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Abstract

The Vi capsular polysaccharide is a virulence-associated factor expressed by Salmonella enterica serotype Typhi but absent
from virtually all other Salmonella serotypes. In order to study this determinant in vivo, we characterised a Vi-positive S.
Typhimurium (C5.507 Vi+), harbouring the Salmonella pathogenicity island (SPI)-7, which encodes the Vi locus. S.
Typhimurium C5.507 Vi+ colonised and persisted in mice at similar levels compared to the parent strain, S. Typhimurium C5.
However, the innate immune response to infection with C5.507 Vi+ and SGB1, an isogenic derivative not expressing Vi,
differed markedly. Infection with C5.507 Vi+ resulted in a significant reduction in cellular trafficking of innate immune cells,
including PMN and NK cells, compared to SGB1 Vi2 infected animals. C5.507 Vi+ infection stimulated reduced numbers of
TNF-a, MIP-2 and perforin producing cells compared to SGB1 Vi2. The modulating effect associated with Vi was not
observed in MyD882/2 and was reduced in TLR42/2 mice. The presence of the Vi capsule also correlated with induction of
the anti-inflammatory cytokine IL-10 in vivo, a factor that impacted on chemotaxis and the activation of immune cells in
vitro.
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Introduction

The genus Salmonella comprises serotypes with a range of host

adaptation, and spectrum of disease syndromes ranging from self-

limiting gastroenteritis, bacteraemia and typhoid fever. The

outcome of the host-pathogen interaction is dependent on the

combination of the host species, host immune status and the

repertoire of virulence factors encoded in the genome of the

Salmonella pathogen. Typhoid fever is a systemic disease caused by

Salmonella enterica serovar Typhi (S. Typhi), a serotype that is highly

host-adapted to the human host. Typhoid disease is characterised

by a slow onset, protracted fever and a relatively high frequency of

chronic carriage [1]. Although fever is ultimately an important

feature of typhoid, progression of the disease is relatively slow and

septic shock is uncommon. Although pyrogenic cytokines are

elevated in typhoid patients [2,3], they are nonetheless low relative

to patients with sepsis [4,5].

Typhoid fever has been extensively studied using the surrogate

pathogen S. Typhimurium infections in genetically susceptible

mouse. This model has been used successfully to study many

aspects of typhoid fever where S. Typhi and S. Typhimurium

employ common virulence mechanisms. A significant antigenic

difference between S. Typhi and S. Typhimurium is the expression

of the Vi polysaccharide capsule by Typhi. The Vi locus is

encoded on the 134 kb Salmonella pathogenicity island (SPI) 7 that

is not present in non-typhoid Salmonella serotypes such as S.

Typhimurium. The Vi locus, known as viaB, encodes genes

involved in Vi regulation (tviA), biosynthesis (tviBCDE) and export

(vexABCDE) [6]. S. Typhi that express Vi are more virulent than

equivalent Vi-negative S. Typhi in volunteers and Vi is expressed

by virtually all clinical isolates of S. Typhi [7]. TNF-a production

by J774 macrophage-like cells and transcription of GRO-a and IL-

17 genes in the intestine of streptomycin pre-treated mice, bovine

ileal loops and human colonic explants was decreased as a result of

expression of the Vi polysaccharide by S. Typhimurium [8,9].

Furthermore, TNF-a and i-NOS expression in the liver of mice

was similarly decreased in response to expression of Vi [10].

Here we characterise the expression of the Vi polysaccharide

capsule by a S. Typhimurium/S. Typhi genomic chimera in vitro,

and the early innate immune response to infection in the murine

typhoid model. We test the hypothesis that S. Typhimurium

containing the entire SPI-7 region and expressing the Vi

polysaccharide capsule modulates the murine immune response

during the systemic phase of infection resulting in altered immune

cell populations in the spleen and mesenteric lymph nodes and the

intracellular cytokine response. Our results further define the

genetic basis of S. Typhi pathogenesis and host adaptation, and

propose an improved murine typhoid model for developing
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intervention strategies to combat typhoid fever, including Vi

polysaccharide based vaccines.

Results

S. Typhimurium C5507 Vi+ harbours SPI-7 of S. Typhi and
expresses Vi capsular polysaccharide

S. Typhimurium C5.507 Vi+ was constructed by hfr conjugation

between S. Typhi Ty2 and S. Typhimurium C5 during which a

previously undefined region of the chromosome of S. Typhi Ty2

was transferred to S. Typhimurium (Personal Communication,

M.Y. Poppoff). An exconjugant designated C5.507 Vi+, was

agglutinated with anti-Vi antiserum and antiserum raised to the

somatic antigens O4, O5 and O12. This suggested that genes

required for Vi biosynthesis are present in C5.507 Vi+, but that the

S. Typhi-derived genome did not include genes encoding the

determinants of S. Typhi O antigens (O9, O12). To define the

extent of S. Typhi genome we used an Illumina Genome Analyzer

(Illumina, GA) to determine 36 bp single end nucleotide reads

from 300 bp fragments of C5.507 Vi+ genome. We then

determined S. Typhi and S. Typhimurium-specific single nucle-

otide polymorphisms (SNPs) by mapping reads to the complete

genome sequences of S. Typhimurium LT2 and S. Typhi CT18

(Figure 1). As these were single end reads we were unable to

assemble the genome, but nonetheless the S. Typhimurium and S.

Typhi SNP density defined the origin of the chimeric genome

sequence (Figure 1). Most of the uniquely mapped reads of C5.507

Vi+ contained a low SNP frequency when mapped to the LT2

genome and a relatively high SNP frequency when mapped to S.

Typhi CT18 consistent with a relatively small region of the S.

Typhi genome recombining into a predominantly S. Typhimur-

ium C5 background. Two regions of elevated SNP frequency were

identified, when Illumina reads were mapped to the LT2 genome.

The first mapped to the Fels-2 prophage element of LT2, showing

that a related but distinct phage is present in the C5.507 Vi+

genome reflecting the distinct phage repertoire of LT2 and C5. A

second region of high SNP density mapped to the SPI-7 region of

S. Typhi. This spanned the region from the 59 end of the gltP gene

to the intergenic region of STY4805 and STY4806, a total of

298 kb of the S. Typhi genome including the entire SPI-7 genomic

island. This indicated that nearly 7% of the S. Typhi genome was

present in the C5.507 Vi+.

The viaB locus harbours genes necessary for the biosynthesis,

secretion and anchoring of the Vi polysaccharide antigen on the

bacterial cell surface [6]. Surface structures resembling a capsule

were visualised by transmission electron microscopy (TEM) of the

control S. Typhi BRD948 and S. Typhimurium C5.507 Vi+

cultured in rich medium containing 0.09 M NaCl. This structure

was absent from S. Typhimurium C5.507 Vi+ in which the tviB

gene, that encodes an essential component of the biosynthesis

pathway, had been deleted (SGB1) (Figures 2A–C). Furthermore,

SGB1 did not agglutinate with anti-Vi antiserum. The presence of

Vi on the surface of S. Typhi and S. Typhimurium was visualised

and semi-quantified by immunogold labelling with anti-Vi coated

gold beads (Figures 2D–E and Figure 3). S. Typhimurium SGB1

cells were not associated with gold beads, while in contrast C5.507

Vi+ were significantly associated with anti-Vi+ coated gold beads.

In S. Typhi the viaB locus is positively regulated by the two-

component regulator OmpR/EnvZ in response to osmotic

tension. In elevated NaCl concentration the viaB locus is reported

to be down-regulated. [11,12,13]. We quantified immuno-gold

labelling with anti-Vi antibody following culture at 0.09 M and

0.3 M NaCl. Culture of S. Typhimurium C5.507 Vi+ in media

containing 0.09 M NaCl resulted in ,2-fold increase in labelling

than that observed following culture in 0.3 M NaCl. Furthermore,

a derivative in which the ompR gene was inactivated by deletion

was not labelled, even when cultured in low osmolarity medium

(LB+0.09 M NaCl). The quantification of labelling with anti-Vi+

coated gold beads correlated with the lack of agglutination with

anti-Vi serum. Together these data indicate that the entire SPI-7

region of S. Typhi is integrated into the S. Typhimurium genome

in C5.507 Vi+ and the pattern of expression of Vi antigen is similar

to that in S. Typhi.

Expression of Vi polysaccharide by S. Typhimurium does
not impact colonisation of C57BL/6 mice following oral
inoculation

S. Typhi are host-adapted to higher primates and attenuated in

mice following inoculation by the oral or parenteral routes.

Consequently, we determined if S. Typhimurium C5.507 Vi+

could colonise the genetically susceptible C57BL/6 mouse. Mice

were inoculated by oral gavage with approximately 16108 CFU S.

Typhimurium C5, C5.507 Vi+ or SGB1 (DtviB). No significant

difference in the colonisation of MLN, ceacum, ileum, spleen or

liver was observed for these derivatives five days post inoculation

(Figure 4A). To further determine the effects of the Vi capsule on

chronic colonization as well as shedding within the faeces, we

inoculated 129/sv mice by oral gavage with a mixture containing

approximately 16109 CFU C5.507 Vi+ or SGB1. C5.507 Vi+ and

SGB1 Vi2 were shed in the stool at similar levels on day 1, 4, 7

and 10 post inoculation (Figure 4B).

Infection with S. Typhimurium C5.507 Vi+ results in
altered innate immune cell population in spleen
compared to a Vi-negative derivative

To determine the impact of Vi expression on early innate

immune responses to S. Typhimurium infection, spleens and MLN

Author Summary

Pathogens of the genus Salmonella are closely related yet
cause distinct diseases and have different host-range.
Salmonella Typhi causes a systemic disease called typhoid
fever specifically in humans, and is commonly modelled
using a surrogate host-pathogen combination, namely
Salmonella Typhimurium infection in mice. However, key
virulence mechanisms of S. Typhi depend on the Vi
polysaccharide capsule that is not expressed by S.
Typhimurium. In order to study the function of the Vi
capsule we characterised a S. Typhimurium/S. Typhi
chimera that expresses the Vi polysaccharide in a
regulated manner similar to that previously described in
S. Typhi. The impact of Vi expression on immune cell
populations in the spleen and mesenteric lymph nodes,
and the pattern of intracellular cytokine response was
determined 24 hours after i.v or i.g inoculation. Infection of
mice with S. Typhimurium expressing Vi polysaccharide
resulted in a blunted response in recruitment of NK and
PMN cells. This was reflected in a blunted proinflammatory
cytokine response, but a striking increase in the anti-
inflammatory cytokine IL-10. IL-10 was expressed in
macrophage, dendritic cells and NK cells in the mouse
spleen, specifically in response to infection with S.
Typhimurium expressing Vi polysaccharide. Indeed, neu-
tralisation of this IL-10 production lead to increased
migration and activation of splenocytes in vitro. This
model can be used to develop Vi based vaccines as well as
to study the impact of Vi expression on pathogenesis.

Salmonella Chimera Expressing Vi Polysacharide
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from naı̈ve mice or from mice given a single i.v. or oral dose of

C5.507 Vi+ or SGB1 tviB (Vi2) were examined by flow cytometry

24 hours post-inoculation. This time point was chosen since we

were interested in determining the early innate immune response

and because Vi is expressed on the surface of C5.507 Vi+ during

this period but is down regulated by four days post inoculation

[14]. Interestingly, mice inoculated with the SGB1 Vi2, had a

small but significant increase in the levels of bacterial spleen

colonisation (p = 0.025, unpaired, two tail, Mann Whitney) at 24 h

compared to mice infected with C5.507 Vi+ (Figure 5).

Examination of the spleen population of CD11c+ (dendritic

cells, DC), F4/80+ (macrophage, MW), DX5+/CD32 (natural

killer, NK) cells and Ly6G+ (polymorphonuclear, PMN) in C5.507

Vi+ or SGB1 (Vi2) infected mice revealed differences in immune

cell populations during early infection that correlated with the

presence of a functional Vi locus (Figure 6A and Table 1).

Infection with C5.507 Vi+ resulted in moderate but significant

increases (p,0.05) in both percentage and total cell numbers of

PMN in spleens at 24 h when compared to naı̈ve animals,

although other immune cells monitored were largely unchanged.

In contrast, spleens from mice at 24 h after inoculation with SGB1

Vi2 had dramatically increased (p,0.001) percentage of PMN

and NK cells, a significant increase (p,0.001) in the total number

of DC and MW, although as a percentage they were not different

form the population of these cells in spleen from naı̈ve animals.

We also observed an increase in the percentage of NK and PMN

cells in mice infected with SGB1 Vi2 compared to C5.507 Vi+ and

an increase in the total number of both DC and MW populations.

During natural infection following oral ingestion S. Typhimur-

ium invades the enterocytes and M cells of the terminal ileum and

then enters the lymph system that drains via the mesenteric lymph

nodes (MLN). We therefore determined the impact of Vi

expression on the innate immune cell populations of the MLN

24 hours after oral infection (Figure 6B and Table 1). Similar but

not identical patterns of splenocyte immune cell populations were

observed. For example, mice inoculated with SGB1 Vi2 had a

dramatically increased (p,0.001) percentages of PMN and NK

cells in the MLN compared with MLN from C5.507 Vi+ infected

Figure 1. SNP density of S. Typhimurium C5.507 Vi+ mapped to S. Typhimurium LT2 and S. Typhi CT18. The boundaries of genomic
sequence of S. Typhimurium and S. Typhi origin were determined by calculating the SNP density identified by mapping Illumina GA short reads from
S. Typhimurium C5507 to the S. Typhimurium LT2 and S. Typhi Ty2 reference genome sequence. Artemis comparison tool (ACT) view of the left (A)
and right (B) boundaries are shown with the position of SNPs in S. Typhimurium C5507 sequence reads mapped to either the S. Typhimurium LT2 or
S. Typhi Ty2 genome. The SNP density (C) determined by mapping Illumina GA short reads from S. Typhimurium C5507 to the S. Typhimurium LT2
reference genome. The peak at 2.8 megabases is due to related but distinct prophage elements in S. Typhimurium C5507 genome relative to LT2 and
the peak at 4.5 to 4.8 Mb is the S. Typhi genome sequence flanking SPI-7. Sequence reads from SPI-7 were not mapped to LT2 since this region is
absent from S. Typhimurium. The deduced mosaic structure of the S. Typhimurium C5507 genome (D) with genomic sequence of S. Typhimurium C5
origin (black line) and S. Typhi Ty2 genome (green line) and SPI-7 (blue line) indicated.
doi:10.1371/journal.ppat.1002131.g001
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or naı̈ve mice. However, in contrast to splenocyte population in

i.v. inoculated mice in which we observed a significant increase in

the percentage of PMN with C5.507 Vi+, PMN in MLN following

infection with C5.507 was not significantly different from naı̈ve

animals.

Vi expression modulates cytokine and chemokine
responses

The intracellular cytokine response to Vi+ and Vi2 S. Typhimur-

ium were determined following ex vivo stimulation of splenocyte and

MLN cells with phorbol 12-myristate 13-acetate (PMA). Flow

cytometric analysis of intracellular cytokine expression in both

splenocytes (after i.v. infection) and MLN cells (after oral infection)

from Salmonella-infected mice were determined (Figure 7 and

Table 2). Infection with SGB1 Vi2 was associated with a significant

increase (p,0.05) in the percentage and total cell number of MIP-2,

TNF-a, IFN-c and perforin producing splenocytes cells when

compared to similarly stimulated naı̈ve cells. In the case of MIP-2,

IFN-c and perforin producing cells from mice infected with C5.507

Vi+ the levels were not significantly different than those from naı̈ve

animals. Additionally, although, we did observe a significant increase

in the proportion of TNF-a positive cells compared to naı̈ve animals

this was significantly lower (p,0.05) than observed in cells from mice

infected with SGB1 Vi2. There was no observed difference in IL-6

expression by splenocytes from naı̈ve mice or mice infected with

C5507 Vi+ or SGB1 Vi2.

Since the natural route of infection for Salmonella is via the oral

route we also determined the impact of infection with S.

Typhimurium C5507 Vi+ and SGB1 Vi2 on intracellular

production of MIP-2, TNF-a, IFN-c and perforin by immune

cells of the MLNs 24 h post inoculation. Similar observations were

made to those found in splenocytes following i.v. inoculation but

differences in IFN-c+ cell populations and IL-6 producing cells

were observed. IFN-c+ splenocytes were elevated, but not IFN-c+

MLN cells, and significantly greater percentages and numbers of

IL-6 producing MLN cells, but no significant differences in the IL-

6 splenocyte population in SGB1 Vi2 infected mice when

compared to naı̈ve animals. With respect to SGB1 Vi2 infected

mice, we also detected a significant increase (p,0.05) in the

percentage of TNF-a producing splenocytes and MLN cells.

We also determined the cellular source of these cytokines within

the lymphoid tissues after infection (Table 3). Splenocytes isolated

from SGB1 Vi2 infected mice were found to have significantly

more MIP-2+ and IFN-c+ (p,0.001) producing cells compared to

both naive and C5.507 Vi+ infected mice. TNF-a was mainly

expressed by macrophage and NK cells and to a lesser extent

PMN. IL-6 expression was only significantly different in NK cells

in SGB1 Vi2 infected compared toC5.507 Vi+ infected or

uninfected mice. Also the numbers of macrophage detectably

producing IL-6 from Vi+ infected mice was significantly (p,0.05)

lower than both naı̈ve and Vi2 infected mice. The numbers of

perforin+ NK cells was significant higher (p,0.001) in those mice

Figure 2. Transmission electron microscopy (TEM) images of S. Typhi and S. Typhimurium showing expression of Vi polysaccharide.
S. Typhi (A), S. Typhimurium C5507 (B), S. Typhimurium SGB1 (C5507 DtviB::kanr) (C) visualised using TEM. S. Typhi (D), S. Typhimurium C5507 (E), S.
Typhimurium SGB1 (C5507 DtviB::kanr) (F) visualised using TEM in conjunction with immunogold labelling using anti-Vi antibody.
doi:10.1371/journal.ppat.1002131.g002
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infected with SGB1 Vi2 compared to naı̈ve and C5.507 Vi+

infected mice. A similar cytokine profile was also observed within

the MLN from orally infected mice. Notably, the cellular sources

of the significant increase in IL-6+ MLN cells from SGB1 Vi2

infected mice included DC, MW and NK cells (data not shown).

Strikingly, infection with C5507 Vi+ was also associated with a

significant increase in the percentage and total number of cells

producing the anti-inflammatory cytokine IL-10 when compared

to both stimulated naı̈ve and SGB1 Vi2 infected cells. Indeed, no

increase in the number of cells producing IL-10 above that in

naı̈ve resulted from infection with SGB1 Vi2. We observed that

re-stimulated MW, DC and NK cells, but not PMN, from C5.507

Vi+ infected mice expressed significantly more (p,0.01) IL-10

when compared to similarly stimulated naı̈ve and Vi2 infected

splenocytes (Figure 7C).

Vi expression modulates in vivo innate immune
responses in a TLR-dependent manner

To determine if the observed differences in the innate immune

response in mice infected with Vi+ S. Typhimurium were due to

detection of PAMPs by TLRs, we infected both MyD882/2 and

TLR42/2 mice with SGB1 Vi2 or C5507Vi+. Both bacterial

colonisation and splenocyte PMN and NK cell populations were

examined 24 h post-infection in wild type and KO mice (Figure 8

and Table 4).

As observed previously, spleens from wild type mice infected

with C5.507 Vi+ had significantly increased percentage and

number of PMN compared to naı̈ve mice (p,0.01). In contrast, in

both TLR42/2 and MyD882/2 mice infected with C5.507 Vi+

the numbers of PMN was not significantly different (p.0.05) in

percentage or total cell number compared with naı̈ve mice.

Figure 3. Enumeration of anti-Vi antibody immuno-gold labelling of S. Typhi and S. Typhimurium. The number (filled circle) and the
mean (horizontal bar) of anti-Vi antibody coated gold particles associated with S. Typhi BRD948, and S. Typhimurium C5507 either with no additional
mutations or in which the tviB or ompR gene were deleted. Bacteria were cultured in medium containing NaCl of either 0.09 M (low osmolarity) or
0.3 M (high osmolarity).
doi:10.1371/journal.ppat.1002131.g003
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Figure 4. Colonisation of C57BL/6 mice with S. Typhimurium C5, S. Typhimurium C5507, and S. Typhimurium SGB1 (C5507
DtviB::kanr). (A) Groups of ten C57BL/6 genetically susceptible mice were inoculated orally with 16108 cfu of S. Typhimurium C5 (closed circles), S.
Typhimurium C5507 (open circles), or S. Typhimurium SGB1 (C5507 DtviB::kanr) (closed squares). Horizontal bar indicates the geometric mean. Mice
were culled on day 5 post-inoculation and the cfu in mesenteric lymph nodes, cecum, ileum, spleen and liver homogenates determined. (B) A group
of five 129/sv genetically resistant mice were inoculated orally with an equal mixture of 16109 CFU S. Typhimurium C5507 Vi+, and S. Typhimurium
SGB1 Vi2 (C5507 DtviB::kanr). The mean log10 ratio of these two strains in fresh fecal pellets on days 1, 4, 7 and 10 post inoculation are plotted (top),
the CFU per 100 mg of S. Typhimurium C5507 Vi+ (open circles) and S. Typhimurium SGB1 Vi2 (filled circles) are plotted (below).
doi:10.1371/journal.ppat.1002131.g004
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Indeed, overall, in TLR42/2 and MyD882/2 infected mice the

PMN and NK cell response to C5.507 Vi+ infection was

indistinguishable from naı̈ve mice. In contrast, although the

response to SGB1 Vi2 infection in TLR42/2 and MyD882/2 was

reduced compared to that in WT mice, there was still a significant

response compared to naı̈ve mice.

Infection of wild type mice with SGB1 Vi2 as before resulted in

a significant increase (p,0.001) in the PMN population compared

to both naı̈ve and C5.507 Vi+ infected mice. Furthermore, unlike

infections with C5.507 Vi+, both TLR42/2 and MyD882/2 mice

infected with SGB1 Vi2 also had significantly more (p,0.05)

PMN within their spleen compared with naı̈ve mice. Indeed,

when wild type TLR42/2 and MyD882/2 mice infected with

SGB1 Vi2 were compared, both TLR42/2 and MyD882/2 mice

had significantly less (p,0.001) PMN than wild type infected mice.

Furthermore MyD882/2 mice had a significant reduction (p,

0.05) compared to TLR42/2 SGB1 Vi2 infected mice. Impor-

tantly, there were also significantly fewer (p,0.01) PMN in

C5.507 Vi+ infected TLR42/2 mice compared to SGB1 Vi2

infected mice, but not within the MyD882/2 groups.

The splenic NK cell population showed very similar responses

to Vi+ and Vi2 S. Typhimurium PMN population in wild type and

TLR42/2 and MyD882/2 mice (Figure 8B). Specifically, only

Vi2 infected wild type and TLR42/2 infected mice had signi-

ficantly greater percentages and numbers of NK cells compared to

naı̈ve and C5.507 Vi+ infected mice. Additionally, both TLR42/2

and MyD882/2 SGB1 Vi2 infected mice had significantly lower

levels of NK cells when compared to similarly infected wild type

mice. MyD882/2 infected mice also had significantly less NK cells

when compared to TLR42/2 SGB1 Vi2 infected mice. We again

observed that C5.507 Vi+ infected TLR42/2 mice had signifi-

cantly less (p,0.01) NK cells than similar SGB1 Vi2 infected

mice.

Vi associated IL-10 expression regulates activation and
chemotaxis of splenocytes in vitro

Splenocytes purified from naı̈ve C57BL/6 mice were cultured

with C5.507 Vi+ or SGB1 Vi2 bacteria for 24 h and the

supernatant assayed for the presence of IL-10. The culture

supernatant from cells stimulated with C5.507 Vi+ contained

higher (p,0.001) IL-10 levels than SGB1 Vi2 stimulated

splenocytes (Figure 9A). To address directly if enhanced expression

of IL-10 associated with C5.507 Vi+ infection was at least in part

responsible for the observed immune suppression in infected mice,

splenocytes from naı̈ve mice were stimulated with Vi+ or Vi2 S.

Typhimurium in the presence of anti-IL-10 or isotype control

antibody. Decreased chemotaxis (p,0.01) was observed in SGB1

Vi2 stimulated isotype treated cultures compared to both isotype

control antibody and anti-IL-10 SGB1 Vi2 stimulated splenocytes.

Notably, when C5.507 Vi+ stimulated cultures were grown in the

presence of anti-IL-10 we no longer observed a significant

reduction (p.0.05) in the movement of cells (Figure 9B). C5.507

Vi+ co-culture with isotype antibody significantly reduced

(p,0.01) both the percentage and mean fluorescent intensity

(MFI), expression levels, of the early activation marker CD69 on

both PMN and NK cells. Again, presence of anti-IL-10 in C5.507

Vi+ stimulated cultures led to an increase in CD69 expression that

was not significantly different (p.0.05) from SGB1 Vi2 stimulated

splenocytes (Figure 9C). The addition of anti-IL-10 did not appear

to have any significant effect on migration, although we did

observe a significantly greater percentage of CD69+ PMN in anti-

IL-10 SGB1 Vi2 treated cultures compared to isotype controls

(Figure 9B and C). Further, addition of rIL-10 to naı̈ve splenocytes

gave a similar chemotaxis and immune activation profile (p.0.05)

to that observed in C5.507 Vi+ stimulated splenocytes containing

control antibody (Figure 9B and C).

Discussion

In this study we addressed the hypothesis that early innate

immune responses to Salmonella can be modulated at systemic sites

by the expression of Vi. We exploit a S. Typhimurium/S. Typhi

chimera (C5.507) harbouring ,300 kb of the S. Typhi genome

including the entire SPI-7 island containing the viaB locus. In our

assays the colonisation level of mice following oral inoculation with

this chimera strain was indistinguishable from the parent strain

lacking the S. Typhi genomic region. However, we cannot

discount small differences in colonisation that may be detectable

in more sensitive experiments. Importantly the viaB locus in this

Figure 5. Colonisation of C57BL/6 mouse spleen by S. Typhimurium C5507, and S. Typhimurium SGB1 (C5507 DtviB::kanr). Groups of
fifteen C57BL/6 mice were inoculated orally with 16105 cfu of S. Typhimurium C5507 (closed circles) or S. Typhimurium SGB1 (C5507 DtviB::kanr)
(open circles). Mice were culled on 24 hours post-inoculation and the cfu in spleen homogenates determined.
doi:10.1371/journal.ppat.1002131.g005
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strain is encoded as a single copy and in the natural genomic

context. Consequently, the Vi polysaccharide capsule is expressed

on the surface of C5.507 Vi+ at similar levels to that in S. Typhi

and expression is controlled by osmotic stress in an OmpR

dependent manner as in S. Typhi [11]. The pathogen chimera

approach could be used to study other S. Typhi specific

determinants or to overcome technical constraints associated with

other host-adapted pathogens.

An immune-modulator role for Vi has been proposed previously

based on observations of the effect of the expression of this

polysaccharide on cytokine responses in T84, THP-1 and

HEK293 cells in tissue culture [15], bone-marrow derived

macrophage [10], and in an in vivo colitis models [9]. In these

studies determination of relative transcription of IL-6, TNF-a, or

IL-17 genes was generally used as a measure of the immune

response to infection. Here we use an alternative approach to

directly measure both the population of immune cells (macro-

phage, dendritic cells, NK cells and polymorphonuclear cells),

present in the spleen of mice infected with S. Typhimurium

C5.507 Vi+, and directly determine the intracellular level of a

series of key inflammatory or anti-inflammatory cytokines; MIP-2,

TNF-a, IFN-c, IL-6 and IL-10. When we compared the

splenocyte population 24 h after infection we observed signifi-

cantly fewer PMN in mice inoculated with C5.507 Vi+ compared

to SGB1 Vi2. This could be explained by the observation that a

greater number of TNF-a and MIP-2 producing MW, NK cells

and DC were found in those mice infected with the Vi2 compared

to the Vi+ S. Typhimurium. Through neutrophil recruitment and

activation, TNF-a and MIP-2 are known to be important

mediators of intestinal inflammation and associated pathology,

and the difference in the induction of these mediators by S. Typhi

and S. Typhimurium may explains some of the differences in

disease outcome associated with these pathogens [9]. We also

report that Vi expression is associated with decreased TNF-a and

MIP-2 expression in the spleen of infected mice following

inoculation by the intravenous route. Vi mediated decrease in

IL-6 production by bone marrow derived macrophages in vitro

has been described previously [10]. However, we only observed

reduced IL-6 expression in cells (MW, DC and NK cells) of the

mesenteric lymph node following oral inoculation but no

detectable difference in intracellular IL-6 levels in mice infected

via the intravenous route regardless of Vi expression. Notably, our

data shows that reductions in neutrophil chemo attractants directly

impacts on their trafficking in vivo. NK cells were also influenced by

the expression of Vi following either intravenous or oral infection

with C5.507 Vi+ as NK cell populations were not significantly

different from those in naı̈ve mice. In contrast, mice infected with

SGB1 Vi2 showed a marked increase in the NK cell population.

We also observed an increase in the proportion of perforin positive

NK cells. Perforin is stored in NK and CD8+ T cells as granules

and is key to their ability to destroy infected host cells. The

reduction in NK cell influx and associated decrease in perforin in

response to C5.507 Vi+ infection may also explain in part how

expression of this polysaccharide contributes to the ability of the S.

Typhi to disseminate to systemic sites, colonise and replicate.

The effect of Vi expression by S. Typhimurium on DC and MW
populations was not as great as that observed for PMN and NK

cell populations. Nonetheless, we did observe significantly lower

numbers of these innate cells in mice infected with Vi+ compared

to Vi2 S. Typhimurium. The apparent impact of Vi expression on

the infux of DC and MW may also be attributed to MIP-2 since

this chemokine can also modulate the trafficking of DC [16]. As

well as being a chemo attractant in its own right, TNF-a induces

the synthesis of a number of chemokines, including IP-10,

RANTES, KC, in a cell-type and tissue-specific manner [17].

Impairment of this response may also account for the reduction in

splenic MW and NK cells observed in C5.507 Vi+ infected mice.

Together, these data support a role for Vi in modulating the

recruitment of immune cells to sites beyond the intestinal mucosa,

including the mesenteric lymph nodes and spleen.

The mechanism by which Vi modulates innate responses is

currently not known, although it has been postulated that Vi may

mask LPS therefore preventing its detection by TLR4 [10]. We

report that spleen from TLR42/2 and MyD882/2 mice infected

with SGB1 Vi2 have reduced immune cell splenocyte populations

compared to wild type control mice. However, there were

significantly greater immune cell populations in TLR42/2 and

MyD882/2 mice than in naı̈ve mice suggesting that proinflam-

matory signals other than those dependent on these were in

operation. These data suggest Vi may play a role as a physical

barrier separating Salmonella PAMPs from TLR4 activation.

However, data from MyD882/2 mice suggests that while TLR4

signalling plays some role in the immuno-modulatory aspect of Vi,

other pathways may also be involved.

Much of what is known of the immune-modulator effects of Vi

is from observations of induction of pro-inflammatory cytokines

and chemokines. We additionally examined the production of an

anti-inflammatory cytokine, IL-10, and report a significant

Figure 6. Expression of the Vi capsule induces differential innate immune responses shortly after infection. Cells were isolated from
the spleens after i.v. infection (A) or MLN after oral infection (B) of C57BL/6 mice 24 h after infection with C5507 (Vi+) or SGB1 (Vi2) S. Typhimurium
and stained with flurochrome-labelled mAb and analysed by flow cytometry in which 20,000–200,000 events were recorded. Columns represent the
percentage 6 SEM. Significant differences in values of * p,0.05; **, p,0.01; ***, p,0.001, as determined by one-way ANOVA followed by
Bonferroni’s multiple comparison test.
doi:10.1371/journal.ppat.1002131.g006

Table 1. Innate cell numbers after infection with Vi+ or Vi2 S.
Typhimurium.

tissue cell type naı̈ve Vi+ Vi2

spleen F4/80+ MW 393.7643.6 587.1665.2 878.5689.1***{

CD11c+ DC 138.4615.3 176.8619.1 314.8621.2***{{{

DX5+/CD32 NK cells 151.4618.6 238.2640.1 891.7682.3***{{{

Ly6G+ PMN 223.4629.2 545.7675.7* 12996115.5***{{{

MLN F4/80+ MW 9.661.3 13.161.4 22.262.8***{{

CD11c+ DC 6.160.6 9.361.7 15.262.1***{

DX5+/CD32 NK cells 5.260.7 14.363.0 41.563.4***{{{

Ly6G+ PMN 8.761.0 16.862.3 40.268.9***{{{

Total cell number for spleen (i.v. infection) or MLN (oral infection) after 24 h
(16104) 6 SEM.
*indicates significant values of p,0.05;
**, p,0.01;
***, p,0.001, as determined by one-way ANOVA followed by Bonferroni’s
multiple comparison test when compared to naı̈ve mice.
{indicates significant values of p,0.05;
{{, p,0.01;
{{{, p,0.001, as determined by one-way ANOVA followed by Bonferroni’s

multiple comparison test when Vi+ are compared to Vi2 infected mice.
doi:10.1371/journal.ppat.1002131.t001
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increase in the number of IL-10-expressing cells in mice infected

with Vi+ compared to Vi2 S. Typhimurium. In part, IL-10 acts on

macrophage and myeloid dendritic cells to inhibit the develop-

ment of a TH-1 response (reviewed in [18]). IL-10 is produced by

many different cell types of the innate and adaptive immune

systems, and the temporal and spatial expression is likely

important to moderating immune response [19]. Importantly,

IL-10 is induced in macrophage and myeloid dendritic cells by a

variety of pathogen derived products, including LPS following

detection by TLR-4 [20]. We did not observe induction of IL-10

in splenocytes from mice infected with SGB1 Vi2 relative to naı̈ve

mice at the time point studied, but induction was specifically

observed in mice infected with C5.507 expressing Vi. Indeed,

when we determined the innate populations producing IL-10 we

observed that MW, DC and NK cells were the cell types

responsible for this increased IL-10 phenotype. Importantly, we

also observed that inhibition of IL-10 from C5.507 Vi+ stimulated

splenocytes in vitro directly impacted both chemotaxis and

activation status of immune cells. Notably, previous studies have

shown that IL-10 can inhibit chemokine expression and reduce

iNOS production from PMN [21,22]. Therefore, early production

of IL-10 after infection with Vi+ Salmonella may be important in

diminishing neutrophil influx and activation and thereby increas-

ing the ability of this pathogen to efficiently colonise and infect

distal sites within the host. At later infection time-points Vi may be

an important mechanism associated with dampening the TH-1

response that is normally associated with resolving infections by

invasive bacterial pathogens. Indeed, higher levels of IL-10, as well

as IL-4, have been detected in PBMC culture of typhoid fever

patients when compared to healthy control subjects.

S. Typhimurium C5507 Vi+ provides a model pathogen to study

the impact of Vi and potentially other S. Typhi specific virulence

genes encoded on SPI-7, in the well characterized murine typhoid

model. Recently, two excellent murine models for typhoid fever

have been described [23,24]. The utility of S. Typhimurium

C5507 Vi+ as a model system has previously been demonstrated in

studies to determine the protection afforded by a conjugated Vi

subunit vaccine [25]. Furthermore, S. Typhimurium C5507 Vi+

has been used to studies expression of Vi polysaccharide capsule

from heterologous promoters including PssaG, to improve the anti-

Vi immune response to live oral vaccines against typhoid

(unpublished observations). However, observations from the use

of a surrogate infection models should be considered with care.

Many differences between the chimera infection of mice remain

Figure 7. Vi expression also impacts on the cytokine profile of cells after S. Typhimurium infection. Isolated splenocytes after i.v.
infection (A) or MLN after oral infection (B) from naı̈ve, or 24 h infected C5507 (Vi+) and SGB1 (Vi2) mice were stimulated for 6 h with BD Leukocyte
Activation Cocktail with BD GolgiPlug (BD Biosciences) in vitro, permeabilised and stained with anti-cytokine flurochrome-labelled mAb. (C) Cells were
stained with mAb to specific surface markers F4/80+, CD11c+ and DX5+/CD32 the identity of innate populations, permeabilised and stained with anti-
IL-10. Data represent percent of cytokine positive cells out of total spleen populations 6 SEM. Significant differences in values of * p,0.05;
**, p,0.01; ***, p,0.001, as determined by one-way ANOVA followed by Bonferroni’s multiple comparison test.
doi:10.1371/journal.ppat.1002131.g007

Table 2. Total number of cytokine producing cells after
infection with Vi+ or Vi2 S. Typhimurium.

tissue cytokine naı̈ve Vi+ Vi2

spleen MIP-2 103.4612.7 190.5619.5 562.2680.3***{{{

TNF-a 129.1618.1 272.6636.5 625.4657.3***{{{

IFN-c 122.1617.9 163.3622.7 428.5657.1***{{{

IL-10 129.9620.6 323.1630.9*** 246.6630.2*

perforin 311.3647.4 637.26113.3 1529.06240.5***{{

IL-6 114.4615.0 165.6616.1 269.5646.7**

MLN MIP-2 7.560.6 11.661.1 35.864.2***{{{

TNF-a 18.562.4 44.765.5** 74.165.5***{{{

IFN-c 13.761.9 21.263.0 31.262.9***{

IL-10 11.961.3 32.262.9*** 30.562.7***

perforin 24.363.2 51.865.4 106.3612.8***{{{

IL-6 14.261.4 20.961.4 54.165.4***{{{

Total cell number for spleen (i.v. infection) or MLN (oral infection) after 24 h
(16104) 6 SEM.
*indicates significant values of p,0.05;
**, p,0.01;
***, p,0.001, as determined by one-way ANOVA followed by Bonferroni’s
multiple comparison test when compared to naı̈ve mice.
{indicates significant values of p,0.05;
{{, p,0.01;
{{{, p,0.001, as determined by one-way ANOVA followed by Bonferroni’s

multiple comparison test when Vi+ are compared to Vi2 infected mice.
doi:10.1371/journal.ppat.1002131.t002

Table 3. Vi impacts on the cytokine profile of innate cells
shortly after infection.

cell type cytokine naı̈ve Vi+ Vi2

F4/80+ MW MIP-2 21.261.7 18.461.5 35.761.4***{{{

TNF-a 25.760.8 29.660.6 37.861.3***{{

IFN-c 10.260.5 11.960.5 17.261.1***{{{

IL-6 24.061.0 18.461.5* 23.761.0{

CD11c+ DC MIP-2 8.160.7 7.96 0.8 14.761.0***{{{

TNF-a 12.861.4 12.260.7 15.561.2

IFN-c 15.260.4 16.360.8 20.660.8***{{{

IL-6 13.160.7 15.461.2 13.461.0

DX5+/CD32 NK cells MIP-2 14.461.1 8.760.5*** 18.360.9**{{{

TNF-a 14.561.2 20.961.6* 30.061.7***{{{

IFN-c 18.961.2 18.461.8 27.561.0***{{{

IL-6 8.961.0 10.260.9 16.861.5***{

perforin 38.961.6 48.562.1 66.863.7***{{{

Ly6G+ PMN MIP-2 8.060.4 6.660.4 11.161.1*{{{

TNF-a 23.460.9 25.661.3 29.260.9*

IFN-c 15.260.8 14.660.7 22.161.0*{

IL-6 19.861.7 18.261.4 20.961.1

Cells were stained with mAb to specific surface markers F4/80+, CD11c+, DX5+/
CD32 and Ly6G+ to identify innate populations, permeabilised and stained with
anti-MIP-2, TNF-a, IFN-c, perforin and IL-6. Data represent percent of cytokine
positive cells out of total spleen populations 6 SEM.
*indicates significant values of p,0.05;
**, p,0.01;
***, p,0.001, as determined by one-way ANOVA followed by Bonferroni’s
multiple comparison test when compared to naı̈ve mice.
{indicates significant values of p,0.05;
{{, p,0.01;
{{{, p,0.001, as determined by one-way ANOVA followed by Bonferroni’s

multiple comparison test when Vi+ are compared to Vi2 infected mice.
doi:10.1371/journal.ppat.1002131.t003
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compared with the natural S. Typhi infections of humans. One of

these is that rate at which the infection proceeds and the dynamics

of colonisation and clearance. These differences are likely

accounted for in the genetic differences outside of the chimera

region and also differences in the host species.

Together these data describe the impact of Vi expression on the

outcome and innate immune response to S. Typhimurium infec-

tions in mice. Modulation of the innate immune response by the

Vi polysaccharide capsule decreased innate cell recruitment and

provided insights into how S. Typhi effects its interaction with the

host to provide the desired outcome from the host-pathogen

interaction. This is consistent with a pathogenic strategy central to

which is a slowly progressing systemic disease that is rarely

associated with death from sepsis or cytokine storm, but that

ultimately provides access for this pathogen to the gall bladder and

potentially other immune privileged niches, required for chronic

carriage.

Materials and Methods

Bacterial strains and culture conditions
S. Typhimurium C5507 Vi+ was a gift from M. Popoff (Institute

Pasteur, France) and was generated by conjugation of S. enterica Typhi

Ty2 with S. enterica Typhimurium C5. A serotype Typhimurium

strain in which the phoN gene was replaced by the aph gene was

constructed by transferring the aph gene from AJB715 into strain

SL1344 by P22 transduction. This derivative was designated

AMJ204. SGB1 Vi2 strain was generated by precise deletion of

the tviB gene and replacement of this with the aph gene that confers

resistance to kanamycin using the Datsenko and Wanner red

recombinase allelic exchange methodology [26]. Oligonucleotide

primers 59 GCCAGAACCAGTTTGGTCCGTAGTTCTTCG-

TAAGCCGTCATGATTGTGTAGGCTGGAGCTGCTTCG 39

and 59 AATTAACTTTGTAAATATAAAATTTTAGTAAAGG-

ATTAATAAGAGCATATGAATATCCTCCTTAG 39 were used

to amplify the aph gene from pKD4 template. Strain SGB1 expressed

comparable amounts of flagellin on culure in LB broth in vitro as

determined by crude flagella preparation and separation of flagellin

monomer by SDS PAGE (data not shown). Bacteria were cultured

aerobically at 37uC in Luria-Bertani (LB) broth or LB with 15% agar

supplemented with antibiotics at appropriate concentrations; ampi-

cillin (Amp), 100 mg/L (LB+Amp); chloramphenicol (Chl), 30 mg/L

(LB+Chl); and kanamycin (Kan), 30 mg/L (LB+Kan).

Sequence analysis
To identify the boundaries of S. Typhi and S. Typhimurium-

derived genomic sequence, genomic DNA was prepared from S.

Typhimurium C5507 and sequenced using the Illumina/Solexa

Genome Analyser. Over 6.5 million single end reads of 36 bp were

generated, giving a theoretical 48-fold coverage of the S.

Typhimurium genome. Reads were mapped to the reference

genomes S. Typhimurium LT2 (EMBL:AE006468) and S. Typhi

CT18 (EMBL:AL513382) using Maq (maq.sourceforge.net), single

nucleotide polymorphisms between C5507 and the reference

genomes were identified. The position and density of these

substitutions compared to the two reference genomes was

visualised using Artemis and ACT (Artemis Comparison Tool)

[27].

Transmission Electron Microscopy (TEM)
Bacteria cultured for 24 hr at 37uc were sampled selecting a

single colony from each strain, mixing with 20 ml sterile distilled

water and rapidly freezing in a Bal-Tec HPM010 high pressure

freezer. Samples for immunogold-labelling were freeze-substituted

in a Leica EM AFS at 290uC in methanol containing 0.2% uranyl

actetate and 0.1% glutaraldehyde followed by low temperature

embedding in Lowicryl HM20 resin. Samples for ultrastructural

analysis were freeze-substituted with acetone containing 0.1%

tannic acid, 0.5% glutaraldehyde sequentially with acetone

containing 1% osmium tetroxide and 0.1% uranyl actetate

followed by room temperature embedding in TAAB 812 resin.

50 mm ultrathin sections were cut on a Leica EM UC6 and

contrasted with lead citrate and uranyl acetate For immunogold-

localisation ultrathin sections were labelled with anti Vi antibody

and probed with protein A gold as previously described [28].

Images were taken on an FEI Tecnai Spirit 120 kV TEM with a

Tietz F415 CCD camera. For quantification of labelling fifteen

random clearly defined bacteria were selected and the number of

associated 10 nm gold particles counted.

Experimental infections of mice
Female wild-type (WT) C57BL/6 and 129/sv mice (6–8 week old)

and knock-out (KO) C57BL/6 mice, including MyD882/2 [29] and

TLR42/2 [30] were kind gifts and were bred at The Sanger Institute

Research Support Facility (RSF). All animals were given food and

water ad libitum. Mice were sacrificed by cervical dislocation or

Figure 8. Vi modulates innate immune responses through TLR. Spleens were removed from naı̈ve, WT or KO animals (both MyD882/2 and
TLR42/2) infected with C5.507 (Vi+) or SGB1 (Vi2) 24 h after infection. The cfu per g of tissue (A) and the percentage of splenocytes that were Ly6G+

(B) or DX5+/CD32 (C) were determined. Columns represent the percentage of cells 6 SEM. Significant differences are indicated * p,0.05; **, p,0.01;
***, p,0.001, and for comparison of Vi+ compared to Vi2 infected mice, {{ p,0.01; {{{, p,0.001, as determined by one-way ANOVA followed by
Bonferroni’s multiple comparison test. # Colonisation data for two of the mice in the TLR42/2 mouse group inoculated with C5.507 were not
determined.
doi:10.1371/journal.ppat.1002131.g008

Table 4. Total number of PMN and NK cells after infection with Vi+ or Vi2 S. Typhimurium in TLR42/2 and MyD882/2 mice.

cell type naı̈ve WT Vi+ TLR42/2 Vi+ MyD882/2 Vi+ WT Vi2 TLR42/2 Vi2 MyD882/2 Vi2

Ly6G+ PMN 196.6621.2 597.3678.7* 399.2673.3 454.1647.0 1580.06130.9** 909.66105.0**{{ 501.9664.1{{

DX5+/CD32 NK 133.2617.2 261.4639.4 193.3613.7**{{ 267.0641.7 1149.16143.9** 909.66105.0**{{ 241.9664.4{{

Total cell number of PMN and NK cells in the spleen 24 h post (6104) 6 SEM.
*indicates significant values of *, p,0.01;
**, p,0.001, as determined by one-way ANOVA followed by Bonferroni’s multiple comparison test when compared to naı̈ve mice.
{indicates significant values of {, p,0.01;
{{, p,0.001, as determined by one-way ANOVA followed by Bonferroni’s multiple comparison test when WT Vi2 are compared to KO Vi2 infected mice.
doi:10.1371/journal.ppat.1002131.t004
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exsanguination. The S. Typhimurium strains were grown with shaking

in LB broth (with appropriate antibiotics) for 20 h. Bacteria were then

harvested by centrifugation, washed, and suspended in PBS (pH 7.4) to

approximately 109 CFU per ml. Groups of 5–10 mice were inoculated

orally by gavage or intravenously with 0.2 ml of bacterial suspension.

Viable counts were determined in the inoculum by serial dilutions onto

LB agar. After 24 h or five days the mice were culled and their MLN,

terminal end ileum, cecum, spleen, and liver were aseptically removed

and weighed. Organs were homogenised in sterile water (5 ml) using a

Seward Stomacher 80 (Seward, London UK) for 2 minutes at high

speed. Serial dilutions of each organ were plated onto LB agar.

Colonies were enumerated after overnight incubation at 37uC.

Ethics statement
All animal procedures were performed in accordance with the

United Kingdom Home Office Inspectorate under the Animals

(Scientific Procedures) Act 1986. Ethical approval for these

procedures were granted by the Wellcome Trust Sanger Institutes

Ethical Review Committee.

Flow cytometry and ELISA
Single cell suspensions from the spleens and MLN of individual

mice were prepared to obtain a final concentration of 56105 cells/

well in blocking buffer (16PBS/1% BSA/0.05% sodium azide/1%

rat, hamster and mouse serum). 0.05 ml of each mAb dye mix,

0.005 ml of the amine-reactive viability dye ViViD (Invitrogen) to

determine dead cells, with incubation in the dark at 4uC for

30 minutes. The mAb used for flow cytometry were (BD

Biosciences unless stated otherwise); CD11c, clone HL3 with PE-

Cy7 conjugate (BD Biosciences), Ly6G, clone RB6-8C5 with PE

conjugate (BD Biosciences), CD49b, clone DX5 with FITC or PE

conjugate (BD Biosciences), F4/80, clone BM8 with TRI-COLOR

conjugate (Invitrogen), CD3, clone 145-2C11 with APC, CD69,

clone H1.2F3 with PE-Cy7, Alexa Fluor 700, conjugate (BD

Biosciences), CXCL2/MIP-2, clone 40605 with biotin conjugate

(AbD Serotec), IL-10, clone JES5-16E3 with APC conjugate (BD

Biosciences), TNF-a, clone MP6-XT22 with PE-Cy7 conjugate (BD

Biosciences), IL-6, clone MP5-20F3 with PE conjugate (BD

Biosciences), IFN-c, clone XMG1.2 with PE-Cy7 conjugate (BD

Biosciences), perforin, clone eBioOMAK-D with FITC conjugate

(eBioscience), streptavidin, with PE-Texas Red conjugate (BD

Biosciences). Cells were washed twice with blocking buffer and

finally resuspended in 0.2 ml 1% paraformaldehyde. To perform

flow cytometric analyses and measure relative fluorescence

intensities a FACSAria cytometer and BD Diva software (Becton

Dickinson) were used. For each mouse 20,000–200,000 events were

recorded. The percentage of cells labelled with each mAb was

calculated in comparison with cells stained with isotype control

antibody. Background staining was controlled by labelled isotype

controls and fluorescence-minus-one (FMO). The results represent

the percentage of positively stained cells in the total cell population

exceeding the background staining signal. For determination of

intracellular cytokine production by splenocytes, cells were

incubated for 6 h at 37uC with BD Activation Cocktail (BD

Biosciences) containing Phorbol 12-Myristate 13-Acetate (PMA),

plus GolgiPlug or GolgiPlug alone (BD Biosciences). Cells were then

washed with staining buffer and stained at 4uC with surface mAbs.

Cells were then fixed and saponin-permeabilised (Perm/Fix

solution, BD Biosciences) and incubated with cytokine mAb as

listed above or isotypic controls. After 30 min cells were twice

washed in permealisation buffer (BD Biosciences) and then analysed

by flow cytometry as described above. For determination of IL-10

levels from in vitro stimulated splenocyte supernatants the IL-10

Instant ELISA (Bender MedSystems) system was used according to

manufacturer’s instructions.

In vitro Salmonella stimulations
Spleen suspensions were prepared as described above and

26105 cells added to a 96-well round bottom plate and were left

for 1 h at 37uC 5% CO2. Cells were then stimulated with

appropriate 1:1 ratio of Salmonella strains supplemented with

20 mg/mL anti-IL-10 or appropriate isotype control (PeproTech).

In others, cells were supplemented with 100 ng/mL recombinant

(r)-IL-10 (PeproTech). Splenocytes were also stimulated with LPS

(100 ng/mL) or RPMI+ medium as positive and negative controls

respectively. Cells were then incubated for approximately 24 h

before being centrifuged at 8006 g for 5 min. Some supernatant

was removed and stored at 280uC for subsequent cytokine

analysis. Remaining cells from stimulation were then stained for

flow cytometry with surface (DX5+/CD32 or Ly6G+) and the

activation marker CD69 as described above.

Chemotaxis assay
Migration of Salmonella stimulated splenocytes was analysed in

96-well QCM Chemotaxis Cell Migration Assay (Millipore, UK)

with 5-mm pore polycarbonate filters. Briefly, 26105 cells in 0.1 ml

of RPMI+ were placed into the migration chambers. Supernatant

from stimulated splenocytes were added to the lower chamber.

Migration was performed for 4 h at 37uC with 5% CO2. Cells/

media from the top chamber of the insert was discarded and

remaining cells removed using Cell Detachment Solution (Milli-

pore, UK). Lysis Buffer/Dye Solution (Millipore, UK) were added

to each well and incubated for 15 min. 0.15 ml of this mixture was

then transferred to new 96-well plate and read with a fluorescence

plate reader using 480/520 nm filter set.

Statistical analysis
Experimental results were plotted and analysed for statistical

significance with Prism4 software (GraphPad, San Diego, CA). A

p-value of ,0.05 was used as significant in all cases.
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Figure 9. Vi induction of IL-10 impacts on chemotaxis and activation of splenocytes in vitro. (A) Spleen cells were isolated from naı̈ve mice
and stimulated for 24 h with 1:1 ratio of Vi+ or Vi2 Salmonella strains and supernatants were analysed for levels of IL-10. Mean 6 SEM are presented
from six individual animals. Significance was determined using Mann-Whitney test, *** p,0.001. (B) Splenocytes were also stimulated with the
various S. Typhimurium strains in the presence of anti-IL-10, isotype control antibody or rIL-10. Cells were then stained with surface antibodies and
the percentage and expression/mean fluorescent intensity (MFI) of the activation marker CD69 on NK cells and PMN was analysed by flow cytometry.
Columns represent the percentage of MFI 6 SEM and significant differences were determined as in Figure 6. (C) Chemotactic migration of
splenocytes towards supernatants from Salmonella stimulated cultures (in the presence of anti-IL-10, control antibody or rIL-10). After 4 h incubation,
the level of cell migration was determined by reading the relative fluorescent units (RFU) at 480/520 nm. Data represents mean 6 SEM minus
negative (media alone) controls. Significant differences in values of * p,0.05; **, p,0.01; ***, p,0.001, as determined by Kruskal-Wallis followed by
Dunn’s multiple comparison test or { indicating significant values when compared to r-IL-10.
doi:10.1371/journal.ppat.1002131.g009
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