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Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD)
are two incurable neurodegenerative disorders, often considered as the extreme
manifestations of a disease spectrum, as they share similar pathomechanisms. In
support of this, pathological aggregation of the RNA/DNA binding proteins trans-
activation response element DNA-binding protein 43 (TDP-43) or fused in sarcoma
(FUS) is the pathological hallmark found in neurons and glial cells of subsets
of patients affected by either condition (i.e., ALS/FTLD—TDP-43 or ALS/FTLD—
FUS, respectively). Among glia, oligodendrocytes are the most abundant population,
designated to ensheath the axons with myelin and to provide them with metabolic
and trophic support. In this minireview, we recapitulate the neuropathological evidence
for oligodendroglia impairment in ALS/FTLD. We then debate how TDP-43 and FUS
target oligodendrocyte transcripts, thereby controlling their homeostatic abilities toward
the axons. Finally, we discuss cellular and animal models aimed at investigating the
functional consequences of manipulating TDP-43 and FUS in oligodendrocytes in vivo.
Taken together, current data provide increasing evidence for an important role of TDP-43
and FUS-mediated oligodendroglia dysfunction in the pathogenesis of ALS/FTLD. Thus,
targeting disrupted oligodendroglial functions may represent a new treatment approach
for these conditions.
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INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is the most frequent neuromuscular disease characterized
by the predominant loss of first and second motor neurons in the brain and spinal cord,
leading to muscle weakness, paralysis, and death generally within 1–5 years (Hardiman
et al., 2017). Frontotemporal dementia (FTD) is the second most common cause of presenile
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dementia characterized by the predominant degeneration of
the frontal and temporal lobes (i.e., frontotemporal lobar
degeneration, FTLD), causing personality and behavioral changes
as well as difficulties formulating and understanding language
(Piguet and Kumfor, 2020). In addition to a recognized
clinical overlap (Burrell et al., 2016), seminal discoveries in
the last decades have provided compelling molecular evidence
that ALS and FTLD are closely related conditions sharing
overlapping pathogenesis with dysfunctions of RNA binding
proteins emerging as key roles. Briefly, trans-activation response
element DNA-binding protein 43 (TDP-43) was discovered in
2006 as a disease protein in the most common form of FTLD
and in almost all ALS cases (Arai et al., 2006; Neumann et al.,
2006), now renamed as FTLD—TDP and ALS—TDP. They
include sporadic and genetic cases with mutations in GRN and
C9orf72 as the most common defects in addition to other rarer
genetic forms with mutations in TARDBP, TBK1, VCP, OPTN,
and UBQLN2 (Pottier et al., 2016). This was followed in 2009
by the identification of mutations in fused in sarcoma (FUS) in
∼5% of familial ALS (ALS-FUS) (Kwiatkowski et al., 2009; Vance
et al., 2009) and the subsequent recognition of FUS aggregation
together with TAF15 and EWS as hallmark lesions in ∼10%
of sporadic FTLD cases (FTLD—FUS) (Munoz et al., 2009;
Neumann et al., 2009b,c).

TDP-43 and FUS the acronyms improve readability are
ubiquitously expressed DNA/RNA binding proteins with a
physiologically predominant nuclear localization, involved in
multiple steps of RNA metabolism, including transcription,
splicing, transport, and stabilization (Ratti and Buratti, 2016;
Buratti, 2021). The mechanisms underlying TDP-43/FUS
aggregation and neurodegeneration are complex and currently
not fully understood. However, given the intimate association
between cytoplasmic accumulation of abnormal TDP-43 or FUS
associated with their nuclear depletion in a disease state, the
current consensus is that most likely a combination of complex
disturbances due to loss of nuclear and cytoplasmic functions
and gain of toxic functions through aggregates is involved, with
abnormal messenger RNA particle formation and dynamics as
well as nucleocytoplasmic transport defects emerging as crucial
factors (Bowden and Dormann, 2016; Ederle and Dormann,
2017). Although most previous and current research to dissect
the pathomechanisms is focused on neurons, it has to be noted
that oligodendrocytes are also strongly affected by TDP-43 and
FUS pathology in ALS/FTLD (Figure 1; Neumann et al., 2007;
Geser et al., 2008; Mackenzie and Neumann, 2017). Given the
fact that oligodendrocytes share a developmental origin with
spinal cord motor neurons (Lu et al., 2002) and are, like neurons,
heavily dependent on messenger RNA (mRNA) transport over
long distances for local translation, it is tempting to speculate
overlapping aggregation mechanisms and that oligodendroglial
dysfunction might contribute to TDP-43 and FUS disease
pathogenesis as discussed for other neurodegenerative diseases
(Ettle et al., 2016; Mot et al., 2018).

Here, we review the neuropathological and genetic
evidence of oligodendrocyte impairment in TDP-43/FUS-
proteinopathies, summarize current insights into the roles
of TDP-43 and FUS in oligodendrocytes, and discuss the

potential impact of altered oligodendroglial functions in
ALS/FTLD pathogenesis.

NEUROPATHOLOGICAL AND GENETIC
EVIDENCE FOR OLIGODENDROGLIAL
DYSFUNCTION IN HUMAN
TRANS-ACTIVATION RESPONSE
ELEMENT DNA-BINDING PROTEIN 43
AND FUSED IN SARCOMA/FET
PROTEINOPATHIES

Intracellular accumulation of hyperphosphorylated TDP-43 with
loss of physiological nuclear TDP-43 is the hallmark in the
most common form of frontotemporal lobar degeneration
(FTLD—TDP) and in the vast majority of cases of ALS (ALS—
TDP). Neuronal TDP-43 pathology presents as compact or
diffuse neuronal cytoplasmic inclusions, neuronal intranuclear
inclusions, dystrophic neurites, and thread and dot pathology.
Based on the morphology, amount, and distribution pattern
of cortical neuronal inclusions, at least five distinct subtypes
of FTLD—TDP pathology can be delineated (types A–E), each
with relatively specific clinical and genetic associations and
recognition that cortical pathology in ALS—TDP most closely
resembles FTLD—TDP type B (Mackenzie and Neumann, 2017;
Neumann et al., 2021). The presence of additional TDP-43
pathology in oligodendrocytes as glial cytoplasmic inclusions
(GCIs) (Figure 1) was already described briefly after the
initial discovery of TDP-43 as disease protein in FTLD—TDP
(Neumann et al., 2007) and ALS—TDP (Mackenzie et al., 2007)
but was only more recently studied in more detail. In fact,
GCI pathology in the gray and white matter of the spinal
cord, precentral gyrus, and middle frontal gyrus is reported
as a highly characteristic feature of almost all ALS—TDP
cases, including sporadic and genetic forms with mutations
in C9orf72, TARDBP, and OPTN (Brettschneider et al., 2013,
2014; Lorente Pons et al., 2020; Nolan et al., 2020). In the
gray matter of the anterior horn, the amount of GCI pathology
was reported to correlate with the severity of neuronal TDP-
43 pathology and neuronal loss (Brettschneider et al., 2014),
and in the precentral and middle frontal gyrus, the severity of
GCI pathology was reported to correlate with neuronal TDP-
43 pathology (Lorente Pons et al., 2020). Moreover, GCIs may
be more abundant than neuronal pathology and might even
precede neuronal TDP-43 pathology, suggesting that particularly
gray matter oligodendroglial involvement may be an early
event in the disease process (Brettschneider et al., 2014; Nolan
et al., 2020). Notably, GCI pathology was mainly observed in
oligodendroglia with potential close axonal contacts, whereas
satellite cells located around the soma of neurons with TDP-43
pathology remain rather uninvolved (Brettschneider et al., 2013,
2014). In the context of FTLD—TDP, a recent detailed analysis
on the subcortical TDP-43 pathology among FTLD—TDP
subtypes demonstrated the presence of moderate to frequent GCI
pathology as a highly discriminatory feature to separate FTLD—
TDP type B (including sporadic and genetic cases with C9orf72
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FIGURE 1 | Oligodendroglial pathology in TDP-43 and FUS proteinopathies. (A) Glial cytoplasmic inclusions (GCI) are a characteristic feature with presence in
variable amounts in affected brain regions in ALS—TDP, in subtypes of FTLD—TDP (particularly types B,E), subtypes of ALS—FUS (particularly in pattern 1
associated with adult onset and longer disease duration), and all distinct entities of FTLD—FUS, including aFTLD-U, basophilic inclusion body disease, and neuronal
intermediate filament inclusion disease. Semiquantitative scores: 0, absent;+, rare;++, moderate; +++, abundant. (B–E) Immunohistochemistry of human
postmortem tissues with pTDP-43 S409/410 antibody (Neumann et al., 2009a) demonstrating numerous GCI (arrowheads) in spinal cord of ALS—TDP case (B) and
frontal cortex of FTLD—TDP type B case (C), and FUS (Proteintech) immunohistochemistry demonstrating GCI in spinal cord of ALS-FUS case with pattern 1
pathology (D) and basal ganglia of FTLD—FUS (basophilic inclusion body disease) case (E) in addition to neuronal cytoplasmic inclusions (arrow). Scale bar in panel
B = 20 µm.

mutations) from other FTLD—TDP types (Mackenzie and
Neumann, 2020). Moreover, an association between abundant
GCI pathology and shorter disease duration was reported for
type E cases (Lee et al., 2017). Thus, oligodendroglial dysfunction
might particularly contribute to ALS—TDP and FTLD—TDP
type B and E pathogenesis. Given the increasing evidence
suggesting the existence of distinct TDP-43 strains that might
propagate in a prion-like manner as a molecular basis for
the distinct clinical and pathological TDP-43 proteinopathies
(Kawakami et al., 2019; Neumann et al., 2021), it is tempting
to speculate that ALS—TDP and FTLD types B and E might
share common TDP-43 strains with a specific cellular tropism for
oligodendrocytes.

FUS proteinopathies include ALS cases with FUS mutations
and three conditions presenting with FTD and/or a movement
disorder, including atypical FTLD-U, neuronal intermediate
filament inclusion disease, and basophilic inclusion body disease.
GCI pathology is a common feature in all distinct FTLD—
FUS entities (Mackenzie et al., 2011b). For ALS-FUS, two broad
distinct neuropathological patterns based on the frequency,
morphology, and distribution pattern of distinct FUS-positive
inclusion types can be delineated that correlate with the clinical
phenotype and severity of the functional consequence of specific
FUS mutations (Mackenzie et al., 2011a). Notably, anatomically
widespread moderate/abundant numbers of GCI with a strong
correlation between the number of GCI and NCI in the affected
neuroanatomical region are a highly characteristic feature for

pattern 1, which is associated with longer disease duration and
later disease onset (Mackenzie et al., 2011a).

Although the origin of cells with GCI in TDP-43 and
FUS proteinopathies as oligodendroglia has been validated in
several studies using various markers for immature and mature
oligodendroglial lineage cells, including Olig2 (Nolan et al.,
2020), TPPP/p25 (Rohan et al., 2014; Fatima et al., 2015),
and 2′,3′-cyclic-nucleotide 3′-phosphodiesterase (Mackenzie
et al., 2011a), it remains to be determined whether specific
subtypes of oligodendroglial cells are more prone to develop
GCI than others, an issue currently also hampered by the
limited specificity/sensitivity of available antibodies in human
postmortem tissues.

In addition to neuropathological findings, further evidence for
a role of oligodendroglia in ALS/FTD is provided from genetic
studies that have identified the oligodendrocyte-specific gene
MOBP as a risk factor for ALS (van Rheenen et al., 2016) and a
risk variant of MOBP to be associated with more severe white
matter degeneration and a clinically more aggressive form of
FTD (Irwin et al., 2014). However, this could not be verified
in a subanalysis of autopsy-confirmed FTLD—TDP cases in
this cohort, although the total numbers of cases might have
been too small (Irwin et al., 2014). More recently, applying a
polygenic risk score approach with combined analysis of genome-
wide association study and single-nucleus RNA sequencing
datasets uncovered the association of a distinct subpopulation of
oligodendrocytes to ALS risks (Saez-Atienzar et al., 2021).

Frontiers in Neuroscience | www.frontiersin.org 3 September 2021 | Volume 15 | Article 724891

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-724891 August 26, 2021 Time: 12:28 # 4

Valori and Neumann Oligodendrocytes in TDP-43/FUS Proteinopathies

POTENTIAL MECHANISMS OF
OLIGODENDROGLIAL DYSFUNCTION IN
THE ALS/FTLD SPECTRUM

Although oligodendrocyte biology has been extensively reviewed
elsewhere (Butt et al., 2019), some key aspects relevant in the
context of ALS/FTLD pathogenesis are worth mentioning here.
Briefly, oligodendrocytes differentiate from oligodendrocytes
precursor cells (OPCs) during embryonic and postnatal
development in rodents (Takebayashi and Ikenaka, 2015)
and humans (Czepiel et al., 2015). However, the central
nervous system hosts an OPC pool, which constitutes 5–10%
of glial cells and which retains the potential to generate new
mature oligodendrocytes as well as astrocytes throughout the
entire life (Fletcher et al., 2021). Recently, single-cell RNA
sequencing analysis revealed that differentiation is a graded
process leading to the generation of distinct subtypes of
mature oligodendrocytes (Marques et al., 2016), whose most
thoroughly characterized functional task is the formation and
the maintenance of myelin wraps around the axons to ensure
saltatory conduction. Furthermore, oligodendrocytes support the
axons by providing trophic and metabolic support. Specifically,
different groups identified lactate as an energy source that
is transferred from oligodendrocytes to axons (Funfschilling
et al., 2012; Lee et al., 2012). Finally, oligodendrocytes engage
in bidirectional communications with neurons by responding
to glutamatergic signaling with the neuroprotective release of
extracellular vesicles such as exosomes (Fruhbeis et al., 2013,
2020; Mukherjee et al., 2020).

Because cells with TDP-43 or FUS-positive GCI
displays a noticeable depletion of the physiological
nuclear immunoreactivity, one can speculate that affected
oligodendrocytes develop a pathological phenotype resulting
from the combined action of the loss of nuclear/cytoplasmic
functions and the gain of toxicity induced by the abnormal
cytoplasmic expression. However, crucial questions to be
resolved are as follows: What are the functional consequences,
and how might oligodendroglial dysfunction contribute to
degeneration? What causes/triggers TDP-43/FUS aggregation in
oligodendrocytes?

Different aspects are discussed in the following and illustrated
in Figure 2.

Oligodendrocytes Precursor Cells
Differentiation
In mice, both Tardbp and Fus are highly expressed in OPCs,
and their expression decreases with oligodendrocyte maturation
(Zhang et al., 2014)1, prompting the speculation that TDP-
43/FUS might play important roles in those cells. Neural
progenitor cells derived from an ALS patient with a TARDBP
mutation differentiate in vitro to mature oligodendrocyte as
efficiently as cells derived from non-ALS cases or other sALS and
fALS patients, including those with C9orf72 mutation, whereas

1https://www.brainrnaseq.org/

mutant FUS carriers were not investigated (Ferraiuolo et al.,
2016; Livesey et al., 2016). However, it has to be noted that
these models do not recapitulate inclusion body formation with
nuclear depletion of TDP-43. Unfortunately, no OPC-specific
knockout models nor transgenic mice selectively expressing
mutant versions of either protein have yet been generated, and
therefore, we currently lack in vivo information as to how the loss
of TDP-43/FUS might regulate OPC functions and their ability to
differentiate into mature oligodendrocytes. This is of outstanding
importance because the generation of new oligodendrocytes not
only occurs physiologically in response to neuronal activity and it
is important for learning and memory (Fletcher et al., 2021), but
it is also key to restore myelin upon injury (Biname et al., 2021).

Mature Oligodendrocytes Survival
To investigate the role of TDP-43 and FUS in mature
oligodendrocytes in vivo, Tardbp (Wang et al., 2018) or Fus
(Guzman et al., 2020) was depleted from cells expressing
2′,3′-cyclic-nucleotide 3′-phosphodiesterase. Interestingly, TDP-
43 depletion leads to their demise and a compensatory
hyperproliferation and differentiation of OPCs in the white
matter in transgenic mice (Wang et al., 2018). In contrast, Fus
ablation does not lead to oligodendrocyte death (Guzman et al.,
2020), thus suggesting that FUS functions could be compensated
by other RNA-binding proteins, whereas TDP-43 is non-
dispensable in mice. These findings should be complemented by
generating transgenic mice selectively expressing mutant TDP-43
or mutant FUS in mature oligodendrocytes to investigate whether
mutations recapitulate the knockout phenotype or whether they
induce novel toxic functions.

Myelination
TDP-43 and FUS are likely implicated in several aspects
of myelination. Firstly, cross-linking immunoprecipitation
sequencing experiments discovered that TDP-43 binds to the
mRNAs from key genes for myelination such as Plp1, Mbp,
Mog, and Mag (Wang et al., 2018), whereas FUS binds to MBP
(Hoell et al., 2011) and Mal (Lagier-Tourenne et al., 2012).
Secondly, FUS depletion leads to Mobp alternative splicing
(Lagier-Tourenne et al., 2012), whereas either TDP-43 or FUS
depletion leads to alternative splicing of Mag exon 8 (Lagier-
Tourenne et al., 2012; Kapeli et al., 2016; Figure 2), although with
opposite effects, thus corroborating the hypothesis that these
proteins affect oligodendrocytes with distinct modalities. Finally,
although most myelin-associated transcripts are translated
in the perinuclear region and then transported as mature
proteins, MBP protein synthesis occurs distally, at the sites
of active myelination, thus requiring the transport of Mbp
mRNA in translationally silent RNA granules (Muller et al.,
2013), membrane-less organelles arising from the liquid–liquid
phase separation of intrinsically disordered RNA/DNA binding
proteins such as FUS and TDP-43 (Portz et al., 2021; Figure 2).
As several lines of evidence indicate that both TDP-43 and
FUS are implicated in mRNA particle formation and mRNA
trafficking in neurons (Thelen and Kye, 2019), one could
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FIGURE 2 | Schematic of potential mechanisms of oligodendrocyte dysfunction in pathogenesis of TDP-43/FUS proteinopathies. TDP-43 and FUS pathology in
oligodendrocytes might modulate oligodendrocyte biology by binding to several transcripts (1a) and regulating pre-mRNA splicing (1b). Furthermore, it might affect
transport of key RNA transcripts such as Mbp (2) and perturb bidirectional communication with axons (3). Created with BioRender.com.

speculate that they might contribute to the same process in
oligodendrocytes. In particular, Mbp transport is a tightly
regulated process that requires the distinct action of several
RNA binding proteins, including hnRNPA2B1 (Raju et al.,
2008), hnRNP K (Torvund-Jensen et al., 2014), and fragile
X mental retardation protein (Doll et al., 2020). Intriguingly,
TDP-43 is a well-characterized interactor of hnRNPA2 (Buratti
et al., 2005; He et al., 2014; Romano et al., 2014; Chiang et al.,
2020), hnRNP K (Moujalled et al., 2015, 2017), and fragile X
mental retardation protein (Blokhuis et al., 2016; Majumder
et al., 2016; Chu et al., 2019), which is also a FUS interacting
partner (Blokhuis et al., 2016; He and Ge, 2017). In addition,
indirect mechanisms could also tune Mbp transport. To this
end, it is worth mentioning that FUS and TDP-43 regulate
the alternative splicing and the stability of Mapt (Orozco
et al., 2012; Gu et al., 2017a,b; Ishigaki et al., 2017; Wu et al.,
2021), the gene coding for tau, a protein involved in the
regulation of the microtubular network and necessary for Mbp
mRNA transport as well as for the correct maturation and
myelination process of oligodendrocytes (Seiberlich et al., 2015).
Intriguingly, ubiquitous TDP-43Q331K knock-in mice can be
stratified into two populations on the basis of their behavioral
impairment and affected mice display altered Mapt splicing
pattern, whereas unaffected animals upregulate genes regulating
myelination (White et al., 2018). Taken together, these data
indicate oligodendrocytes as key disease modifiers and suggest
that impaired focal delivery of Mbp could be a contributor to
TDP-43 and FUS proteinopathies. In line with this, a recent
paper reports that the relative protein expression of MBP versus
PLP1 is reduced in spinal cord corticospinal tract white matter of
ALS patients (Lorente Pons et al., 2020).

Oligodendrocyte-Neuron and
Oligodendrocyte-Astrocyte Interplay
In addition to myelination, oligodendrocytes provide trophic
support to neurons (Duncan et al., 2021), a task that becomes
defective in patient-derived oligodendrocytes. Indeed, neurons
cocultured with ALS oligodendrocytes display reduced survival,
even in the absence of obvious differentiation impairment
(Ferraiuolo et al., 2016). Conversely, no evidence of neurotoxicity
has yet been presented in mouse models where TDP-43
(Wang et al., 2018) or FUS (Guzman et al., 2020) has been
depleted from oligodendrocytes. There are different possibilities
to explain such discrepancy. Firstly, mutant TDP-43 might
trigger oligodendrocytes dysfunction through gain of toxicity,
and to date, selective expression of mutant TDP-43 or FUS
in oligodendrocytes has not been investigated in transgenic
mice. Alternatively, oligodendrocyte biology in animal models
might not adequately recapitulate their functions in humans,
an interpretation supported by single-nucleus RNA sequencing
studies that revealed that only some human oligodendrocyte
subpopulations have a counterpart in the rodent brain (Hodge
et al., 2019). Moreover, a study comparing the transcriptome
of neurons and oligodendrocytes from human and non-human
primates unveiled that oligodendrocytes display a higher degree
of evolution than neurons (Berto et al., 2019). Taken together,
these findings urge us to interpret data gathered from mouse
models with caution and underline the need for the development
of human-derived models, such as brain organoids (Shaker
et al., 2021), to explore both cell-autonomous and non-cell-
autonomous aspects of oligodendrocyte biology.

Mechanistically, oligodendrocytes support neurons by
releasing lactate (Funfschilling et al., 2012; Lee et al., 2012;
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Figure 2), and reduction of both oligodendrocyte and neuronal
lactate transporters has been reported in the motor cortex of ALS
patients (Lee et al., 2012). However, in coculture experiments,
reduced lactate release from ALS/FTD oligodendrocytes only
partially explains their impaired ability to support neuronal
viability (Ferraiuolo et al., 2016), arguing that other mechanisms
are likely contributing to the pathogenic mechanism. To this
end, an interesting hypothesis arises from the trophic effect
that glutamate-dependent oligodendrocyte-derived exosomes
play on axons (Fruhbeis et al., 2013, 2020; Mukherjee et al.,
2020) as both TDP-43 (Iguchi et al., 2016) and FUS (Kamelgarn
et al., 2016) have been identified as components of exosomes
purified from different cell culture supernatants. Moreover,
in the plasma of sALS patients, both TDP-43 and FUS can
be detected in microvesicles (Sproviero et al., 2018), and the
accumulation of TDP-43 in plasma exosomes is currently under
investigation as a potential progression biomarker in ALS (Chen
et al., 2020). Taken together, these findings prompt several
questions, which would deserve ad hoc investigations: which is
the cellular source of TDP-43 and FUS containing exosomes? Are
exosome biogenesis and release impaired? Is the composition
of exosome payload perturbed in oligodendrocytes derived
from ALS and FTLD patients? Finally, oligodendrocytes protect
axons from the depolarizing effect of extracellular potassium
accumulation by expressing the potassium channels Kir4.1
(Schirmer et al., 2018). Intriguingly, the same channels are also
expressed on astrocytes, where they modulate the morphology
and the electrophysiological properties of fast α-motor neurons
(Kelley et al., 2018). Because ALS patient-derived astrocytes
display reduced expression of Kir4.1 (Kelley et al., 2018), it would
be of outstanding interest to learn whether oligodendrocytes
might show the same defect.

Complementary, oligodendrocyte dysfunction in ALS/FTLD
might not be exclusively cell-autonomous, but it could arise from
aberrant signaling coming from other glial cell populations. In
particular, the genetic ablation of Tardbp in astrocytes switches
their transcriptome and that of the surrounding microglia toward
an inflammatory status in mice (Peng et al., 2020). Furthermore,
the spinal cord of those animals displays a reduced number of
mature oligodendrocytes in the gray matter (Peng et al., 2020).

MECHANISMS OF SELECTIVE
VULNERABILITY OF
OLIGODENDROCYTES IN
AMYOTROPHIC LATERAL
SCLEROSIS/FRONTOTEMPORAL
LOBAR DEGENERATION SPECTRUM

The neuropathological analysis showing that TDP-43 or
FUS aggregates are restricted to subsets of neurons and
oligodendrocytes prompts the question as to why these cell
types are exquisitely vulnerable to the formation of inclusions.
Although this topic is still under-investigated, one can speculate
that oligodendrocyte susceptibility might arise from their high
energy demand required for myelination (Tepavcevic, 2021)
and active mRNA transport over long distances, exposing them

to mitochondrial dysfunction and oxidative stress. In cultured
oligodendrocytes, oxidative insult induces stress granules,
membrane-less organelles that transiently store translationally
silenced mRNA, including Mbp (Wang et al., 2010), and are
thought to act as nucleation events for inclusion body formation
in TDP-43/FUS-proteinopathies upon aberrant dynamics of
assembly and disassembly (Baradaran-Heravi et al., 2020).
Intriguingly, edaravone, a recently approved drug for the
treatment of ALS, has been shown to protect oligodendrocytes
from oxidative insults (Ueno et al., 2009; Miyamoto et al., 2013).

A complementary hypothesis might be that oligodendrocytes
have a reduced proteostatic capacity because they display
increased vulnerability to proteasome impairment when
compared with other glial cells (Goldbaum et al., 2006).
Moreover, the inactivation of the unfolded protein response
leads to subsequent autophagy impairment and oligodendrocyte
toxicity (Stone et al., 2020), and in the motor cortex of ALS
cases, the expression of unfolded protein response target genes
was found to be associated with oligodendrocytes (Montibeller
et al., 2020). More specifically, TDP-43 binds to the von Hippel
Lindau protein (VHL), an adapter that targets its interaction
partners to the ubiquitination machinery for subsequent
degradation (Uchida et al., 2016). TDP-43 depletion leads to
VHL overexpression that has the paradoxical effect of promoting
TDP-43 inclusion formation (Uchida et al., 2016). One could
therefore speculate that an initial insult leads to stress granule
formation, which in turn causes an early depletion of TDP-
43 from the nucleus and upregulation of VHL. This event
would hyper-stabilize TDP-43 granules converting them into
pathological aggregates, which would induce further cellular
stress and therefore closing a harmful vicious cycle.

CONCLUSION

In summary, investigations so far have provided substantial
evidence for a potential role of oligodendroglial dysfunction in
ALS/FTLD. However, more detailed studies on the physiological
roles of TDP-43 and FUS in the complex functions of
oligodendroglial lineage cells and the determination of molecular
changes during the disease process are required to further
dissect the significance of specific alterations in disease
pathogenesis. This might pave the way for new therapeutic
approaches in ALS/FTLD by, e.g., boosting oligodendrocyte
metabolism and functions.
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