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Abstract
Digital	 point-	occurrence	 records	 from	 the	 Global	 Biodiversity	 Information	 Facility	
(GBIF)	and	other	data	providers	enable	a	wide	range	of	research	in	macroecology	and	
biogeography.	However,	data	errors	may	hamper	immediate	use.	Manual	data	clean-
ing	 is	 time-	consuming	 and	 often	 unfeasible,	 given	 that	 the	 databases	may	 contain	
thousands	 or	millions	 of	 records.	 Automated	 data	 cleaning	 pipelines	 are	 therefore	
of	high	 importance.	Taking	North	American	Ephedra as a model, we examined how 
different	data	cleaning	pipelines	(using,	e.g.,	the	GBIF	web	application,	and	four	dif-
ferent	R	packages)	affect	downstream	species	distribution	models	 (SDMs).	We	also	
assessed	how	data	differed	from	expert	data.	From	13,889	North	American	Ephedra 
observations	 in	GBIF,	 the	 pipelines	 removed	 31.7%	 to	 62.7%	 false	 positives,	 inva-
lid	coordinates,	and	duplicates,	leading	to	datasets	between	9484	(GBIF	application)	
and	5196	records	(manual-	guided	filtering).	The	expert	data	consisted	of	704	records,	
comparable	to	data	from	field	studies.	Although	differences	in	the	absolute	numbers	
of	records	were	relatively	large,	species	richness	models	based	on	stacked	SDMs	(S-	
SDM)	from	pipeline	and	expert	data	were	strongly	correlated	(mean	Pearson's	r across 
the	pipelines:	.9986,	vs.	the	expert	data:	.9173).	Our	results	suggest	that	all	R	package-	
based	pipelines	reliably	 identified	 invalid	coordinates.	 In	contrast,	 the	GBIF-	filtered	
data	still	contained	both	spatial	and	taxonomic	errors.	Major	drawbacks	emerge	from	
the	fact	that	no	pipeline	fully	discovered	misidentified	specimens	without	the	assis-
tance	of	 taxonomic	 expert	 knowledge.	We	 conclude	 that	 application-	filtered	GBIF	
data	will	still	need	additional	review	to	achieve	higher	spatial	data	quality.	Achieving	
high-	quality	taxonomic	data	will	require	extra	effort,	probably	by	thoroughly	analyz-
ing	the	data	for	misidentified	taxa,	supported	by	experts.
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1  |  INTRODUC TION

Digitally	 accessible	 species	 records	 from	 global	 data-	sharing	 net-
works	like	the	Global	Biodiversity	Information	Facility	(GBIF)	provide	
the	basis	to	address	a	wide	range	of	biodiversity-	related	questions	
in	 ecology,	 biogeography,	 and	 other	 disciplines	 (e.g.,	 Guralnick	
et al., 2007;	Meyer	et	al.,	2016;	Soberón	&	Peterson,	2004).	Such	
databases	 and	 data-	sharing	 networks	 represent	 a	 valuable	 source	
of	knowledge	in	which	individual	researchers	and	institutions	world-
wide	invested	considerable	amount	of	time	and	resources	(Baskauf	
et al., 2016;	Guralnick	et	al.,	2018;	Wieczorek	et	al.,	2012).	However,	
since	 the	circumstances	and	standards	under	which	 these	 records	
were	collected	and	digitized	are	usually	unknown,	a	user	must	as-
sess	whether	the	data	quality	provided	meets	the	requirements	of	
the	 research	 question	 (Beck	 et	 al.,	 2013;	 Sterner	 &	 Franz,	 2017).	
Consequently,	this	demands	data	cleaning	tools	(hereafter:	DC	tool)	
to	standardize	data	and	identify	and	remove	data	errors.	Thus,	de-
veloping	 appropriate	DC	 tools	 is	 a	 long-	standing	 goal	 of	 biodiver-
sity	informatics	(e.g.,	Araújo	&	Guisan,	2006; Chapman et al., 2000; 
Kadmon et al., 2004).

Data	 errors	 occur	 mainly	 along	 three	 dimensions:	 taxonomy,	
space,	and	time	(Meyer	et	al.,	2016).	They	may	significantly	affect	
common	 downstream	 analyses	 such	 as	 the	 accuracy	 of	 species	
distribution	models	(SDMs,	e.g.,	Gueta	&	Carmel,	2016, Tessarolo 
et al., 2017,	Hijmans	&	Elith,	2019,	Zizka	et	al.,	2019).	 In	 the	tax-
onomic dimension, resolving misspellings (Zermoglio et al., 2016)	
and	 reconciling	 the	 synonymy	of	 taxonomic	names	 (Alroy,	2002; 
Wortley	 &	 Scotland,	 2004)	 pose	 a	 significant	 challenge.	 The	 re-
lated	widespread	and	particularly	challenging	problem	is	misiden-
tified	 specimens,	 estimated	 at	 50%	 for	 tropical	 plant	 specimens	
(Goodwin	et	al.,	2015)	and	ranging	from	5%	to	nearly	60%	in	the	
Zoological	Record	database	(Meier	&	Dikow,	2004).	In	the	spatial	
dimension,	 errors	 in	 and	 low	precision	of	 coordinates,	 for	 exam-
ple,	 from	 rounding	 of	 the	 decimal	 digits,	 swapped	 latitude	 and	
longitude,	 missing	 coordinates,	 or	 coordinates	 with	 zero-	values	
are	common	data	quality	problems	(e.g.,	Otegui	et	al.,	2013;	Töpel	
et al., 2017; Yesson et al., 2007).	 Lower	 geospatial	 accuracy	 is	
frequently	 assumed	 for	 older	 records	 than	 for	 those	 collected	
more	 recently	 (Tessarolo	 et	 al.,	 2017;	 Zizka	 et	 al.,	2020).	 Stropp	
et al. (2016)	 showed,	 for	 instance,	 that	 conspicuous	 records	 of	
flowering	plants	collected	in	Africa	before	the	1960s	were	filtered	
out	due	to	poor	data	quality.	Another	issue	associated	with	older	
records	is	that	the	probability	increases	that	populations	no	longer	
exist	at	a	given	sampling	location	over	time	due	to	natural	or	an-
thropogenic	reasons	(Meyer	et	al.,	2016).

Even	 for	 experts,	 identifying	 and	 resolving	 data	 quality	 issues	
manually	 is	 in	many	cases	unfeasible,	given	 that	datasets	 typically	
contain	 thousands	 to	millions	 of	 records.	 Therefore,	 selective	DC	
strategies	 based	 on	 well-	explained	 instructions	 and	 automated	
DC	 tools	 that	 reproducibly	 generate	 high-	quality	 data	 are	 espe-
cially	 in	 high	 demand	 for	 inexperienced	 users	 (Zizka	 et	 al.,	2019).	
Downstream	 applications	 such	 as	 conventional	 SDMs	 depend	 on	
these	data	quality	(e.g.,	Araújo	et	al.,	2019;	Guisan	et	al.,	2017; Raes 

&	Aguirre-	Gutiérrez,	2018).	Data	 scientists	 and	 biodiversity	 infor-
maticians	approached	 the	development	of	DC	solutions	 from	sev-
eral	 angles:	 (1)	 DC	 tools	 that	 generally	 solve	 thematically	 limited	
requirements,	 like	 retrieving,	 evaluating,	 formatting,	 completing,	
and	organizing	data.	This	type	of	DC	solution	was	 implemented	 in	
the	widely	used	Tidyverse	“umbrella”	package	(Wickham	et	al.,	2019).	
The	 solution	 was	 also	 included	 in	 specialized	 packages	 such	 as	
CoordinateClearer	(Zizka	et	al.,	2019),	rgbif (Chamberlain, 2020),	and	
the	GBIF	web	application	(GBIF.org,	2020).	(2)	Manuals	supporting	
the	preparation	of	data	for	SDMs.	Particular	R packages are an inte-
gral	part	of	such	manuals	(e.g.,	Chapman,	2005;	Guisan	et	al.,	2017; 
Hijmans	&	Elith,	2019).	The	manuals	consist	of	verbal	explanations	
and	 coded	 instructions,	 which	 the	 user	 can	 apply	 (e.g.,	 per	 pack-
age dismo,	Hijmans	&	Elith,	2020).	While	the	newly	developed	and	
recently	 updated	 methods	 for	 automated	 cleaning	 of	 records	 are	
promising,	their	effect	on	commonly	applied	SDMs	remains	poorly	
examined	 (see	 Hijmans	 et	 al.,	 2017;	 Schmidt-	Lebuhn	 et	 al.,	 2013; 
Zizka	et	al.,	2020).

Pipelines	play	an	 important	role	 in	the	scientific	domain	when,	
for	example,	biodiversity	data	 from	different	 sources	 such	as	her-
barium	vouchers	 and	observations	need	 to	be	 combined	 for	 anal-
ysis.	In	this	study,	we	investigated	the	performance	of	six	pipelines	
(P1	to	P6)	using	various	DC	tools	and	how	these	pipelines	affected	
downstream	 SDMs.	 We	 used	 North	 American	 Ephedra species 
as	 the	 model	 organisms	 (Ephedraceae,	 Gnetales;	 Cutler,	 1939; 
Stevenson, 1993, Figure 2,	A	to	C;	Table	S1)	and	GBIF	as	the	data	
source.	With	over	2.1	billion	species	records	worldwide,	GBIF	is	the	
largest	and	one	of	the	most	frequented	public	providers	of	biodiver-
sity	data.	 It	 is	often	the	primary	data	source	for	many	researchers	
(Guralnick	et	al.,	2018;	Hobern	et	al.,	2019;	Zizka	et	al.,	2020).	Thus,	
we	selected	the	GBIF	records	as	input	to	the	pipelines.	In	this	con-
text,	we	address	three	questions:

1.	 How	 do	 the	 pipelines	 differ	 in	 their	 performance?	We	 expect	
that	 different	 DC	 tools	 will	 generate	 different	 result	 datasets.

2.	 How	do	differences	in	pipeline	data	affect	downstream	diversity	
models	 and	 maps	 (observed,	 predicted)?	 We	 expect	 the	 pipe-
line	datasets	to	differ	in	the	resulting	models	(single	species	and	
stacked	SDMs,	hereafter:	S-	SDM)	and	maps.

3.	 How	does	the	pipeline	data—	after	being	cleaned	by	the	pipelines—	
differ	 from	 the	expert	data	 (observed	and	predicted),	 assuming	
that	 the	expert	data	represent	 the	most	accurate	Ephedra envi-
ronmental	and	geographical	range?	We	expect	the	quality	of	the	
pipeline	data	to	differ	from	the	expert	data.	The	differences	will	
be	measurable	(occurrences	and	correlations)	 in	the	models	and	
maps.

We	analyzed	to	which	extent	the	data	from	the	different	pipe-
lines	led	to	different	species	constellations	and	numbers	in	the	grid	
cells	and	visualized	the	differences	 in	diversity	maps	created	from	
S-	SDMs.	Finally,	we	discuss	how	realistic	the	results	from	GBIF	data	
and	expert	data	reflect	the	environmental	or	geographical	extent	of	
the Ephedra	species'	ranges.
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2  |  MATERIAL S AND METHODS

In	North	 America,	 Ephedra species are characteristic components 
of	arid	and	semi-	arid	regions	of	the	southwestern	USA	and	Mexico	
(Hollander	 &	 VanderWall,	 2009; Loera et al., 2015).	 They	 occur	
from	 the	 Death	 Valley	 to	 about	 2500 m	 in	 the	 Rocky	Mountains	
(Stevenson, 1993).	 The	 species	 share	 a	 morphologically	 reduced,	
uniform	 growth	 habit	 with	 mostly	 leafless,	 photosynthetic	 stems	
(Ickert-	Bond	&	Renner,	2016).	 Specimens	are	collected	 frequently,	
as	shown	by	the	record	numbers	of	the	public	providers	(e.g.,	GBIF:	
46,384	records	worldwide),	and	high-	quality	expert	data	are	availa-
ble	for	the	New	World	species	(Ickert-	Bond,	2003).	The	coordinates	
served	as	the	proxy	for	the	Ephedra	species'	characteristic	locations	
(response	variables),	 from	which	we	developed	 species	SDMs	and	
genus	S-	SDMs	for	North	America.

We	monitored	changes	 in	similarities	and	correlations	using	 the	
validated	records	from	P1	to	P6	and	the	expert	data	(observed	occur-
rences,	hereafter:	L1;	Table 2).	From	L1,	we	developed	L2	and	L3	data	
of	the	North	American	Ephedra	species	and	their	occupied	grid	cells	
(per	pipeline	and	the	expert	data).	L2	included	the	grid	cell	numbers	

an Ephedra	species	occupied,	and	L3	counted	the	concurrent	Ephedra 
species	per	grid	cell.	 L4	data	comprised	 the	correlations	of	 the	ob-
served	occupied	grid	cells.	The	L5	data	(pipeline	and	expert)	included	
the	predicted	distribution	in	S-	SDMs	across	the	pipelines	and	expert	
data	(L2/L4,	and	L5:	Spatial	autocorrelation	by	Moran's	I and correla-
tion	between	two	random	variables	by	Pearson's	r)	(Figure 3).

2.1  |  Data pipelines

Ensuring	comparability	across	six	pipelines,	the	process	chain	of	fil-
ters	provided	identical	conditions	to	optimize	the	provider	data	(See	
Table 1,	 the	 filters	of	 the	pipelines).	The	chain	consisted	of	 (1)	 se-
lecting	and	retrieving	data	from	GBIF,	(2)	standardizing	the	records	
by	 filtering,	 and	 (3)	 correcting	 or	 removing	 data	 errors	 (Figure 1, 
Table 2).	At	each	pipeline	step,	we	employed	one	or	more	DC	tools	
(e.g., Chapman, 2005;	Hijmans	&	Elith,	2019;	Zizka,	2019).	The	se-
lected	 tools	 (e.g.,	GBIF	web	 application,	written	 instructions,	 or	R 
packages)	 or	 their	 most	 recent	 updates	 were	 released	 between	
2005	and	2020	and	are	free	of	charge.	In	some	pipelines,	the	three	

TA B L E  1 Pipeline	filter	summary	for	standardization	and	error	removal

Categories Filter Requirement Rationale

STD Country	range Spatial North	America:	Mexico	and	the	USA

STD Infraspecific	rank Taxonomic Required	rank:	species	(Claridge	et	al.,	1997;	Reydon	&	Kunz,	2019),	
infraspecific	ranks	(e.g.,	subspecies,	hybrids)	to	be	omitted.

STD Collection	years Temporal 1945	to	2020,	as	older	records	are	more	likely	to	contain	erroneous	
coordinates	(Zizka	et	al.,	2020).

STD Basis	of	record Consistency Specimens and observations.

STD Occurrence	status Consistency Presence data.

FPS Non-	North	America-	native	Ephedra 
species

Taxon All	non-	native	Ephedra	species	that	are	allocated	to	the	North	
American	countries	either	by	mistake	or	are	artificially	introduced,	
for	example,	to	botanical	gardens.

FPS/REC Zero or missing coordinates Spatial Zeroes	and	missing	values	may	represent	records	with	data	entry	
errors.	Missing	values	will	cause	error	messages	in	ade4.

REC Longitude	and	latitude	are	equal Spatial Equal	longitude	and	latitude	may	represent	records	with	data	entry	
errors.

DUP Duplicate	records Consistency Duplicate	records	that	may	represent,	for	example,	record	copy	errors.

FPS Country	capitals Spatial Records	that	may	contain	the	coordinates	of	the	country	capital.

FPS Country	centroids Spatial Records	that	may	contain	the	centroid	coordinates	of	the	country.

FPS GBIF	headquarters Spatial Records	that	may	contain	the	coordinates	of	the	GBIF	headquarters.

FPS Biodiversity	institutions Spatial Records	that	may	contain	the	coordinates	of	biodiversity	institutions	
where	the	herbarium	voucher	is	stored.

FPS Geographic	outliers Spatial Geographic	outliers	that	may	represent	misidentified	specimens.

REC Urban	areas Spatial Records	from	urban	areas	that	may	represent	old	data	or	vague	locality	
descriptions.

REC dd.mm to dd.dd conversion errors Spatial Records	with	ddmm	to	dd.dd	conversion	error	(misinterpretation	of	the	
degree	sign	as	decimal	delimiter).

REC Rasterized	collections Spatial Records	with	a	significant	proportion	of	coordinates	that	might	have	a	
low precision.

FPS “Manual”	removal	of	false	positives Consistency False	positives	that	have	been	overlooked	by	automated	error	removal,	
based	on	the	knowledge	that	they	are	in	the	records.

Note:	Categories:	DUP,	duplicate	records;	FPS,	false	positives;	REC,	recording	errors;	STD,	standardization.
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steps	were	performed	by	one	(“three-	in-	one”)	DC	tool.	In	the	setup	
of	 the	process	chain,	we	followed	the	data	cleaning	recommenda-
tions	given	by	the	respective	DC	tool's	authors	and	pertinent	best-	
practice	guidelines	(Araújo	et	al.,	2019;	Guisan	et	al.,	2017).

We	retrieved	data	from	GBIF	(gbif.org,	2020)	on	November	18,	
2020,	 in	 four	different	ways:	 (1)	The	 filter	 “Ephedra	 L.”	 (hereafter:	
GBIF	(I))	retrieved	46,384	records	for	P5,	P6,	and	the	P0	benchmark	
data	using	the	“three-	in-	one”	GBIF	web	application	(GBIF,	2020a).	(2)	

The	filter	set	“Ephedra	L.	specimens	of	North	America,	from	1945	to	
2019”	(hereafter:	GBIF	(II))	selected	9484	records	for	the	P1	process	
chain	 using	 the	web	 application	 (GBIF,	2020b).	 In	 both	 cases,	 the	
data	were	downloaded	with	the	web	application.	(3)	rgbif,	a	“three-	
in-	one”	tool,	employed	its	integrated	functionality	to	standardize	the	
P2	and	P3	data	and	retrieved	6687	GBIF	records	into	the	userspace.	
(4)	dismo	selected	46,384	GBIF	records	for	P4	and	retrieved	them	
into	the	userspace.	(Details	see	Table 2).

F I G U R E  1 Workflow	of	the	pipelines	and	the	downstream	analyses.	The	pipelines'	part	comprised	the	following	sections:	Data	Retrieval,	
Standardization,	and	Error	Removal.	The	Downstream	Analysis	featured	the	Predictor	Variables	Extraction,	the	Model	Fitting,	the	Model	
Building	(SDMs,	S-	SDMs)	and	Evaluation,	and	the	Correlation	Analysis	developed	from	the	pipeline	data	P1	to	P6	and	the	expert	data.	
R	packages	used	in	the	course	of	the	workflow	are	in	italics.	(a)	Observed	species	distribution	from	GBIF	P1	data.	(b)	Observed	species	
distribution	from	expert	data.	Filter	categories:	DUP,	Duplicate	records;	FPS,	False	positives;	REC,	Recording	Errors.

http://gbif.org
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We	created	the	P0	data	for	comparison.	It	served	as	the	bench-
mark	 of	 standardization	 and	 errors,	 delivered	 by	 the	 GBIF	 data,	
which	the	DC	tools	could	have	removed	in	the	pipelines.	However,	
P0	was	not	itself	a	pipeline	nor	was	it	part	of	any	pipeline.	We	per-
formed	an	inventory	of	the	dataset	and	the	data	errors	that	might	in-
fluence	the	quality	of	the	downstream	models	(Table 2,	P0	column).	
Using	P0,	we	could	identify	questionable	records	and	the	degree	of	
feasibility	to	which	each	pipeline	removed	such	records.	After	data	

retrieval,	further	data	cleaning	was	performed	in	P3,	P4,	P5,	and	P6	
by	basic	R code (R Core Team, 2013),	the	dplyr	package	(of	Tidyverse, 
Wickham	et	al.,	2019),	and	the	CoordinateCleaner	(Zizka,	2019;	Zizka	
et al., 2019),	in	different	combinations	(Table 2).	We	selected	records	
of	taxon	rank	“species”	(Claridge	et	al.,	1997;	Reydon	&	Kunz,	2019),	
filtered	for	North	America	(Mexico,	USA),	and	collection	years	1945	
to	 2020	 (Zizka	 et	 al.,	2020).	 As	 the	 basis	 of	 records,	we	 selected	
specimens	and	observations.	During	error	removal,	we	focused	on	

TA B L E  2 Results	of	the	pipelines'	data	cleaning	performance,	compared	to	the	P0	benchmark	dataset	(summary	table)

Pipeline datasets P1 P2 P3 P4 P5 P6 P0 benchmark 
Input: Data retrieved by GBIF (II) rgbif rgbif dismo GBIF (I) GBIF (I) GBIF (I) 
Number of records retrieved 9484 6687 6687 46,384 46,384 46,384 46,384 
Non-native Ephedra species outside North America NA NA NA 32,495, rem 32,495, rem 32,495, rem 32,495, flg 
Number of records passed to the standardization NA NA 6687 13,889 13,889 13,889 13,889 

Data standardized by   GBIF rgbif rgbif, 
dplyr 

R code GBIF (I), dplyr GBIF (I), dplyr, CC, 
R code

North America-sampled Ephedra specimens (MX, US) 9484 6687 6687 13,889 13,889 13,889 13,889 
Occurrence status: presence default default default default default default default 

Non-native Ephedra specimens in North America 31, ret 0 0 55, rem 55, rem 55, rem 55, flg 
Not identifiable specimens in North America (e.g., genus 
level, fossil) 

296, ret 0 0 501, rem 501, rem 501, rem 501, flg 

North America-native, taxon rank: species 9010 6687 6678 13,240 13,240 13,240 13,240 
Infraspecific ranks 147, ret 0 0 704 rem 704 rem 704 rem 704 flg 

Collection years: >1944 9484 6687 6687 9560 9560 9560 9560 
Collection years: < 1945 NA NA NA 4329 rem 4329 rem 4329 rem 4329 flg 

Basis of record: observations, specimens 9484 6560 6560 13,762 13,762 13,762 13762 
Other basis of records NA 127, ret 127, rem  NA 127, rem 127, rem 127 flg 

Number of records passed to the data cleaning NA NA 6,560 8,300 8,173 8,173 

Data cleaned by   NA rgbif rgbif,  
CC  

R code dplyr, 
R code

CC,  
R code

NULL coordinates (Missing values) 2592, ret rem rem 1852, rem 1758, rem 1766, rem 5978, flg 
Zero coordinates 8, ret rem rem 8, rem 8, rem 8, flg 
Longitude and latitude are equal 8, ret 8, ret 8, rem 12, rem 12, rem 12, rem 22, flg 
Duplicate records (species,longitude,latitude,year,month,day) 1086, ret 1226, ret 1182, rem 1,31, rem 998, rem 1000, rem 3584, flg 
Country capitals 1, ret NA NA 1, ret 1, ret 1, rem 1, flg 
Country centroids 9, ret 8, ret 23, rem 23, ret 23, ret 23, rem 23, flg 
GBIF headquarters NA NA NA NA NA NA NA 
Biodiversity institutions 33, ret 19, ret 19, rem 36, ret 36, ret 36, rem 36, flg 
Geographic outliers 12, ret 12, ret 12, rem 35, ret 35, ret 35, rem 35, flg 
Sea coordinates 146, ret 67, ret 67, rem 228, ret 228, ret 61, rem 228, flg 
Urban areas 193, ret 165, ret 165, ret 298, ret 298, ret 2, ret 298, flg 
dd.mm to dd.dd conversion errors 202, ret 202, ret 0 278, ret 278, ret 0, rem 278, flg 
Rasterized collections, possibly reduced coordinate precision 56, ret 56, ret 56, rem 56, ret 56, ret 41, rem 56, flg 
Unidentified false positives (manually identified and removed) 2, ret 2, ret 2, ret  1, rem 2, rem 2, rem 2, flg 
Number of records passed to the data finalization NA NA 5,198 5,396 5,395 5,196 

Data standardized and finalized by   NA NA R code R code R code R code 
Native Ephedra species, sample size < 50 occ points 53, ret 9, ret 9, rem 9, rem 9, rem 9, rem 93, flg 
Output: Final number of cleaned records 9484 6687 5189 5387 5386  5187 13,889 

Color code key Data retrieval Data cleaning 
dismo Y NA 

basic R code NA Y 

coordinateCleaner NA Y 

dplyr NA Y 

GBIF (I) Y Y 

GBIF (II) Y Y 

rgbif Y Y 

Note:	The	color-	coded	cells	of	P1	to	P6	datasets	indicate	the	activity	of	a	particular	DC	tool	(color	code	see	below).	The	blue	cells	of	the	P0	
benchmark	indicate	the	number	of	Ephedra	records	in	GBIF,	quantified	by	standardization	and	error	category.	Records	which	did	not	comply	with	
the	standardization	conditions	or	were	erroneous	in	the	context	of	this	study	were	flagged	(flg).	Since	several	standardization	conditions	and	errors	
coincided	in	the	same	record,	the	number	of	removed	records	did	not	correspond	to	the	sum	of	the	identified	errors.	The	P1,	P2,	and	P3	data	retrieval	
tools	partially	standardized	the	data	and	eliminated	several	errors	(“three-	in-	one”	tools).	Thus,	the	number	of	records	retrieved	differed	significantly	
from	P4	to	P6,	and	P0.	The	removed	records	in	these	pipelines	could	only	be	reconstructed	as	differences	of	subcategories	(e.g.,	in-	scope	countries,	
collection	year,	null	and	zero	coordinates)	in	comparison	to	P0.	The	difference	between	P3	and	P2	resulted	from	the	added	dplyr and CC packages, 
which	increased	standardization	and	removed	still	more	erroneous	records.	Using	the	added	packages	ensured	more	insight	into	data	cleaning.
Abbreviation:	CC (→	P3/P6)	= R package CoordinateCleaner.
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taxonomic	and	spatial	errors	(Meyer	et	al.,	2016),	such	as	non-	native	
specimens,	missing	or	zero	values,	and	sea	coordinates.	We	also	re-
moved	false-	positive	records	reporting,	for	example,	occurrences	at	
biodiversity	institutions,	and	geographic	outliers.	From	the	P0	eval-
uation,	we	were	aware	of	two	false-	positive	occurrences	(Figure 2, 
Marker	2)	hidden	in	the	data.	We	found	these	errors	challenging	to	
be	recognized	by	any	tool.	Therefore,	we	removed	one	of	these	er-
rors	in	P4,	and	two	in	P5	and	P6,	using	basic	R	code.	As	coordinates	
with	three	or	fewer	decimal	places	often	indicate	they	were	obtained	
from	grid	maps	(Zizka	et	al.,	2019),	we	permitted	only	validated	coor-
dinates	with	no	less	than	four	decimal	places.	However,	this	precision	
was	 not	 required	 for	 the	modeling.	 The	CoordinateCleaner identi-
fied	 specimens	 of	 urban	 areas	 and	 flagged	 them	 for	 scrutiny.	We	
searched	for	duplicates	based	on	the	variables:	species,	coordinates,	
and	collection	date,	respectively,	and	removed	them.	Finalizing	the	

process	chains,	we	excluded	native	species	for	which	the	sample	size	
was	 lower	 than	50	occurrences	 to	 avoid	 biased	models	 and	maps	
(Guisan	et	al.,	2017;	Hijmans	&	Elith,	2019).	(Usage	of	the	tools	in	the	
pipelines, see Table 2).	At	the	end	of	the	pipelines,	we	examined	the	
retained	records	and	errors	in	the	pipelines'	datasets	in	comparison	
to	P0	(data	at	L1).

2.2  |  Downstream analysis

Data	 from	examination	of	physical	 herbarium	specimens	and	 field	
studies	(Ickert-	Bond,	2003)	represented	the	most	realistic	environ-
mental	and	geographical	range	(“gold	standard”,	Araújo	et	al.,	2019)	
of	 the	 genus	Ephedra	 in	North	America.	 The	 expert	 dataset	 com-
prised	4081	records	of	New	World	Ephedra	specimens	from	herbaria	

F I G U R E  2 (a–	c)	North	America-	native	Ephedra	specimens	(female	specimens	with	seeds).	Ephedra antisyphilitica, E. nevadensis, and E. 
trifurca	(left	to	right).	(d)	Examples	of	taxonomic	and	spatial	errors	identified	in	the	Ephedra	data.	Filter	categories	of	the	following	markers:	
False	positives.	Markers	1,	8,	and	9	were	specimens	from	shops	in	Seattle	and	Berkeley.	Markers	3,	4,	10,	and	11	were	non-	native	species	
from	botanical	gardens	and	scientific	institutes.	Marker	2	pointed	to	a	North	America-	native	species	at	the	University	of	Connecticut,	NY.	
Markers	5	to	7	showed	coordinate	errors	that	the	verbatim	locality	description	can	only	identify.	The	species	at	markers	12	and	13	were	
misidentified,	as	the	documented	species	do	not	occur	naturally	at	these	localities.	The	data	for	the	map	derived	from	the	P1,	post-	cleaning	
(L3,	number	of	co-	occurring	species).	Color	coding	of	the	map:	P1	observed	distribution	(see	Figure 4).

(a) (b) (c)

(d)



    |  7 of 14FÜHRDING-POTSCHKAT et al.

F I G U R E  3 Information	condensing	pyramid	of	the	pipelines	and	the	expert	data	(L1	to	L5:	Condensing	levels	of	the	data).	The	data	show	
an	increasingly	higher	correlation	from	the	bottom	to	the	top	of	the	pyramid,	which	results	from	data	transformations	into	an	increasingly	
higher	condensed	species	occurrence	information	state.	The	704	expert	data	occurrences	(L1)	were	allocated	into	358	grid	cells	(L2,	with	a	
maximum	of	four	co-	occurring	species,	L3).	The	correlation	of	0.6536	(L4,	mean	Pearson's	r	of	pairings	[P1	to	P6/expert])	was	compared	to	
the	mean	of	the	pairings	P1	to	P6.	At	this	level	(L4),	the	minimum	Pearson's	r-	value	of	the	occupied	grid	cells	from	pipeline	data	was	.9920	
(pair:	P1/P6),	and	the	maximum	Pearson's	r	value	was	.9999	(pair:	P4/P5).	At	the	L5	level,	the	minimum	Pearson's	r	value	was	.9951	(pair:	P1/
P6),	and	the	maximum	Pearson's	r	value	was	1.0000	(pair:	P4/P5).	Dashed	box:	Expert	data	comparison	numbers,	L2	to	L4.

F I G U R E  4 Stacked	species	distribution	
maps	based	on	cleaned	GBIF	data	
from	pipelines	P1,	P6,	and	expert	data.	
Depicted	are	the	maps	of	the	least	
cleaning P1 and the most cleaning P6 
that	show	only	minor	differences	(the	
maps	from	the	other	pipeline	data	are	
close	to	P6).	The	control	data	map	from	
the	expert	data	shows	differences	to	the	
pipelines.	Left:	Observed	distribution	(L2	
data).	Point-	occurrences	after	passing	
the	pipelines,	allocated	to	grid	cells	of	a	
stacked	range	map	of	all	Ephedra species. 
The	expert	map	shows	less	occupied	grid	
cells (n =	358)	than	P1	(n =	636)	resulting	
in	a	smaller	range.	Right:	Map	of	the	
predicted	probability	of	species	from	
S-	SDMs	(L5	data).	The	color	keys	show	
highly	correlated	patterns	of	each	data	
quality	(P1,	P6,	and	expert	data:	0	to	12	
species,	Pearson's	r =	.9173).
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with	large	holdings	of	Ephedra	in	both	North	and	South	America	(e.g.,	
ARIZ,	ASU,	HUH,	NY,	RM,	SGO,	SI,	TEX,	UC,	UNAM,	US;	herbarium	
acronyms	according	to	Thiers,	2022).	A	total	of	704	records	of	12	
Ephedra	species	(L1)	were	selected	for	North	America;	however,	they	
were	not	processed	in	a	pipeline.	We	applied	standardization	condi-
tions	only	for	comparability.	The	records	contained	confirmed	taxa,	
examined	coordinates,	and	detailed	 locality	descriptions	compara-
ble	to	field-	collected	data.	We	considered	an	overlap	of	90	records	
of	13,889	from	GBIF	and	the	expert	dataset	negligible.	As	Ephedra 
is	 adapted	 to	 dry	 environments,	 we	 imported	 19	 temperature	
and	 precipitation	 variables	 from	 the	 CHELSA	 climatology	 (Karger	
et al., 2017),	elevation	data	as	a	proxy	for	landscape	heterogeneity	
(GMTED,	2020),	and	plant-	available	water	data	(Zhang	et	al.,	2018).	
From	their	habitat	description	(e.g.,	Cutler,	1939; Stevenson, 1993),	
we	 assumed	 the	 selected	 environmental	 data	 being	 ecologically	
relevant.

For	 the	 SDMs	 and	 S-	SDMs,	 we	 created	 a	 grid	 of	 4017	 cells	
across	Mexico	and	 the	USA	 (30	arc	minutes,	WGS84)	using	wrld_
simple (R package maptools, Bivand et al., 2022)	and	raster	(Hijmans	
et al., 2017).	The	grid	size	reasonably	showed	the	co-	occurring	spe-
cies,	 which	 was	 not	 the	 case	 on	 different	 scales.	We	 aggregated	
the	environmental	data	 to	 the	grid	 resolution	 (sp package, version 
1.4-	5,	Bivand	et	al.,	2013;	Pebesma	&	Bivand,	2005)	and	extracted	
the	values	for	each	occurrence	(raster;	Hijmans	&	van	Etten,	2021).	
We	built	a	presence-	absence	table,	creating	a	random	selection	of	
pseudo-	absences	for	each	Ephedra	species	using	the	R package bio-
mod2	(Thuiller	et	al.,	2016).	We	tested	the	localities	where	Ephedra 
species were not recorded (R package ecospat, Di Cola et al., 2017).	
We	anticipated	environmental	 conditions	 to	 cause	absence	 (Loera	
et al., 2015; Stevenson, 1993),	making	sure	that	the	localities	used	
for	 fitting	 the	 model	 represented	 the	 requirements	 of	 the	 spe-
cies	across	North	America	 (Training	area,	Guisan	et	al.,	2017).	We	
summed	up	 the	species	present	 in	 the	grid	cells	as	 the	number	of	
co-	occurring	species.	(L2,	L3).

We	 identified	 the	 contributing	 predictors	 (using	 R packages 
ade4,	Bougeard	&	Dray,	2018 and corrplot,	Wei	et	al.,	2017).	From	
the	21	variables,	we	selected	a	subset	of	 reasonably	uncorrelated	
variables	per	species	using	biomod2 (Table S2;	Guisan	et	al.,	2017; 
Thuiller	 et	 al.,	 2016).	 Reasonably	 uncorrelated	 refers	 to	 being	
below	 the	 recommended	 threshold	of	0.7	 (Dormann	et	 al.,	2013).	
As	 goodness-	of-	fit	 evidence,	 we	 used	 the	 Akaike	 Information	
Criterion	(AIC;	Johnson	&	Omland,	2004),	and	Tjur's	R2	(Coefficient	
of	 Discrimination	 for	 binary	 outcomes;	 R package performance, 
Lüdecke	et	al.,	2021)	to	identify	the	variables	with	the	highest	im-
pact (Table S2).	Finally,	we	fitted	logistic	regression	models	for	the	
Ephedra	occurrences	using	glm	as	the	model	and	“binomial”	as	the	
distribution	family.	The	threshold	value	of	a	high-	performance	index	
(0.9,	Guisan	et	al.,	2017)	was	used	to	evaluate	the	predictive	accu-
racy	of	the	model,	particularly	the	Receiver	Operating	Characteristic	
Curve	(ROC)	and	the	area	under	the	curve	(AUC)	(R packages bio-
mod2,	Thuiller	&	Lafourcade,	2019, and ROCR, Sing et al., 2015).	We	
stacked	the	predictions	of	the	12	Ephedra	species	resulting	from	the	
different	pipelines	as	well	 as	 the	expert	data	 to	S-	SDMs	 (without	

using	thresholds;	Biber	et	al.,	2020; Calabrese et al., 2014;	Guisan	
et al., 2017).	The	correlations	between	the	observed	and	the	pre-
dicted Ephedra	occurrences	informed	how	strongly	the	differences	
between	the	pipelines	and	the	expert	data	affected	the	respective	
SDMs	and	S-	SDMs	(L5).

We	inspected	spatial	autocorrelation	(L2/L4:	grid	occupation,	L5:	
predicted	 distributions)	 using	 the	 Moran's	 I	 coefficient	 (R package 
spdep, Bivand et al., 2015).	We	computed	the	correlations	of	the	ob-
served and predicted Ephedra	occurrences	in	two	pipelines	(the	least	
cleaned	data,	P1,	and	the	most	cleaned	data,	P6)	and	the	expert	data	
using	Pearson's	r (R package rstatix, Kassambara, 2020).	Ultimately,	we	
visualized	them	as	map	pairs	(Figure 4);	and	to	adequately	represent	
the species richness in the maps, we chose 11 breaks (R package class-
Int, Bivand, 2022)	for	the	maximum	possible	co-	occurring	species.

3  |  RESULTS

The	GBIF	web	 interface	 using	GBIF	 (I)	 filters	 and	dismo retrieved 
46,384	unstandardized	and	uncleaned,	globally	distributed	Ephedra 
datasets.	 The	 GBIF	 web	 interface	 using	 GBIF	 (II)	 filters	 retrieved	
9484	 partially	 standardized	Ephedra	 records	 from	North	America.	
rgbif	 retrieved	 6687	 somewhat	 standardized	 specimen	 records	
from	North	America	and	already	removed	significant	spatial	errors.	
(Download	 results	 see	Table 2).	The	 three	 tools	 stopped	after	 the	
data retrieval.

3.1  |  P0 benchmark data

About	13,889	P0	records	represented	the	unstandardized	and	un-
cleaned	GBIF	North	American	Ephedra	data.	A	total	of	1979	speci-
mens	were	 collected	 or	 observed	 in	Mexico	 (14.2%)	 and	 11,910	
in	the	USA	(85.8%).	The	majority	of	species	records	consisted	of	
North	America-	native	E. viridis	(19.0%),	E. aspera	(14.4%),	E. califor-
nica	 (14.1%),	E. nevadensis	 (13.3%),	E. trifurca	 (11.9%),	 and	E. tor-
reyana	(8.7%),	a	total	of	81.4%	for	six	species.	Another	six	native	
species, E. antisyphilitica	 (4.4%),	 E. funerea	 (2.4%),	 E. fasciculata 
(1.8%),	E. pedunculata	(1.5%),	E. compacta	(1.3%),	and	E. cutleri	(1.1%)	
totaled	12.5%.	The	remaining	6.1%	were	non-	native	(55	taxonomic	
false	positives	of	South	American	and	Eurasian	origin)	or	indeter-
minate	 specimens	 (499	 specimens	 of	 genus	 Ephedra	 L.).	 Several	
standardization	 conditions	 and	 errors	 coincided	 in	 the	 same	 re-
cord.	 Thus,	 the	 number	 of	 removed	 records	 did	 not	 correspond	
to	 the	 sum	of	 the	 identified	 errors.	About	 5187	 records	 (37.3%)	
were	flagged	as	fit-	for-	use	for	the	downstream	analyses.	Around	
8702	records	(63.7%)	were	marked	for	removal	due	to	one	or	more	
significant	errors.	Missing	coordinates	(5978	records,	43.1%)	rep-
resented	 the	majority	 of	 identified	 data	 errors,	 followed	 by	 the	
sampling	 year	 (4329	 records,	 31.1%,	were	 older	 than	 1945)	 and	
the	duplicate	 records	 (3584	 records,	25.8%).	About	220	 records	
showed	coordinates	in	bodies	of	water.	With	two	exceptions,	the	
non-	native	Ephedra	species	were,	for	example,	found	in	botanical	
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gardens	 and	 scientific	 institutes	 (e.g.,	 Atlanta	 Botanical	 Garden;	
Figure 2d,	 locality	markers	3,	4,	10,	and	11).	As	a	few	non-	native	
species	contain	medicinally	active	substances,	they	were	reported	
with	two	records	from	a	shop	in	Berkeley	(E. sinica, Figure 2d, lo-
cality	markers	 8	 and	 9)	 and	 one	 record	 from	 an	 herbal	 product	
shop in Seattle (E. sinica, Figure 2d,	locality	marker	1).	We	detected	
E. nevadensis	at	the	University	of	Connecticut	(Figure 2d,	locality	
marker	2),	 yet	 this	 species	 is	native	 to	 the	Southwestern	United	
States.	Three	 records	 revealed	misplaced	 taxa	by	comparing	 the	
verbatim	 locality	 description	with	 the	 coordinates.	 These	 errors	
were	not	identified	by	a	tool,	only	by	scrutiny.	Locality	marker	12	
referenced	a	misidentified	specimen	(E. distachya, Figure 2d)	that	
does	not	naturally	occur	 in	Coahuila,	Mexico.	The	specimen	that	
locality	marker	13	referenced	(E. trifurcata, Figure 2d)	might	be	a	
misspelling	of	E. trifurca	(P0	results,	see	Table 2, Table S1).

3.2  |  Expert data

Five	hundred	seventy-	seven	of	2251	specimens	were	collected	or	re-
viewed	from	Mexico	(25.3%)	and	1674	specimens	from	the	US	(75.4%).	
After	standardization,	704	records	remained	(210	records	of	Mexican	
specimens,	494	records	of	US	specimens).	After	standardization,	the	
majority	of	records	(65.2%)	were	allocated	to	E. aspera	(22.3%),	E. tri-
furca	 (21%),	 E. fasciculata	 (11.4%),	 and	 E. antisyphilitica	 (10.5%).	 The	
other eight species, E. viridis	 (7.1%),	E. californica	 (5.4%),	E. torreyana 
(5.1%),	E. funerea	(4.5%),	E. compacta	(3.7%),	E. pedunculata	(3.3%),	E. ne-
vadensis	(2.3%),	and	E. cutleri	(1.4%)	totaled	32.8%	of	the	standardized	
records.	The	remaining	14	records	(2%)	were	of	other	taxonomic	ranks.

3.3  |  Effects of differences in the pipeline data on 
diversity models

P1	and	P2	were	partly	standardized	in	their	process	chain.	GBIF	(II)	
of	 P1	 met	 four	 out	 of	 five	 standardization	 requirements.	 Explicit	
error	removal	did	not	occur;	however,	P1	 implicitly	removed	3386	
missing	coordinate	records	as	a	side	effect	of	the	standardization.	It	
left	2592	missing	coordinates	 records,	296	 indeterminate	 records,	
and	33	South	American	and	Eurasian	species	in	the	P1	dataset.	P2's	
rgbif	met	three	standardization	requirements,	but	the	resulting	data	
still	 contained	 infraspecific	 ranks.	 rgbif	 standardized	 the	 P2	 data	
partly,	 using	 the	 parametrized	 standardization	 criteria,	 and,	 in	 ad-
dition,	the	built-	in	error	exclusion	parameter	of	 invalid	coordinates	
was	 employed.	 Except	 for	 excluding	missing	 values	 in	 the	 coordi-
nates, P2 removed no other spatial errors.

P3,	 P4,	 P5,	 and	 P6	 continued	 their	 respective	 process	 chains.	
The	pipelines	removed	between	43.1%	and	45.3%	of	all	spatial	error	
types	(e.g.,	the	complete	subset	of	5986	missing	coordinates	records,	
see Table 2).	P3	used	the	dplyr and CoodinateCleaner, providing 5189 
records	to	the	downstream	analyses.	In	P4,	we	fully	standardized	the	
data,	using	instructions	explained	in	a	tutorial	(Hijmans	&	Elith,	2019)	
and basic R	 code.	 P4	 provided	 5387	 records	 to	 the	 downstream	

analyses.	In	P5,	we	standardized	the	data	and	removed	errors,	using	
basic R code and the dplyr. P5 provided 5386 records to the down-
stream	analyses.	P6	used	instructions	from	Chapman	(2005)	trans-
lated to basic R code and dplyr	 functionality	 to	 handle	 taxonomic	
errors. The CoordinateCleaner	removed	spatial	errors.	P6	identified	
5187	 fit-	for-	use	 records	 for	 the	downstream	analyses.	Due	 to	not	
meeting	 the	 sampling	 size	 criteria,	 we	manually	 removed	 Ephedra 
coryi	records	from	the	pipelines.	At	the	end	of	the	pipelines,	the	re-
cords	for	the	downstream	analyses	varied	considerably	and	ranged	
from	9484	(P1)	to	5187	(P6)	(L1)	(Table 2).

The	cleaned	datasets	differed	by	4288	(P1	vs.	P6),	and	the	num-
ber	of	occupied	grid	cells	by	26	grid	cells	(maximum).	We	observed	
similarly	clustered	occupancy	patterns	 in	the	distribution	maps	re-
gardless	 of	 the	 pipeline	 since	most	 records	were	 allocated	 to	 the	
same	grid	cells	per	 species.	The	occupied	grid	cells	 in	 the	stacked	
Ephedra	range	maps	varied	between	636	and	610	(P1	vs.	P6	data).	
Comparisons	of	highly	correlated	occupied	grid	cells	(mean	Pearson's	
r	 across	 the	pipelines:	 .9956)	were	 confirmed	by	highly	 correlated	
maps	 of	 observed	 Ephedra	 distribution	 with	 well-	defined	 clusters	
(Figure 3, and Figure 4,	P1	and	P6	map	pairs).	Moran's	 I	confirmed	
the	 spatially	 clustered	 patterns	 of	 the	 Ephedra species (observed 
P1/P6	Moran's	I:	0.144,	observed	expert	data's	Moran's	I:	0.087,	p-	
value:	significant)	(L2/L4).	Ephedra californica	occurrences	occupied	
identical	 grid	 cells	 across	 all	 six	 pipelines;	 therefore,	 the	 Pearson	
correlation	coefficient	was	1.	For	the	other	11	Ephedra species, the 
occupancy	of	the	grid	cells	varied	slightly	across	the	pipelines,	de-
pending	 on	 the	 respective	 pipelines	 compared.	 For	 example,	 in	E. 
fasciculata,	P1	differed	from	P6	with	49	versus	53	occupied	grid	cells	
(92.5%	identical	occupancy),	while	the	occupancy	in	P2	and	P3	in	E. 
antisyphilitica	was	again	identical	(Pearson's	r =	1).	The	evaluation	of	
the	S-	SDMs	showed	that	the	grid	cell	occupancy	patterns	(observed	
occurrences)	continued	in	the	species	distribution	maps	(predicted	
occurrences).	Correlograms	based	on	residual	analysis	are	 listed	 in	
Figure	S2.

Post-	pipelines,	 we	 found	 that	 the	 ade4 indicated coordinates 
with	missing	values	as	invalid	in	records	containing	this	error	type,	
hence,	may	also	be	regarded	as	a	testing	point	for	missing	values	in	
the	coordinates.	(Note	that	we	did	not	intervene	in	the	data	cleaning	
in	P1	by	GBIF	(II).	Thus,	records	with	missing	values	in	coordinates	
were	preserved).

The	 final	 number	 of	 predictors	 for	 the	 species	 ranged	 from	 4	
(Ephedra aspera)	to	10	(Ephedra viridis)	(Table	S2).	The	area	under	the	
curve	 (AUC)	scored	from	0.9355	(Ephedra antisyphilitica)	 to	0.9990	
(Ephedra nevadensis)	 (AUC	mean:	 0.9825).	 The	AIC	decreased	 to	 a	
stable	minimum	value	in	the	variable's	combination	tests,	indicating	
the	best	possible	model	performance	compared	to	the	other	variable	
combinations.	Therefore,	we	considered	our	models	as	adequately	
accurate	to	describe	the	distribution	of	the	Ephedra species with the 
identified	explanatory	variables.	The	differences	in	the	pipelines	had	
a	minor	effect	on	the	correlations,	models,	and	maps	at	L4	and	L5.	
At	 level	L4,	 the	mean	Pearson's	 r	of	 the	occupied	grid	cells	across	
the	pipelines	was	0.9956	(P1/P6	pair:	0.9920,	minimum;	P4/P5	pair:	
0.9999,	 maximum).	 The	 high	 correlation	 led	 to	 maps	 of	 observed	
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Ephedra	distribution	that	showed	also	only	insignificant	differences	
(Figure 4,	P1	and	P6	observed	distribution).	Across	the	six	pipelines,	
the	predicted	probability	of	occurrence	from	the	S-	SDMs	indicated	
high	correlations	(mean	Pearson's	r = .9986, Figure 3,	L5).	Figure 4 
displays	the	maps	of	the	predicted	distribution	based	on	the	S-	SDMs.

3.4  |  Differences between pipeline data and 
expert data

The	704	expert	data	occurrences	(L1)	were	allocated	into	358	grid	
cells,	with	a	maximum	of	four	co-	occurring	species	(L3).	Across	the	
pipelines,	294.5	of	the	average	630.5	grid	cells	(46.7%)	showed	oc-
cupancy	by	one	species,	compared	to	265	of	358	grid	cells	(74.0%)	
of	the	expert	data.	42.6	of	the	grid	cells	showed	occupancy	by	four	
species	(6.7%),	compared	to	the	maximum	of	four	species	(1.1%)	of	
the	expert	data.	Ten	grid	cells	showed	occupancy	by	the	maximum	
of	six	species	(1.6%)	in	the	pipeline	data	(L2).

The	correlations	differed	clearly	between	the	pipelines	and	the	
expert	data.	At	level	L4,	the	mean	Pearson's	r	of	the	occupied	grid	
cells	for	pipeline	data	correlated	to	the	expert	data	was	.6536	(L4:	
Figure 3).	The	correlation	of	the	predicted	occurrence	probabilities	
in	the	S-	SDMs	showed	a	mean	Pearson's	r	of	.9173.	Across	the	dif-
ferent	pipelines	and	the	expert	data,	the	observed	diversity	 in	the	
maps	from	the	S-	SDMs	showed	a	 large	Ephedra	diversity	center	 in	
Southern	California	 that	 continued	 to	 the	North	 into	Arizona	 and	
Nevada,	 and	 to	 the	 South	 into	 the	 states	 of	 Baja	 California	 and	
Sonora,	 Mexico	 with	 a	 predicted	 Ephedra	 diversity	 greater	 than	
seven	species.	A	second	diversity	center	emerged	across	the	state	
of	Texas,	USA,	and	continued	into	the	states	of	Chihuahua,	Coahuila,	
Nuevo	Léon,	and	Tamaulipas,	Mexico,	with	a	predicted	Ephedra di-
versity	of	up	to	seven	species.	(L5).	The	diversity	patterns	in	the	ex-
pert	data,	although	similar	in	shape,	were	less	distinct	(Figure 4).

4  |  DISCUSSION

We	analyzed	 the	data	 cleaning	performance	of	 six	 different	 pipe-
lines	for	digital	point-	occurrence	records	and	their	effects	on	species	
distribution	models,	 a	 common	downstream	application	 in	macro-
ecology.	The	six	pipelines	differed	significantly	in	the	number	of	ac-
cepted	species,	errors	removed,	and	remaining	records	for	analysis	
(Table 2, Table S1).	 For	 example,	P6	 removed	 the	most	 significant	
number	of	records,	approximately	twice	as	many	records	as	the	least	
cleaning	pipeline	P1.	Data	 from	P1	differed	 from	 the	other	 group	
by	hosting	17	non-	native	 species	 in	addition	 to	 the	12	natives,	 all	
of	 which	 were	 removed	 by	 the	 other	 pipelines.	 P1	 also	 retained	
false-	positive	coordinates	(e.g.,	sea,	country	capitals	and	centroids,	
biodiversity	institutions,	herbal	shops),	geographic	outliers,	and	du-
plicates,	which	were	removed	to	different	degrees	by	the	pipelines	
of	the	other	group	(Table 2)	(Question	1).

Due	 to	 the	 low	 complexity	 of	 the	 data	 cleaning	 environment,	
P1	and	P2	required	only	little	effort	to	get	their	pipelines	installed.	

Both	pipelines	did	not	achieve	the	standardization	and	error	elimi-
nation	anticipated	 to	 reduce	unwanted	effects	 in	 the	downstream	
analyses.	 P1	 identified	 potential	 shortcomings	 in	 the	 data	 only	 in	
a	 few	 cases	 due	 to	 the	 limited	 options	 of	 the	GBIF	 filter	 applica-
tion.	 In	 contrast,	 P3	 to	 P6	were	more	 demanding	 in	 the	 required	
know-	how,	 mainly	 when	 using	 the	 R packages and preparing the 
respective	user	environments	but	offered	a	more	substantial	func-
tionality	 (Table 2).	 The	 R	 packages	 performed	 the	 data	 cleaning	
well	 for	 coordinate	 errors	 that	 rendered	 records	 unusable	 for	 use	
in	diversity	models.	Generalist	packages	 like	the	dplyr and special-
ists like the CoordinateCleaner,	 especially	 in	 combination,	 reliably	
identified	problematic	records	with	missing	values	and	false-	positive	
occurrences	 such	 as	 biodiversity	 institutes	 or	 country	 centroids.	
Accurate	distribution	data	are	essential	for	any	SDM	and	the	many	
comparable	downstream	analyses	(Araújo	&	Guisan,	2006; Chapman 
et al., 2000; Kadmon et al., 2004;	Zizka	et	al.,	2020).	Therefore,	the	
main	aim	of	well-	designed	pipelines	is	to	efficiently	and	automatedly	
generate	 cleaned	 data	 tailored	 to	 the	 specific	 research	 question	
(Zizka	et	al.,	2020; Table 1).	We	mainly	 focused	on	comparing	 the	
outcomes	of	different	pipelines	that	used	well-	known	data	retrieval	
or	 DC	 tools	 to	 answer	 this	 question.	 The	 standardization	 filters	
served	to	unify	the	record	structure	across	the	pipelines.	Although	
older	herbarium	vouchers	or	observations	are	as	valuable	as	recent	
vouchers	since	they	may	document	both	a	historical	status	and	bio-
diversity	changes	over	time	(Meyer	et	al.,	2016),	the	“collection	year,	
older	than	1945”	filter,	for	example,	was	implemented	to	standardize	
the	 data	 but	 also	 to	 reduce	 expected	 general	 coordinate	 impreci-
sions	up-	front.	However,	removing	taxonomic	and	spatial	errors	was	
at	the	core	of	the	pipeline	data	for	the	model	fitting	and	model	build-
ing and the respective tools.

4.1  |  Influence of different data cleaning solutions 
on downstream analyses

Removing	 the	 non-	native	 species,	 which	 consisted	 of	 only	 a	 few	
specimens,	reduced	the	number	of	cleaned	records	only	slightly	(per	
species	and	overall).	The	non-	native	Ephedra species had no notice-
able	effect	in	the	occupied	grid	cells	as	co-	occurring	species.	They	
were	concentrated	in	a	few	places	and	in	small	numbers	of	species	
only	(P1,	Figures 3 and 4:	observed	distribution).	The	low	level	of	dif-
ferences	was	confirmed	by	reasonably	high	correlation	coefficients,	
which	 continued	 to	 even	 higher	 correlation	 coefficients	 regarding	
the	predicted	probability	of	species	in	S-	SDMs	(L1	to	L5:	Figure 3).	
Removing	the	missing	value	records	in	the	pipelines	was	essential	for	
the	downstream	analyses.	The	model	fitting	tool	issued	error	mes-
sages	when	identifying	any	in	the	provided	data	(ade4).	Although	we	
included	 the	duplicate	 records	 filter	 in	determining	 the	number	of	
duplicate	 records	 in	 the	data,	duplicate	 records	did	not	 affect	 the	
fitted	models	(Question	2).

The	 tested	 pipelines	 offer	 automated	 data	 cleaning	 in	 a	 stan-
dardized	and	reproducible	manner.	Pipeline	P1	supports	all	users	but	
produces	data	that	still	contain	serious	taxonomic	and	spatial	errors.	
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In	contrast,	the	pipelines	P2	to	P6,	which	help	users	with	some	pro-
gramming	experience	(Zizka	et	al.,	2019, 2020),	produce	data	quali-
ties	where	many	errors	were	eliminated	and	which	seem	suitable	for	
diversity	model	use	(SDMs	and	S-	SDMs).

4.2  |  Significant differences of the expert 
data and the GBIF data

The	P1	data	differed	noticeably	from	the	expert	data,	for	example,	
in the species composition (P1 data: 29 species vs. expert data, and 
P2	to	P6	data:	12	species),	the	number	of	records	per	species,	the	
number	of	occupied	grid	cells	after	the	observations	were	allocated	
to gridded range maps (Figure 3,	L2),	and	the	number	of	co-	occurring	
species.	P2	to	P6	differed	 less	from	the	expert	data.	 (Question	3).	
The	 aim	of	 collating	 data	 for	 SDMs	 is	 to	 avoid	 bias	 and	 inaccura-
cies	 in	taxonomic	and	distribution	data,	and	an	effective	means	of	
overcoming	bias	and	inaccuracies	is	to	build	data	from	field	studies	
(Araújo	et	al.,	2019; Chapman, 2005).	Well-	maintained	expert	data	
support	 both	 the	 aims	 and	provide	 an	 alternative	 to	 field	 studies.	
A	less	maintained	data	alternative,	biodiversity	records	from	GBIF,	
are	free	of	charge	but	with	limitations	in	data	quality	due	to	several	
known	 and	 unknown	 errors.	 Expert	 and	GBIF	 data	 form	 the	 data	
layer	 (Bakshi,	2012;	Vetter,	1990).	However,	 the	critical	difference	
between	expert	data	and	GBIF	data	is	that	the	expert	data	may	be	
used	unprocessed	as	input	to	the	data	modeling	workflow	as	there	
are	no	data	errors	to	be	expected.	For	the	GBIF	data,	an	additional	
data	cleaning	process	chain	needs	to	be	included	in	the	workflow	so	
that	the	data	modeling	can	be	meaningfully	linked	to	the	data	layer.	
Consequently,	a	user	of	GBIF	data	always	has	to	plan	for	an	addi-
tional	effort	for	the	data	cleaning	design,	which	includes	the	func-
tional	structure	of	the	target	data	that	is	fit	for	use,	and	a	pipeline	to	
obtain	it	(Wirth	&	Hipp,	2000;	Zizka	et	al.,	2019).

4.3  |  A major issue: misidentified specimens that 
still hide in the dataset

Comparing	 the	quantities	of	 the	GBIF	pipelines'	 analysis	 data	 and	
the	 expert	 data	 shows	 that	 the	 expert	 data	 are	 roughly	 11.8%	or	
about	one-	eighth	of	the	GBIF	data	(mean).	From	this	ratio,	we	may	
assume	that	there	are	still	many	errors	in	the	pipeline	data,	hence,	
the	visible	differences	in	the	maps	(Figure 4).	This	point	opens	the	
question	 of	 how	 realistic	 the	 GBIF	 data	 is.	 No	 pipeline	 detected	
taxonomic	 issues	 such	 as	 misidentifications	 or	 false	 positives	 like	
non-	native	specimens	in	the	data	due	to	a	lack	of	information	about	
their	distributional	status.	For	differently	determined	specimens	of	
the	 same	origin,	 given	 to	other	 institutes	 and	handled	 in	 isolation	
from	their	parent	specimens,	Nicolson	 (2019)	provided	a	 technical	
solution.	We	used	expert	know-	how	to	assess	the	likeliness	of	taxo-
nomic	 identities	 in	recorded	 localities	as	there	presently	 is	no	tool	
that	possesses	this	functionality	(Figure	S1).	Developing	a	tool	that	
resolves	this	issue	might	be	challenging	considering	the	many	names,	

from	synonyms	to	misspellings	(Zermoglio	et	al.,	2016).	A	correction	
method	 that	was	 already	 introduced	 is	 that	 a	 data	owner	 directly	
changes	false	positives	identified	in	individual	cases	by	notifying	the	
provider.	Generally,	with	the	present	interfaces	to	GBIF,	it	cannot	be	
avoided	that	misidentified	taxa	enter	into	the	databases	by,	for	ex-
ample,	citizen	scientists.	Interfaces	that	prevent	taxonomic	or	spatial	
errors	before	entering	a	public	provider	must	be	designed.

5  |  CONCLUSION

Our	 results	 suggest	 that	 the	P1	data	 show	more	differences	 from	
P2	 to	 P6	 data	 than	within	 this	 group.	Depending	 on	 the	 pipeline,	
one-	third	 (P1)	 to	 two-	thirds	 (P6)	 of	 the	GBIF	 records	were	 classi-
fied	as	unsuitable	for	biodiversity	analyses.	Importantly,	differences	
in	the	pipeline	data	did	not	translate	 into	significant	differences	 in	
downstream	SDMs	and	S-	SDMs,	suggesting	remarkable	robustness	
of	 these	 analyses	 toward	 data	 cleaning	 differences.	 The	 increas-
ingly	condensed	 information	from	the	occurrence	data	 led	to	ever	
stronger correlations across the pipelines. Three aspects emerged 
from	 the	 study.	First,	data	 from	 the	GBIF	web	application	 require	
further	cleaning.	Second,	the	R	packages	reliably	removed	incorrect	
or	dubious	coordinates.	Therefore,	choosing	the	right	DC	tools	de-
pends	on	 the	 researcher's	 skills.	Third,	 it	 is	 challenging	 to	 identify	
misidentified	specimens	 in	the	public	data	providers.	To	overcome	
this	 difficulty,	we	 suggest	 new	processes	 to	 identify	misidentified	
specimens	or	prevent	new	misidentified	specimens	from	being	en-
tered	 into	 the	 public	 data	 providers.	 Consequently,	 programmers	
developing	new	data	cleaning	packages	should	consider	the	require-
ments	for	data	cleaning,	notably	as	the	CoordinateCleaner eliminates 
most spatial errors.
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