%,and 92.66% respectively. Similarly, the global population coverage of the alleles
that hada binding affinity with the epitopes of the England isolate was 94.15% (Figure 4B).
The highest population coverage of 97.62% was observed for the England population
as expected. While the South Asian and exclusive Indian population for the same was
predicted to be 92.78% and 89.3%, the population of France, Italy, and Sweden showed
coverage of 97.36%, 95.84%, and 96.12% respectively. The coverage in the USA population
for the alleles of T-cell epitopes identified within Wuhan and England was 93.76%.

In the USA isolate, HLA-alleles of the selected epitopes covered 91.98% of the global
population (Figure 4C). The HLA alleles of the Indian isolate covered97.98% of the global
population, with an Indian population coverage of 85.34%. The HLA alleles of the Indian
isolate showed the maximum coverage for England and France populations (Figure 4D).
Similarly, the global population coverage of the alleles binding with the epitopes of the
South African variant was close (97.48%) to that of Indian epitope-alleles (Figure 4E). The
population coverage patterns between the epitope-alleles of Indian and South African
isolates were similar to each other. The highest population coverage, 98.82%, was noticed
for the alleles covered in the population of Sweden, which was closely followed by Eng-
land, France, the United States, and Italy, with population coverage of 99.72%, 99.21%,
98.07%, and 97.97%, respectively. The exclusive Indian population showed remarkably
low distribution (85%) for the selected alleles. Furthermore, 95.97% population coverage
was predicted for the USA isolate specific allele distribution among England population
(Table 6). Among all the five variants, the allele distribution among the Indian and South
African populations for the epitopes was exceptionally similar, unlike the rest. While the
alleles specific to the epitopes of Wuhan and the USA variants were found to be somewhat
similar (87.07% and 83.62%), the same population showed 96.49% for the alleles distribu-
tion of the epitopes recognized within the England strain, indicating the diversity of the
MHC I and II allele distribution in different ethnic groups (Supplementary Figures S2–S6).

Table 6. Population coverage and the distribution of immunogenic T-cell epitopes of SARS-CoV-2
variants.

Epitope Country Population Coverage

Wuhan Strain

ILDITPCSF
STQDLFLPF

VVFLHVTYV
GVVFLHVTY
WTAGAAAYY
GAAAYYVGY

World 93.65%

South Asia 88.23%

India 80.22%

England 97.08%

France 96.42%

Italy 95.12%

Sweden 92.66%

United States 95.3

South Africa 87.07%
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Table 6. Cont.

Epitope Country Population Coverage

England Isolate

NGVEGFNCY
QYIKWPWYI

WTAGAAAYY
VYAWNRKRI
GVYFASTEK
SPRRARSVA
PYRVVVLSF

World 94.15%

South Asia 92.78%

India 89.3%

England 97.62%

France 97.36%

Italy 95.84%

Sweden 96.12%

United States 93.76%

South Africa 96.49%

USA Isolate

VVFLHVTYV
IAIVMVTIM
LPFNDGVYF

IAIPTNFTI

World 91.98%

South Asia 81.6%

India 73.8%

England 95.97%

France 96.2%

Italy 93.59%

Sweden 98.77%

United States 94.9%

South Africa 83.62%

Indian Isolate

FTISVTTEI
VVFLHVTYV
YQPYRVVVL
YSKHTPINL

WTAGAAAYY
LPFNDGVYF
GAAAYYVGY

World 97.98%

South Asia 91.95%

India 85.34%

England 99.71%

France 99.21%

Italy 97.97%

Sweden 99.82%

United States 98.07%

South Africa 90.51%

South African Isolate

IAIPINFTI
FTISVTTEI

YQPYRVVVL
WTAGAAAYY
YSKHTPINL
GVVFLHVTY
LPFNDGVYF

World 97.48%

South Asia 91.95%

India 85.34%

England 99.71%

France 99.21%

Italy 97.97%

Sweden 99.82%

United States 98.07%

South Africa 90.51%
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Figure 4. Graphs depicting the world population coverage of the spike glycoprotein of SARS-CoV-2 variants isolated from
(A) Wuhan, China, (B) England, (C) the USA, (D) India, and (E) South Africa to the MHC I and II alleles combined.

2.5. Binding Interactions of the Vaccine Peptides and the HLA Alleles

We generated 14 models from the protein–protein docking between the top-ranked indi-
vidual epitopes of each variant and their top binding MHC I alleles. The docked complexes
generated by PatchDock were further refined using the recommended FireDock server
embedded in the PatchDock server. Final models were selected based on the global energy
scores, which were computed from individual scores of other interaction parameters such as
attractive Vander Waals, repulsive Vander Waals, atomic contact energy, and hydrogen bond-
ing interactions (Table 7). In the Wuhan isolate, peptides ‘GVVFLHVTY ‘(−66.28 kcal/mol)
and ‘ILDITPCSF’ (−58.28 kcal/mol) showed a strong binding affinity towards the alleles
HLA-B*35:01 and HLA-B*51:01, respectively. We also observed significant interactions be-
tween the epitopes ‘WTAGAAAYY’ (−54.98 kcal/mol), ‘GAAAYYVGY’ (−51.90 kcal/mol),
‘VVFLHVTYV’ (−51.05 kcal/mol), and ‘STQDLFLPF’ (−44.18 kcal/mol) with their corre-
sponding alleles HLA-B*35:01, HLA-A*30:02, HLA-B*51:01, and HLA-A*32:01, respec-
tively (Supplementary Figure S7A–D). Among these epitopes, ‘VVFLHVTYV’, ‘WTA-
GAAAYY’, ‘GAAAYYVGY’, and ‘ILDITPCSF’ were found to be common in the USA iso-
late. In the England variant, epitopes ‘PYRVVVLSF’ (−65.01 kcal/mol) and ‘QYIKWPWYI’
(−57.28 kcal/mol) exhibited higher affinity with the interacting allele HLA-A*23:01, fol-
lowed by ‘VYAWNRKRI’ (−46.75 kcal/mol) and ‘NGVEGFNCY’ (−46.33 kcal/mol), which
revealed strong binding interactions with the alleles HLA-A*23:01 and HLA-B*35:01, respec-
tively (Supplementary Figure S7E–H). Similarly, the epitopes ‘YQPYRVVVL’, ‘YSKHTPINL’,
and ‘FTISVTTEI’ of the Indian variant showed strong binding interactions with the alleles
HLA-B*08:01, HLA-A*68:02, and HLA-A*68:02, respectively. Strong binding interactions
were observed between the epitopes of South African isolate such as ‘IAIPINFTI’, ‘FTISVT-
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TEI’, and ‘QLTPTWRVY’ and the alleles HLA-B*51:01, HLA-B*51:01, and HLA-B*35:01,
respectively (Supplementary Figure S8). We noticed that all the epitopes recognized in the
England variant were unique to the specific isolate. Similarly, in the USA isolate, the epitope
‘IAIVMVTIM’ which was unique to the USA variant, possessed strong binding interaction
with HLA-B*51:01.

Table 7. Binding interactions of the best T-cell epitopes of the SARS-CoV-2 variants with their MHC I alleles.

S.No. Potential Peptide for Vaccine Binding Alleles Attractive
vdW

Repulsive
vdW ACE HB Global Energy

Wuhan Isolate

1. ILDITPCSF

HLA-B*51:01 −28.64 7.59 −9.54 −2.23 −58.28

HLA-B*08:01 −24.90 5.90 −8.27 −3.92 −50.66

HLA-A*02:06 −24.14 10.32 −9.30 −2.48 −49.01

2. STQDLFLPF

HLA-A*32:01 −19.73 14.97 −11.66 −1.83 −44.18

HLA-B*57:01 −29.53 21.42 −3.31 −3.03 −40.05

HLA-B*15:01 −3.50 0.00 0.36 0.00 −8.53

3. VVFLHVTYV
HLA-B*51:01 −29.19 10.45 −1.43 −3.35 −51.05

HLA-A*02:03 −18.26 2.58 −9.10 −4.13 −42.85

4. GVVFLHVTY

HLA-B*35:01 −36.19 7.98 −8.72 −1.99 −66.28

HLA-A*01:01 −32.13 6.50 −7.59 −2.76 −55.83

HLA-B*15:01 −9.36 2.62 0.96 −0.20 −3.98

5. WTAGAAAYY
HLA-B*35:01 −27.77 4.34 −2.83 −3.28 −54.98

HLA-A*01:01 −30.65 13.59 −7.64 −4.80 −53.52

6. GAAAYYVGY
HLA-A*30:02 −25.83 3.78 −4.26 −4.52 −51.90

HLA-B*15:01 −20.22 7.80 −0.58 −0.99 −24.32

England Isolate

7. QYIKWPWYI
HLA-A*23:01 −25.46 8.91 −13.16 −0.95 −57.28

HLA-C*06:02 −29.14 16.66 −4.45 −3.18 −50.48

8. GVYFASTEK HLA-A*30:01 −21.73 4.79 2.52 −3.41 −28.36

9. NGVEGFNCY HLA-B*35:01 −37.69 6.42 2.02 −2.25 −46.33

10. PYRVVVLSF
HLA-A*23:01 −25.49 9.71 −11.33 −2.48 −65.01

HLA-C*14:02 −25.48 5.04 −1.94 −0.95 −41.16

11. VYAWNRKRI HLA-A*23:01 −22.44 4.18 −4.02 −3.34 −46.75

12. SPRRARSVA HLA-B*07:02 −25.14 8.95 3.94 −1.97 −18.83

USA Isolate

13. IAIVMVTIM HLA-B*51:01 −30.57 25.38 −16.59 −0.98 −59.86

14. LPFNDGVYF HLA-B*35:01 −35.26 47.18 −3.06 −3.78 −30.68

Indian Isolate

15. YQPYRVVVL HLA-B*08:01 −36.00 10.43 −7.97 −2.46 −62.85

16. YSKHTPINL HLA-A*68:02 −22.93 6.44 −10.43 −2.56 −59.11

17. FTISVTTEI HLA-A*68:02 −29.71 11.47 −7.29 −2.07 −53.01

18. WTAGAAAYY HLA-A*26:01 −31.19 8.71 −0.08 −1.66 −44.75

19. GAAAYYVGY HLA-A*30:02 −19.74 5.30 −9.59 −2.21 −43.65

South African Isolate

20. IAIPINFTI HLA-B*51:01 −22.76 6.82 −13.73 −0.80 −54.96

21. FTISVTTEI HLA-B*51:01 −22.68 11.47 −7.29 −7.29 −53.01

22. QLTPTWRVY HLA-B*35:01 −19.09 8.37 −10.39 0.00 −44.39

23. YSKHTPINL HLA-B*57:01 −24.90 3.82 −1.65 −1.65 −41.72

24. YQPYRVVVL HLA-B*08:01 −21.47 10.07 −9.41 −0.98 −38.80
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When we subjected the complex to MD simulations and analyzed the physical move-
ments, it was revealed that the tightly bound epitope/HLA complexes of the five SARS-
CoV-2 isolates remained stable till 6000 ps. The protein–peptide complex of the Wuhan
strain fluctuated and showed the maximum deviation with the RMSD value up to 0.7 nm
after 7 ns. complexes with the least binding energies. The side chains of the peptide were
deeply buried into the peptide-binding pocket of the macromolecules. Throughout the
MD simulation, it was observed that the receptor was stable and the binding antigens
of the England and Indian isolates remained attached without any change, unlike the
antigen-antibody complex of other isolates. The root-mean-square deviation (RMSD) value
determined that the complexes of the England and Indian variants showed the least devi-
ation, unlike those of the other two variants (Figure 5A). Although the docked complex
of the USA isolate showed relatively high fluctuation after 6 ns, it was observed to be
gradually stabilized at 0.5 nm RSMD. Lastly, the binding conformation of the South African
variant displayed moderate deviation between 8000 and 10,000 ps, after which it was
consistently stabilized. Similarly, the root-mean-square fluctuation (RMSF) of each residue
within the docked complex of the antigen from the England variant was stable, followed
by Indian, South African, and USA isolates, respectively. Noticeably, the protein-peptide
complex of the Wuhan strain showed relatively more fluctuations with higher RMSF values
than the other variants (Figure 5B).

Figure 5. RMSD and RMSF plots generated for the epitope-HLA complexes of Wuhan, England, USA, Indian, and South
African variants. (A) represents the unstable RMSD values of the complex from England, India, South Africa, USA, and the
Wuhan isolates in green, black, brown, red, and blue respectively.The epitope/HLA combinations of England and Indian
strains were found to be more stable than that of others. (B) represents the fluctuation patterns of the protein–peptide
complexes of all five SARS-CoV-2 variants analyzed with their RMSF values given in nm. The amino acid residues of
Wuhan strain displayed a maximum deviation in the fluctuation map up to 0.8 nm.
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3. Discussion

SARS-CoV-2 undergoes rapid evolution leading to the emergence of different lineages
and many variants of the pathogen, which have been identified from different parts of the
world since its outbreak. Certain mutations reported have been associated with higher
transmission rates, complex clinical presentation, and severity of the disease condition,
while others didnot. D614G substitution caused by the SNV (A23403G) in the spike
protein of a particular SARS-CoV-2 lineage was identified in early February 2020 [13,19].
Another variant, referred to as ‘variant of concern (VOC) 1 December 2020’, showing N501Y
mutation in the spike protein and associated with increased infectivity and transmissibility
was recorded in South East England initially in December 2020, and the whole of United
Kingdom later on. It was discovered that the characteristics of the same N501Y mutation
noticed in the British strain were different from that of the South African variant, which
evolved simultaneously [19].These signature mutations in the spike protein have caused a
resurgence in different geographical regions including India and the USA, which continue
to record a high number of COVID-19 cases on daily basis during the second wave of
COVID-19. Moreover, newly emerged SARS-CoV-2 variants with the mutated spike
gene/protein have been suspected to be moderately or fully resistant to the antibody
response elicited by the current generation of COVID-19 vaccines [20]. Although other
non-structural proteins such as nsp3, 3CL-pro, and nsp10 have been associated with
viral adhering and host invasion, none of them has been experimentally investigated to
understand the immunogenicity of the pathogen as well as for the vaccine development [21].
As a spike is a heavily glycosylated protein, investigating the impact of the same on
infectivity and immunomodulatory effects is of unquestionable importance [22]. Hence,
this study evaluated the immunogenic profiles of the spike protein in the SARS-CoV-2
variants isolated from England, South Africa, the USA, and India in comparison with the
Wuhan reference strain.

Our study methodology was based on immunological ‘lock and key theory’, wherein
our immuno-genetic makeup is the lock and the SARS-CoV-2 variants are the key [10].
Our approach was independent of comorbidities and therefore assesses the contribution
of SARS-CoV-2 variants exclusivelyin terms of antigenicity, immunogenicity, and HLA
allele binding affinity makeup. Hence, we have developed a novel method to evaluate
the number of potential epitopes with increased antigenicity, immunogenicity, and HLA
combinations in the spike protein of the chosen SARS-CoV-2 variants This method has
been validated by similar approaches employed for designing T-cell-based peptide vaccine
in the past [13]. The immune response against intracellular pathogens can be both humoral
and cell-mediated [14,15,23]. For the first time, we have provided a piece of evidence that
T-cell immunity is a more major contributor against SARS-CoV-2 than humoral immunity.
Although the comparison of S glycoprotein epitopes gives the probability of immunogenic
potential and the infection rate of the SARS-CoV-2, we are aware that comparing the whole
genome/proteome sequences of the virus might be beneficial in gaining better insight into
the varying severity of the variants among different ethnic groups. Apart from predicting
immunogenicity, our approach highlights that peptide-based vaccines may prevent side
effects by removing toxic peptides found in whole protein [24]. Previous investigations
show that recognition of multiple epitopes induces a strong immunogenic response as they
increase antibody density [25] and T-cell response [26].

Physicochemical properties predicted for the protein sequences revealed that the
mutations in the spike protein of the recently evolved variants have enhanced its structural
stability, which in turn promote its efficient binding with the ACE-II receptors as reported
previously [27]. Although the conservation of the selected proteins at the majority of the
sites in the four recently emerged variants indicated the cross-protection ability of their
epitopes, sequence variability at a few sites in those protein sequences, as represented in
the protein variability test results, suggests that the antigenic and immunogenic properties
of the protein might be altered in the latest variants. It is suggested that these similarities
and differences between the spike proteins of all the variants compared might be due to
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the similarities and differences in the organization of the continuously evolving genome
and so the protein-coding control mechanisms [28]. Molecular phylogenetic analysis by the
maximum likelihood method traced out the close ancestral relationship shared between all
the SARS-CoV-2 variants as they clustered together in the same clade. The orientation of
Bat-Coronavirus immediately next to clade I indicated the sufficient divergence existing
between them due to the accumulation of single nucleotide mutations. Our results were
in agreement with previous reports [29]. Similarly, the relationship between SARS-CoV-1
and SARS-Cov-2 was also evident, as a few genetic variations exist between their genomes
with a sequence homology of 85% as mentioned earlier [30].

In the present study, immunoinformatics-based approaches that we exploited pre-
dicted potential T-cell epitopes, revealing that certain T-cell epitopes among them were
dominantly antigenic, immunogenic, highly conserved, and common in all fiveSARS-CoV-
2 isolates studied. However, each variant displayed a few unique epitope candidates as
well. In congruence with the previous research findings, a few of the potential epitopes we
predicted in our study have been reported in the spike protein of the Wuhan strain [31,32].
Since B lymphocytes are responsible for secreting specific antibodies for neutralizing spe-
cific viral particles after invading the host, the full-length sequence of the spike protein
of all the three SARS-CoV-2 variants was scanned for putative B-cell epitopes using the
experimentally validated data in IEDB using Bepipred linear, Ellipro, and DiscoTope. Our
approach has identified overlapping regions of B-cell and T-cell epitopes from the spike
protein of the recently evolved SARS-CoV-2 variants, particularly at those sites where those
epitopes are 100% identical to the experimentally validated epitopes of the pathogen. This
conservation pattern has been observed by other research groups in their epitope prediction
study on SARS-CoV-2 proteins [31]. In the spike protein sequences we analyzed, 9mer
peptides were mostly recognized by HLA proteins from MHC I, whereas longer epitopes
tended to bind MHC class II HLA protein molecules with higher affinities. This observation
was in line with the known canonical specifications as reported earlier [31]. Apart from
this, population coverage analysis by HLAs exhibited 92 to 97% of the global population
for all the predicted T-cell epitopes, with strong binding affinities to MHC I and II, as
evidenced from docking and simulation analysis. Furthermore, all the top-scoring T- and
B-cell epitopes were predicted to be non-allergic, non-toxic, and of low risk of triggering
autoimmune responses, which highlights their immunogenic potential to become vaccine
candidates against these latest variants. Immuno-dominant CTL epitopes successfully
present themselves depending on their specific binding affinity with MHC I molecules
via hydrogen bonds and salt bridge interactions for eliciting antibody response in the
host system [33]. After the docked complexes were refined, the interactions between the
top-ranked CTL epitopes from each variant and their corresponding MHC I alleles were
examined. We noticed multiple hydrogen bond interactions in the complexes. When we
analyzed the stability of the protein–protein complex representatives, we found that the
potential epitope of the Wuhan strain and its MHC I allele complex was lessstable than
that of the other four complexes. On the other hand, the binding confirmations of mutant
variants isolated from England, India, South Africa, and the USA were comparatively more
stable. From the simulation analysis, it was evident thatmutations in the regions spanning
theepitope could bring about a conformational change, which could be responsible for
increasing their binding affinity in the formation of rigid complexes.

Overall, the combination of a high number of the best CTL epitopes with several
HLA combinations, relatively low antigenicity, and high immunogenicity in the Wuhan
spike protein demonstrated its poor neutralization ability. We believe that this reduced
neutralization ability could be responsible for increased severity with prolonged symptoms,
which in turn might have an impact on the cytokine storms that were previously observed in
several COVID-19 cases [34,35]. In contrast, our results showed that the epitopes of England,
USA, Indian, and South African variants possessed increased antigenicity, moderate to
high immunogenicity, moderate to high T- and B-cell stimulation, and strong host immune
system interactions, which in turn might be associated with less severity and mortality
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rates. However, accumulating mutations in the variants at a high rate could promote
their transmissibility rates with increased viremia as evidenced by the latest SARS-CoV-2
reports [36,37]. On the other hand, it is also possible that the new mutants/variants would
be able to mitigate this host immune response by evolving HLA-specific mutations like
SNVs, cluster-specific reversions, amino acid substitutions, etc. As a result, they could attain
the ability to escape the host immune defense, gaining increased severity and resistance
against the current vaccines and therapeutic agents [38,39]. Therefore, our data collaterally
suggested that the rapid evolution of the surface protein in the SARS-CoV-2 virus has
influenced its viral antigenicity, immunogenicity, and epitope/HLA combinations, which
could significantly reduce the higher viral load in the clinical manifestations during the
recovery process. Furthermore, we suggest that the rapid evolution of the pathogen with
the above-mentioned attributes determines an increased epidemiological fitness of the
newly evolving SARS-CoV-2 variants [40,41]. Extensive experimental investigations on
this might prove to be useful in confirming the biological mechanisms inferred here above.

4. Materials and Methods
4.1. Collection of Sequence Dataset

We collected the Spike glycoprotein of five different SARS-CoV-2 isolates from five
different countries based on the mutations recorded in various geographical regions from
the start of the pandemic until January 2021. To begin with, we collected the whole genome
sequences of SARS-CoV-2 isolates with N501Y, A570D, D614G, S982A, A262T, E484K, and
K417Nmutations from the GISAID repository(https://www.gisaid.org/, accessed on 3
December 2020) deposited from England (accession no EPI_ISL_655762), India (accession no
EPI_ISL_1708422), and South Africa (accession no EPI_ISL_1706561) during November and
December 2020. The Spike gene sequence was extracted at positions from 21,563 to 25,384 in
the genome sequences and translated into S glycoprotein in one of the frames using BioEdit.
Since the S glycoprotein of the isolates from Wuhan, China, and the United States deposited
in January 2021 were available in NCBI, the protein sequences were directly retrieved
from the NCBI-Protein database (https://www.ncbi.nlm.nih.gov/protein/, accessed on 4
January 2021) in FastA format using the accession numbers NC_045512.2 and MW494124.1.
Since each isolate that was chosen showed 97 to 100% sequence identity with the sequence
of other isolates reported to GISAID during the same timeframe from the same geographical
area, this study used a single representative sequence of each variant.

4.2. Sequence Variability Analysis of Spike Glycoprotein

To determine the level of the conservancy, all the directly retrieved and translated
spike glycoprotein sequences were subjected to variability analysis. A multiple sequence
alignment (MSA) was performed for the sequences using the BioEdit-ClustalW multiple
alignment program. The absolute site variability in the MSA created was ascertained using
Protein Variability Server (PVS) (http://imed.med.ucm.es/PVS/, accessed on 5 January
2021). Among the different variability metrics that were employed by PVS, we identified
the conservative fragments in the multiple sequence alignment by plotting the variability.
Additionally, the Expasy-Protparam tool (https://web.expasy.org/protparam/, accessed
on 5 January 2021) allowed us to qualitatively determine the protein by computing several
physicochemical parameters such as molecular weight, theoretical PI, instability index,
half-life, aliphatic index, and grand average of hydropathicity (GRAVY) for the selected
B-cell epitopes.

4.3. Phylogenetic Tree Construction

The evolutionary relationship of five different SARS-CoV-2 isolates from China, Eng-
land, the United States, India, and South Africa was analyzed using Molecular Evolu-
tionary Genetics Analysis X (MEGA X). Whole genome sequences of the selected isolates
were aligned initially via the MEGA-MUSCLE program using the default parameters,
and the alignment was exported in MEGA and FastA format. The genome sequences of

https://www.gisaid.org/
https://www.ncbi.nlm.nih.gov/protein/
http://imed.med.ucm.es/PVS/
https://web.expasy.org/protparam/
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SARS-CoV-1 (MK062180.1) and Middle-East Respiratory Syndrome virus (MW086530.1)
retrieved from the NCBI-Nucleotide database were used as a reference for comparing
with the above-mentioned SARS-CoV-2 virus genomes.Whole-genome sequence of Bat
coronavirus (MW251308.1) was used as an outgroup for the tree construction [26]. A
maximum-likelihood tree was constructed via MEGA X (https://www.megasoftware.net/,
accessed on 8 January 2021) with the bootstrap value set to 1000 and Kimura-2 chosen as
the tree drawing method.

4.4. Prediction of Potential Cytotoxic and Helper T Lymphocyte Epitopes on Spike Glycoprotein of
SARS-CoV-2

To understand the CTL and HTL-mediated host immune responses, T-cell epitopes
with MHC-I and MHC-II binding affinities were predicted for the highly antigenic S
glycoprotein of each variant using NetCTL 1.2 server (https://services.healthtech.dtu.dk/,
accessed on 11 January 2021). When the protein sequence was given as input, 9mer CTL
epitopes were predicted from the query sequences for all the MHC-I supertypes. This server
works based on the training dataset combining the prediction of MHC-I binding peptides,
proteasomal C-terminal cleavage, and transporter associated with antigen processing
aspects. Only those epitopes with a combined score greater than 1.00 were selected as CTL
epitopes. To be stringent in the filtering process, this threshold was adjusted to 1.00, unlike
in the previously reported experiments [42]. From the NetCTL output, the antigenicity of
unique epitopes was checked for using VaxiJen v2.0 server (http://www.ddg-pharmfac.
net/vaxijen/VaxiJen/VaxiJen.html, accessed on 13 January 2020) with 0.5 threshold value,
followed by MHC-I binding immunogenicity in Immune Epitope Design Database (IEDB)
(http://tools.iedb.org/immunogenicity/, accessed on 15 January 2021). The calculated
immunogenicity scores indicates the probability of eliciting an immune response in the host.
Epitopes with immunogenicity scores greater than zero were selected as positive epitopes.

MHC-I alleles interacting with each of the unique immunogenic peptides were pre-
dicted by the IEDB-MHCI prediction server (http://tools.iedb.org/mhci/, accessed on 18
January 2020). The cut-off value of IC50 was set to less than 200nM [43]. The predicted
epitopes were ranked based on lower percentile rank scores, which means the lower the
percentile rank score, the higher the binding affinity for the HTL receptors. All those
MHC-I alleles with percentile rank less than 1.5 were selected for each unique peptide.
Similarly, the helper T lymphocyte epitopes of 15mer length were predicted for all the S pro-
tein sequences using IEDB MHC-II binding prediction tool (http://tools.iedb.org/mhcii/,
accessed on 20 January 2021), and those alleles with a percentile rank less than 1.5 were
selected for further evaluation, as they were considered to be promising alleles with high
binding affinity with their corresponding epitopes.

4.5. B Lymphocyte Epitope Prediction in SARS-CoV-2 S Protein

With the help of online prediction servers, we forecasted the B cell epitopes on the S
glycoprotein sequence of the SARS-CoV-2 variants under study. IEDB-Bepipred Linear
Epitope Prediction 2.0 method (http://tools.iedb.org/bcell/, accessed on 23 January 2021),
which individually accepted the sequence of the S protein of each variant, was chosen for
the prediction of linear epitopes. With 0.5 as the specificity threshold value [35], peptides
of varying lengths ranging from 1 to 70 were forecasted as linear epitopes. This prediction
method works based on the Random Forest algorithm by correlating the key parameters
of the protein such as hydrophilicity, flexibility, surface accessibility, turns, exposed turns,
polarity, and propensities of the peptides and thus classifying a particular fragment of
the amino acid sequence as potential epitopes. Additionally, we employed IEDB-Ellipro
(http://tools.iedb.org/ellipro/, accessed on 25 January 2021) to identify conformational
B cell epitopes using the homology-modeled three-dimensional structure of the surface
glycoprotein of each variant with a minimum score value of 0.7 and a maximum distance
of 6 Å. Ellipro also predicted discontinuous epitopes on the protein sequences submitted.
Those epitopes predicted as potential linear epitopes with a high VaxiJen score were
selected as the best B-cell linear epitopes. Discontinuous epitopes are increasingly explicit
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and have more dominant attributes over linear epitopes [25,26]; hence, discontinuous
epitopes were additionally forecasted for the S protein of the pathogen isolated from
different countries using the IEDB-DiscoTope server. A threshold value of −1.0 was set for
selecting epitopes with high specificity and sensitivity. Only those epitopes that fell within
the threshold and were oriented on the outer surface of the protein structure were chosen
as the best discontinuous B-cell epitopes while discarding the intracellular epitopes above
the threshold value.

4.6. Prediction of Protective Antigenic Epitopes

For determining the allergenicity of the identified B and T-cell epitopes, AllerTop
1.0 server was used (http://www.ddg-pharmfac.net/allertop/, accessed on 27 January
2021).ToxinPred web server was utilized to examine the toxicity of the identified T-cell epi-
topes (https://webs.iiitd.edu.in/raghava/toxinpred/index.html, accessed on 27 February
2021). ToxinPred works based on the Support Vector Machine (SVM) algorithm for classi-
fying the toxic and non-toxic peptides depending on their parameters such as mutations,
hydropathicity, hydrophilicity, hydrophobicity, and charge.

4.7. Conservancy Analysis

The conservation of the identified epitopes across diverse antigens was checked
for their conservancy levels using the IEDB-Epitope Conservancy Analysis tool (http:
//tools.iedb.org/conservancy/, accessed on 28 January 2021) with a sequence identity
threshold of 90 percent. The degree of conservancy was determined based on the protein
sequence set of SARS-CoV-1 Urbani strain; Wuhan, England, and USA isolates of SARS-
CoV-2; and Bat-Coronavirus and reference comprising the epitopes at a specific sequence
identity level.

4.8. Population Coverage Analysis

Population coverage score was individually calculated against the population of the
whole world, South East Asia, United Kingdom, Italy, France, the United States, and
South Africa to compare the similarities and differences among those promising T-cell
and B-cell epitope candidates across various countries. Due to the difference in the MHC
restriction of T-cell response, identifying highly immunogenic peptides from different
isolates with diverse HLA binding specificities represents more population coverage in the
defined geographical regions. Population coverage for individually qualified T-cell epitope
candidates and their binding HLA alleles was assessed by the IEDB Population Coverage
Analysis tool (http://tools.iedb.org/population/, accessed on 28 January 2021).

4.9. Docking and Simulation

To evaluate the binding affinity between the predicted epitopes selected from each
SARS-CoV-2 variant and their corresponding MHC alleles, a molecular docking and
simulation study was performed using the in silico tools. For this purpose, the crystal
structure of the HLA protein molecules, namely HLA-A*02:06 (3OXR), HLA-B*51:01 (1E27),
HLA-B*08:01 (1M05), HLA-A*32:01 (6AT5), HLA-B*57:01 (5VUF), HLA-B*15:01 (6VB3),
HLA-A*02:03 (3OX8), HLA-A*01:01(4NQX), HLA-B*35:01 (4LNR), HLA-C*06:02 (5W6A),
HLA-A*30:01 (6J1W), HLA-B*07:02 (6AT5), and HLA-A*68:02 (4I48), were retrieved from
the RSCB Protein Data Bank (PDB) and prepared for further analysis. For those HLA
alleles, namely HLA-A*30:02 and HLA-A*23:01, whose crystal three-dimensional structures
were not available in PDB, their molecular sequences were obtained from IMGT/HLA
database, and eventually their tertiary structures were modeled using SWISS-MODEL
(https://swissmodel.expasy.org/interactive, accessed on 1 February 2021). Similarly, the
selected epitopes were modelled using PEP-FOLD server (https://bioserv.rpbs.univ-paris-
diderot.fr/services/PEP-FOLD/, accessed on 1 February 2021). Protein–protein docking
was performed for the peptide structures and the HLA alleles using PatchDock server
(https://bioinfo3d.cs.tau.ac.il/PatchDock/php.php, accessed on 1 February 2021).
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Finally, based on their binding energy, for top-scoring protein–protein complexes,
molecular dynamics simulation was carried out with GROMACS-2020 (https://manual.
gromacs.org/, accessed on 5 February 2021) for 15,000 ps using OPLS force field. We
selected TIP3P water model for solvating complexes followed by the addition of ions to
neutralize the solvent system. Periodic boundary conditions were set up for orienting
the protein–peptide complex. Energy minimization of each system was performed by
the steepest descent approach with a tolerance of 1000 kJ/mol/nm. Equilibration of the
system was done employingNVT and NPT ensembles with the snapshot interval set to
100 ps. The trajectories were set to be generated every 2 fs and save every 2 ps. All
of the trajectories were concatenated to calculate and plot root mean square deviation
(RMSD), root mean square fluctuation (RMSF) data, and the protein–protein complexes
were analyzed using xmgrace.

5. Conclusions

We have attempted to address the raising concerns about the impact of the accumu-
lating mutations in the spike protein of the SARS-CoV-2 variants on their immunogenic
potential in driving host–pathogen interactions, the severity of the disease conditions, and
the epidemiological fitness by applying the fundamental immunology principles while
carrying out in silico simulations.Taken together, there exists a considerable difference
between the antigenicity, immunogenicity, and the number of potential epitope/HLA com-
binations between the newly emerged SARS-CoV-2 variants. Our results corroboratively
suggestthat the Wuhan spike protein possesseda higher number of T-cell epitopes with
reduced antigenicity and increased immunogenicity, which might lead to increased severity
of the disease condition. Nevertheless, the predicted T-cell epitopes disclosed increased
antigenicity and moderate to high immunogenic potential with best epitope/HLA com-
binations in the British, the USA, Indian, and South African strains, making them less
virulent and dominantly circulating variant during the current pandemic trends. Therefore,
we suggest that the emerging virus strains could be weaker than the original COVID-19
strain, having more transmitting capacity. Alternatively, the emergence of variants could
diminish the host immune response by evolving HLA-specific escape mutations, becoming
more lethal at a population level. These immunogenic differences that arise among the
succeeding variants of SARS-CoV-2 might interfere with the neutralizing activity of the
current generation vaccines.

Further, this study highlights that multiple peptides predicted from new variants
may be useful to tailor the current vaccines against the latest variants as they have shown
worldwide coverage. Nonetheless, further experimental validations are required to con-
firm the implications of the immunomodulatory effects of the predicted T- and B-cell
epitopes among the newly emerged variants before they could be used for controlling
the COVID-19 infection caused by the latest descendants of SARS-CoV-2 through the
generation of effective immune response and long-term memory with the help ofproperly
tailored vaccines.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/antibiotics10050535/s1, Figure S1: Variability Analysis Plot, Figures S2–S6: Population
Coverage Analysis, Figure S7: Protein-Peptide docking interaction site analysis, Figure S8: Protein-
Peptide docking interaction site analysis, Table S1: Conserved/Variabile regions in sequences,
Table S2: Potential CTL epitopes identified in each variant studied and Table S3: Predicted B-cell
linear epitopes.
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