
 International Journal of 

Molecular Sciences

Article

Novel Insights into the Adipokinome of Obese and
Obese/Diabetic Mouse Models

Birgit Knebel 1,2, Simon Goeddeke 1,2, Gereon Poschmann 3, Daniel F. Markgraf 2,4,
Sylvia Jacob 1,2, Ulrike Nitzgen 1,2, Waltraud Passlack 1,2, Christina Preuss 2,4 ID ,
Hans-Dieter Dicken 5, Kai Stühler 3,6, Sonja Hartwig 1,2, Stefan Lehr 1,2,* and Jorg Kotzka 1,2

1 Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center,
Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, Aufm Hennekamp 65,
40225 Dusseldorf, Germany; bknebel@ddz.uni-duesseldorf.de (B.K.);
simon.goeddeke@ddz.uni-duesseldorf.de (S.G.); sylvia.jacob@ddz.uni-duesseldorf.de (S.J.);
ulrike.nitzgen@ddz.uni-duesseldorf.de (U.N.); waltraud.passlack@ddz.uni-duesseldorf.de (W.P.);
sonja.hartwig@ddz.uni-duesseldorf.de (S.H.); jkotzka@ddz.uni-duesseldorf.de (J.K.)

2 German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225 Duesseldorf, Germany;
daniel.markgraf@ddz.uni-duesseldorf.de (D.F.M.); christina.preuss@ddz.uni-duesseldorf.de (C.P.)

3 Molecular Proteomics Laboratory, Biomedizinisches Forschungszentrum (BMFZ),
Heinrich-Heine-University Duesseldorf, 40225 Duesseldorf, Germany; gereon.poschmann@hhu.de (G.P.);
kai.stuehler@hhu.de (K.S.)

4 Institute of Clinical Diabetology, German Diabetes Center at the Heinrich-Heine-University Duesseldorf,
Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany

5 Multimedia Center, Heinrich-Heine-University Duesseldorf, 40225 Duesseldorf, Germany;
hans-dieter.dicken@uni-duesseldorf.de

6 Institute for Molecular Medicine, University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf,
40225 Duesseldorf, Germany

* Correspondence: stefan.lehr@ddz.uni-duesseldorf.de; Tel.: +49-211-3382-531

Received: 25 July 2017; Accepted: 21 August 2017; Published: 8 September 2017

Abstract: The group of adipokines comprises hundreds of biological active proteins and peptides
released from adipose tissue. Alterations of those complex protein signatures are suggested to
play a crucial role in the pathophysiology of multifactorial, metabolic diseases. We hypothesized
that also the pathophysiology of type-2-diabetes is linked to the dysregulation of the adipocyte
secretome. To test this, we investigated mouse models with monogenic defects in leptin signaling
which are susceptible to adipositas (C57BL/6 Cg-Lepob (obob)) or adipositas with diabetes
(C57BL/KS Cg-Leprdb (dbdb)) according to their genetic background. At the age of 17 weeks,
visceral fat was obtained and primary murine adipocytes were isolated to harvest secretomes.
Quantitative proteome analyses (LC-ESI-MS/MS) identified more than 800 potential secreted proteins.
The secretome patterns revealed significant differences connected to the pathophysiology of obese
mice. Pathway analyses indicated that these differences focus on exosome modelling, but failed
to provide more precise specifications. To investigate the relationship of secretome data to insulin
sensitivity, we examined the content of diabetogenic lipids, i.e., diacylglycerols (DAGs), identified
as key players in lipid-induced insulin resistance. In contrast to obob mice, fat tissue of dbdb
mice showed elevated DAG content, especially of DAG species with saturated fatty acid C16:0 and
C18:0, while unsaturated fatty acid C16:1 were only changed in obob. Furthermore, DAG signatures
of the models specifically correlate to secreted regulated adipokines indicating specific pathways.
In conclusion, our data further support the concept that the fat tissue is an endocrine organ that
releases bioactive factors corresponding to adipose tissue health status.

Keywords: primary adipocyte; mass spectrometry; healthy adipose tissue; diacylglycerol; diabetes
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1. Introduction

Obesity is a worldwide health burden caused by increased energy intake and sedentary
lifestyle. It increases the overall risk for life threatening comorbidities including cardiovascular
risk, hypertension, pulmonary obstructive syndrome, dyslipidemia, metabolic syndrome or diabetes,
and cancer [1–3]. Adipose tissue comprises mature adipocytes, preadipocytes and various invasive
immune cells which, in sum, act as secretory organ of bioactive proteins, designated as adipokines.
The secreted adipokine patterns in a certain metabolic conditions or stage of obesity are thought to
reflect the state of the adipose tissue condition and “health” or its “metabolic flexibility” [4].

A recent investigation described the secretome of visceral adipose tissue from two closely related,
well-characterized and metabolically healthy mouse strains, i.e., C57BL/Ks (BKS) and C57BL/6 (C57)
by combining state-of-the-art protein identification and quantification tools [5]. A reference map
comprising about 600 adipokines was generated (http://www.diabesityprot.org). Both commonly
used experimental “wild-type” mouse strains differ in their response to metabolic stress. In contrast
to animals with C57 genetic background, mice with a BKS genetic background are prone to develop
diabetes under such conditions [6,7]. Therefore, mouse models with genetic defects in leptin signaling
are obese (obob; loss of function mutation in leptin) or obese and diabetic (dbdb; loss of function
mutation in leptin receptor), depending on genetic background.

Obesity is accompanied by disturbed lipid metabolism, elevated levels of free fatty acids (FFA)
and triglycerides (TG), either due to over-nutrition or increased hepatic de novo lipid synthesis [8].
Besides adipose tissue, multiple organs, e.g., liver, skeletal muscle, pancreas, or kidneys, are affected.
These organs can be the target of ectopic lipid accumulation and obesity-associated insulin resistance.
The systemic overflow with increased fluxes of plasma FFA and TGs towards these tissues leads to
the ectopic accumulation of lipids and obesity associated insulin resistance, ultimately altering tissue
glucose metabolism and affecting blood glucose clearance. Ectopic lipid accumulation is accompanied
by the accumulation of bioactive metabolites, e.g., diacylglycerol (DAG), in the various tissues [9].
DAGs are a result of several metabolic fluxes, including triglyceride hydrolysis, triglyceride synthesis,
or phosphoinositide hydrolysis. In liver, it has been shown that DAG content is significantly increased
in lipid-induced hepatic insulin resistance. DAGs act as second messengers activating members of
novel protein kinase C (nPKC) family [10] and the role of DAGs in Golgi/ER vesicular transport
is conserved. This raised our hypothesis that an excess of these bioactive metabolites alters the
intracellular signaling also in adipose tissue and in consequence, the inter-organ communication in
form of the adipocyte secreted protein patterns.

We intended to investigate the specific differences in the secretome of adipocytes in states of
obesity and obesity with diabetes. For this, we utilized obese and obese/diabetic mouse models
to compare the adipocyte-derived, not fat tissue, secretion pattern of adipokines and return the
information to the adipocyte-derived DAG patterns. Our results suggest that DAG-signaling in
adipose tissue acts as intermediary between healthy or diabetic state.

2. Results and Discussion

C57BL/KS.Cg-Leprdb (dbdb) mice on C57BL/KS (BKS) genetic background, a well-accepted
mouse model of hyperphagia induced obesity with overt diabetes, and C57BL/6.Cg-Lepob (obob)
mice on C57BL/6 (C57) background which are protected from diabetes [6,7,11–15] were selected for
this study. The clinical characteristics of the investigated mouse models are summarized in Figure 1.
The obese mouse model and the obese/diabetic mouse model showed increased body weight with
more than 50% fat mass compared to the lean models. Overall, the models also showed specific
differences in direct comparison to the genetic background model. Fasting glucose, triglycerides,
insulin, and HOMA-IR were each significantly higher in dbdb compared to BKS mice, indicating the
definitions of overt diabetes in the dbdb model compared to obob mice. In contrast, in obob mice,
insulin and HOMA-IR were significantly higher compared to C57. HOMA-B were strongly elevated
while glucose was normal indicating that the β cells are still capable to compensate required insulin
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levels. Leptin was significantly elevated only in dbdb, as expected from the genetic defect of this
model. Similarly, glucagon and glucagon like peptide (GLP)-1 were significantly increased only in
dbdb mice. This can be attributed to the diabetic state of these mice, which was confirmed by high
HOMA-IR index and thus peripheral insulin resistance. Ghrelin was 4-fold reduced in the obese
and 2-fold reduced in obese/diabetic mice, whereas glucose-dependent insulinotropic peptide (GIP),
adiponectin or resistin levels did not differ significantly between models.
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To further analyze differences between adipose tissue of these mouse models, we determined the
content of secreted proteins by mass spectrometry. The overall comparison is given in Supplementary
Materials Table S1. According to our experimental design, identified proteins were located outside of
intact primary adipocytes. Proteins traffic through the secretory pathway according to their N-terminal
signaling sequence to reach their intracellular destination, e.g., an organelle, or to ultimately be
secreted. Transport throughout the endomembrane system occurs via the endoplasmic reticulum
and the golgi apparatus towards the plasma membrane. Here, the release can occur passive, active
channel-mediated, or driven by formation of secretory granules and exosomes. Proteins are targeted
according to classical (SP(+)) or non-classical (SP(−)) signal sequences. Proteins without any known
signal sequence (NP) are thought to follow e.g., pore-mediated translocation across the plasma
membrane, ABC transporter-based secretion or autophagosome/endosome-based secretion [16].
This classification can also help to determine transmembrane proteins [17]. Nevertheless, we cannot
completely exclude that some of the proteins might be identified due to apoptosis or autophagy.

The comparisons identified 873 non-redundant proteins. Of these, 216 were assigned to contain
a SP(+) signal peptide, 290 were SP(−), thus not carrying a classical signaling peptide and 367 were
NP without a signaling domain. The NP proteins contain 164 proteins, which can be assigned
to mouse adipocyte exosomes. Nevertheless, we cannot completely role out that some of the
identified proteins were derived from autophagy or apoptosis in vitro cultured primary adipocytes
after isolation from adipose tissue. The pairwise comparison of the four animal models showed
significant alteration (Supplementary Materials Table S2). The comparisons of BKS and dbdb models
identified 198 upregulated and 153 downregulated proteins in dbdb (94 SP(+), 118 SP(−), 139 NP).
The comparisons of C57 and obob indicated 182 upregulated and 118 downregulated proteins in obob
(88 SP(+), 98 SP(−), 114 NP). The individual comparisons indicated in the lean models 108 upregulated
and 136 downregulated proteins in BKS (59 SP(+), 87 SP(−), 98 NP), and in the obese and obese/diabetic
models 88 upregulated and 112 downregulated proteins in dbdb (61 SP(+), 75 SP(−), 64 NP). Table 1
(see Supplementary Materials Table S2 for complete analyses) summarizes the top 10 up- and down-
regulated putative secreted (SP(+), SP(−)) proteins of the comparisons. Furthermore, there were
proteins specific for either genotype in the comparisons (Table 2). Additionally, there where 38 solitaire
proteins in BKS vs. C57 (8 SP(+), 13 SP(−), 17 NP), 22 in C57 vs. obob (10 SP(+), 6 SP(−), 6 NP), 60 in
BKS vs. dbdb (17 SP(+), 17 SP(−), 26 NP) or 10 in dbdb vs. obob (5 SP(+), 2 SP(−), 3 NP).

With regard to function, top regulated proteins or solitaire proteins were comprehensibly, among
them proteins involved in lipid transport (e.g., ApoE, ApoA4), enzymes (e.g., Lpl, Aad9, Acadvl,
Fbp1, Acyl, Ca4, Khk, Pgp), and signaling proteins (e.g., Il6, Sdpr, Gc, Esp15, Rbp-1, Cxcl-5, -3, -9)
proteins. Overall, the total adipocyte secreted proteins were able to differentiate lean, obese and the
obese/diabetic mouse models (Figure 2). Nevertheless, patterns do not only show overlap according
to the lean or obese and obese/diabetic phenotype, but also according to genotype. So, we compared
all differentially abundant proteins in the various groups (Figure 3, Supplementary Materials Table S3).
With these analyses, we were able to account on any different abundance in conditions depending on
genetic background. So, we identified 36 proteins that were solely differential abundant within lean
and obese mice (C57 vs. obob), 67 proteins that differed in the comparison of lean to obese/diabetic
mice (BKS vs. dbdb), and 42 proteins that differed in the lean background strains. These candidates
might be of interest in regard to the phenotype, but still contain the genotype bias.
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Table 1. Top putatively regulated proteins (SP(+), SP(−)) in the comparisons.

Protein Names Protein ID Gene Names BKS_C57 BKS_C57

Log2 Fold Change p-Value (Welch Test)

Complement factor D P03953 Cfd −5.42 1.49 × 106

cAMP-dependent protein kinase type II-β P31324 Prkar2b −2.47 2.73 × 106

Apolipoprotein E P08226 Apoe −2.17 7.51 × 104

Receptor expression-enhancing protein 6 Q9JM62 Reep6 −2.14 9.00 × 104

Lipoprotein lipase P11152 Lpl −2.03 8.64 × 103

Prolargin Q9JK53 Prelp −1.90 8.59 × 104

26S protease regulatory subunit 10B P62334 Psmc6 −1.89 6.65 × 105

Coiled-coil domain-containing protein 80 Q8R2G6 Ccdc80 −1.89 2.33 × 104

Pentraxin-related protein PTX3 P48759 Ptx3 −1.87 3.35 × 102

Tenascin Q80YX1 Tnc −1.86 6.09 × 105

Inositol polyphosphate 1-phosphatase P49442 Inpp1 1.52 1.24 × 105

Carbonic anhydrase 2 P00920 Ca2 1.57 1.29 × 104

Dolichyl-diphosphooligosaccharide-protein glycosyltransferase 48 kDa subunit O54734 Ddost 1.71 9.47 × 105

Dolichyl-diphosphooligosaccharide-protein glycosyltransferase subunit 2 Q9DBG6 Rpn2 1.72 4.48 × 104

Nodal modulator 1 Q6GQT9 Nomo1 1.78 1.74 × 105

60S ribosomal protein L12 P35979 Rpl12 1.86 9.57 × 105

Ketohexokinase P97328 Khk 1.94 9.40 × 105

Carbonyl reductase 3 Q8K354 Cbr3 1.98 1.06 × 104

Carbonic anhydrase 1 P13634 Ca1 2.38 3.45 × 107

Glutathione S-transferase θ-2 Q61133 Gstt2 3.25 4.80 × 109

Protein Names Protein IDs Gene Names obob_C57 obob_C57

Complement factor D P03953 Cfd −9.46 5.52 × 1010

Collagen α-1(XII) chain Q60847 Col12a1 −6.39 1.12 × 109

Collagen α-5(VI) chain A6H584 Col6a5 −6.20 1.22 × 109

Angiotensinogen P11859 Agt −4.43 2.77 × 107

Fructose-1,6-bisphosphatase 1 Q9QXD6 Fbp1 −3.94 1.45 × 107

Carboxypeptidase Q Q9WVJ3 Cpq −3.64 1.15 × 106

α-Amylase 1 P00687 Amy1 −3.64 1.84 × 105

Coiled-coil domain-containing protein 80 Q8R2G6 Ccdc80 −3.47 2.67 × 107

Tissue α-L-fucosidase Q99LJ1 Fuca1 −3.28 9.84 × 107

Ganglioside GM2 activator Q60648 Gm2a −3.26 2.29 × 106

Actin-related protein 2/3 complex subunit 3 Q9JM76 Arpc3 1.94 4.89 × 105

NADH-cytochrome b5 reductase 3 Q9DCN2 Cyb5r3 2.07 5.69 × 105
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Table 1. Cont.

Protein Names Protein IDs Gene Names obob_C57 obob_C57

Epoxide hydrolase 1 Q9D379 Ephx1 2.12 3.21 × 108

Acyl-CoA dehydrogenase 9, mitochondrial Q8JZN5 Acad9 2.18 5.98 × 108

Serum deprivation-response protein Q63918 Sdpr 2.22 2.03 × 106

Serpin H1 P19324 Serpinh1 2.25 3.14 × 105

Galectin-3 P16110 Lgals3 2.25 6.50 × 107

GTP:AMP phosphotransferase AK3, mitochondrial Q9WTP7 Ak3 2.28 2.06 × 107

Apolipoprotein A-IV P06728 Apoa4 2.42 6.29 × 107

Interleukin-6 P08505 Il6 3.19 6.96 × 107

Protein Names Protein IDs Gene Names dbdb_BKS dbdb_BKS

Collagen α-5(VI) chain A6H584 Col6a5 −7.87 3.53 × 1011

Fructose-1,6-bisphosphatase 1 Q9QXD6 Fbp1 −4.10 1.64 × 107

Tissue α-L-fucosidase Q99LJ1 Fuca1 −3.92 4.32 × 108

Carboxypeptidase Q Q9WVJ3 Cpq −3.34 1.63 × 106

Complement factor D P03953 Cfd −3.33 2.71 × 104

Ganglioside GM2 activator Q60648 Gm2a −3.28 1.18 × 106

Carboxylesterase 1D Q8VCT4 Ces1d −2.97 1.49 × 1011

Dolichyl-diphosphooligosaccharide-protein glycosyltransferase subunit 2 Q9DBG6 Rpn2 −2.87 2.22 × 104

Fructose-1,6-bisphosphatase isozyme 2 P70695 Fbp2 −2.80 5.61 × 105

Angiotensinogen P11859 Agt −2.44 2.67 × 104

Phospholipid transfer protein P55065 Pltp 2.77 1.62 × 102

Serum deprivation-response protein Q63918 Sdpr 2.86 5.17 × 107

Polymerase I and transcript release factor O54724 Ptrf 2.93 1.87 × 108

Platelet-activating factor acetylhydrolase Q60963 Pla2g7 2.97 4.03 × 103

Vimentin P20152 Vim 3.12 8.70 × 1011

C-C motif chemokine 2 P10148 Ccl2 3.37 1.23 × 102

Prolargin Q9JK53 Prelp 3.39 1.65 × 106

cAMP-dependent protein kinase type II-β P31324 Prkar2b 3.70 4.52 × 109

Growth-regulated α protein P12850 Cxcl1 4.36 1.13 × 106

Interleukin-6 P08505 Il6 5.35 2.09 × 1010

Protein Names Protein IDs Gene Names dbdb_obob dbdb_obob

Transthyretin P07309 Ttr −3.06 9.14 × 108

ATP-citrate synthase Q91V92 Acly −2.98 4.13 × 1011

Sarcosine dehydrogenase, mitochondrial Q99LB7 Sardh −2.34 3.51 × 106

GTP:AMP phosphotransferase AK3, mitochondrial Q9WTP7 Ak3 −2.15 1.91 × 107
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Table 1. Cont.

Protein Names Protein IDs Gene Names dbdb_obob dbdb_obob

Serpin H1 P19324 Serpinh1 −2.01 2.23 × 104

Acyl-CoA dehydrogenase 9, mitochondrial Q8JZN5 Acad9 −1.99 2.95 × 107

Vitamin D-binding protein P21614 Gc −1.90 9.29 × 107

3-Hydroxyisobutyrate dehydrogenase, mitochondrial Q99L13 Hibadh −1.86 3.24 × 104

Pyruvate dehydrogenase E1 mitochondrial P35486 Pdha1 −1.81 1.05 × 103

Citrate synthase, mitochondrial Q9CZU6 Cs −1.70 1.07 × 105

Calmodulin P62204 Calm1 1.51 3.03 × 105

Laminin subunit β-2 Q61292 Lamb2 1.55 7.46 × 107

C-X-C motif chemokine 5;GCP-2(1-78);GCP-2(9-78) P50228 Cxcl5 1.77 4.79 × 104

Prolargin Q9JK53 Prelp 1.82 3.83 × 103

Pentraxin-related protein PTX3 P48759 Ptx3 1.84 9.82 × 103

Desmin P31001 Des 2.09 5.46 × 107

Lactotransferrin P08071 Ltf 2.15 9.64 × 104

Collagen α-1(XII) chain Q60847 Col12a1 4.45 1.31 × 107

p-Value: post hoc test (ANOVA).

Table 2. Proteins detected in only one genotype in comparisons.

Protein Names Protein ID Gene Names SP(+) SP(−) NP

BKS_C57

Tyrosine-protein phosphatase non-receptor type 6 P29351 Ptpn6 +
NADPH-cytochrome P450 reductase P37040 Por +
Vacuolar protein sorting-associated protein 13C Q8BX70 Vps13c +
Annexin A11 P97384 Anxa11 +
Epidermal growth factor receptor substrate 15 P42567 Eps15 +
Adenosine deaminase P03958 Ada +
Pyruvate dehydrogenase E1 subunit α, mitochondrial P35486 Pdha1 +
Carnitine O-acetyltransferase P47934 Crat +
Histidine triad nucleotide-binding protein 1 P70349 Hint1 +
Heat shock protein 75 kDa, mitochondrial Q9CQN1 Trap1 +
COP9 signalosome complex subunit 8 Q8VBV7 Cops8 +
Endothelial cell-selective adhesion molecule Q925F2 Esam +
Carbonic anhydrase 4 Q64444 Ca4 +
Arsenite methyltransferase Q91WU5 As3mt +
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Table 2. Cont.

Protein Names Protein ID Gene Names SP(+) SP(−) NP

Deoxyguanosine kinase, mitochondrial Q9QX60 Dguok +
H-2 class I histocompatibility antigen, D-B α chain P01899 H2-D1 +
Phosphoserine phosphatase Q99LS3 Psph +
Mannosyl-oligosaccharide 1,2-α-mannosidase IA P45700 Man1a1 +
Band 4.1-like protein 2 O70318 Epb41l2 +
Glucosamine-6-phosphate isomerase 1 O88958 Gnpda1 +
β-Galactosidase P23780 Glb1 +
Semaphorin-7A Q9QUR8 Sema7a +
Very long-chain acyl-CoA dehydrogenase, mitochondrial P50544 Acadvl +
Inter-α-trypsin inhibitor heavy chain H1 Q61702 Itih1 +
Glutathione S-transferase θ-1 Q64471 Gstt1 +
Catenin β-1 Q02248 Ctnnb1 +
BTB/POZ domain-containing protein KCTD12 Q6WVG3 Kctd12 +
Retinol-binding protein 2 Q08652 Rbp2 +
Small nuclear ribonucleoprotein Sm D3 P62320 Snrpd3 +
Coronin-7 Q9D2V7 Coro7 +
DNA topoisomerase 2-β Q64511 Top2b +
Mast cell protease 2 P15119 Mcpt2 +
Retinol-binding protein 1 Q00915 Rbp1 +
Phosphoglycolate phosphatase Q8CHP8 Pgp +
β-Hexosaminidase subunit β P20060 Hexb +
Putative hydroxypyruvate isomerase Q8R1F5 Hyi +
S-adenosylmethionine synthase isoform type-2 Q3THS6 Mat2a +
Bisphosphoglycerate mutase P15327 Bpgm +

obob_C57

Semaphorin-7A Q9QUR8 Sema7a +
α-Methylacyl-CoA racemase O09174 Amacr +
Leukemia inhibitory factor P09056 Lif +
Fructose-1,6-bisphosphatase isozyme 2 P70695 Fbp2 +
Thiosulfate sulfurtransferase P52196 Tst +
Eukaryotic translation initiation factor 3 subunit C Q8R1B4 Eif3c +
Tyrosine-protein phosphatase non-receptor type 6 P29351 Ptpn6 +
Signal transducer and activator of transcription 1 P42225 Stat1 +
Fibromodulin P50608 Fmod +
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Table 2. Cont.

Protein Names Protein ID Gene Names SP(+) SP(−) NP

Growth-regulated α protein P12850 Cxcl1 +
Plasminogen activator inhibitor 2, macrophage P12388 Serpinb2 +
1-Acyl-sn-glycerol-3-phosphate acyltransferase β Q8K3K7 Agpat2 +
BTB/POZ domain-containing protein KCTD12 Q6WVG3 Kctd12 +
C-X-C motif chemokine 3 Q6W5C0 Cxcl3 +
Epidermal growth factor receptor substrate 15 P42567 Eps15 +
26S proteasome non-ATPase regulatory subunit 13 Q9WVJ2 Psmd13 +
Glutathione S-transferase Mu 7 Q80W21 Gstm7 +
Hereditary hemochromatosis protein homolog P70387 Hfe +
Very long-chain specific acyl-CoA dehydrogenase, mitochondrial P50544 Acadvl +
Cadherin-16 O88338 Cdh16 +
C-X-C motif chemokine 5 P50228 Cxcl5 +
α-1-Antitrypsin 1-5 Q00898 Serpina1e +

dbdb_BKS

Tyrosine-protein phosphatase non-receptor type 6 P29351 Ptpn6 +
Hereditary hemochromatosis protein homolog P70387 Hfe +
Proteasome activator complex subunit 3 P61290 Psme3 +
C-C motif chemokine 9 P51670 Ccl9 +
Tripeptidyl-peptidase 2 Q64514 Tpp2 +
Vacuolar protein sorting-associated protein 13C Q8BX70 Vps13c +
Fibromodulin P50608 Fmod +
Eukaryotic translation initiation factor 2 subunit 1 Q6ZWX6 Eif2s1 +
Metalloproteinase inhibitor 2 P25785 Timp2 +
Mannosyl-oligosaccharide 1,2-α-mannosidase IA P45700 Man1a1 +
Importin-9 Q91YE6 Ipo9 +
Carnitine O-acetyltransferase P47934 Crat +
Small glutamine-rich tetratricopeptide repeat-containing protein α Q8BJU0 Sgta +
T-complex protein 1 subunit ζ P80317 Cct6a +
Epidermal growth factor receptor substrate 15 P42567 Eps15 +
Arginase-1 Q61176 Arg1 +
Granulocyte colony-stimulating factor P09920 Csf3 +
AP-2 complex subunit mu P84091 Ap2m1 +
Phosphoserine phosphatase Q99LS3 Psph +
Histidine triad nucleotide-binding protein 1 P70349 Hint1 +
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Table 2. Cont.

Protein Names Protein ID Gene Names SP(+) SP(−) NP

Plasminogen activator inhibitor 2, macrophage P12388 Serpinb2 +
Basigin P18572 Bsg +
Dynactin subunit 2 Q99KJ8 Dctn2 +
COP9 signalosome complex subunit 8 Q8VBV7 Cops8 +
Coatomer subunit ζ-1 P61924 Copz1 +
6-Pyruvoyl tetrahydrobiopterin synthase Q9R1Z7 Pts +
Inter-α-trypsin inhibitor heavy chain H1 Q61702 Itih1 +
Annexin A11 P97384 Anxa11 +
Plastin-1 Q3V0K9 Pls1 +
Eosinophil cationic protein 1 P97426 Ear1 +
Isopentenyl-diphosphate δ-isomerase 1 P58044 Idi1 +
Cadherin-1 P09803 Cdh1 +
4-Hydroxy-2-oxoglutarate aldolase, mitochondrial Q9DCU9 Hoga1 +
Nucleoside diphosphate-linked moiety X motif 19, mitochondrial P11930 Nudt19 +
Dolichyl-diphosphooligosaccharide-protein glycosyltransferase 48 kDa
subunit O54734 Ddost +

Thiosulfate sulfurtransferase P52196 Tst +
Cysteine and glycine-rich protein 1 P97315 Csrp1 +
N(G),N(G)-Dimethylarginine dimethylaminohydrolase 1 Q9CWS0 Ddah1 +
Small nuclear ribonucleoprotein Sm D3 P62320 Snrpd3 +
SUMO-conjugating enzyme UBC9 P63280 Ube2i +
Band 4.1-like protein 2 O70318 Epb41l2 +
Semaphorin-7A Q9QUR8 Sema7a +
Adenosine deaminase P03958 Ada +
Coronin-7 Q9D2V7 Coro7 +
Nodal modulator 1 Q6GQT9 Nomo1 +
Phosphoglycolate phosphatase Q8CHP8 Pgp +
C-X-C motif chemokine 3 Q6W5C0 Cxcl3 +
β-Hexosaminidase subunit β P20060 Hexb +
Putative hydrolase RBBP9 O88851 Rbbp9 +
Ketohexokinase P97328 Khk +
Interleukin-1 receptor antagonist protein P25085 Il1rn +
α-Methylacyl-CoA racemase O09174 Amacr +
Protein kinase C δ-binding protein Q91VJ2 Prkcdbp +
Retinol-binding protein 1 Q00915 Rbp1 +
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Table 2. Cont.

Protein Names Protein ID Gene Names SP(+) SP(−) NP

S-adenosylmethionine synthase isoform type-2 Q3THS6 Mat2a +
Glutathione S-transferase θ-2 Q61133 Gstt2 +
Cadherin-16 O88338 Cdh16 +
Bisphosphoglycerate mutase P15327 Bpgm +
C-X-C motif chemokine 5 P50228 Cxcl5 +
α-1-Antitrypsin 1-5 Q00898 Serpina1e +

dbdb_obob

Deoxyguanosine kinase, mitochondrial Q9QX60 Dguok +
Semaphorin-7A Q9QUR8 Sema7a +
Glutathione S-transferase Mu 7 Q80W21 Gstm7 +
Phosphoglucomutase-like protein 5 Q8BZF8 Pgm5 +
1-Acyl-sn-glycerol-3-phosphate acyltransferase β Q8K3K7 Agpat2 +
Regulator of microtubule dynamics protein 3 Q3UJU9 Rmdn3 +
Eosinophil cationic protein 1 P97426 Ear1 +
H-2 class I histocompatibility antigen, D-B α chain P01899 H2-D1 +
Interleukin-1 receptor antagonist protein P25085 Il1rn +
Putative hydroxypyruvate isomerase Q8R1F5 Hyi +
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Figure 2. Heatmap of all identified adipokines.

Consistent with the experimental design of adipocyte secretome analyses, all comparisons
in databases such as GO, KEGG or IPA annotated to keywords like “extracellular exosome”
(FDR = 1.03 × 1010–7.13 × 1027), or “membrane-bounded vesicle” (FDR = 1.03 × 1010–7.08 × 1024)
with the highest significance. Other keywords were rather unspecific e.g., “amide metabolism” (n = 7,
FDR = 2.02 × 103), or “regulation of protein metabolic process” (n = 13, FDR = 2.02 × 103) for C57 based
comparisons. BKS based comparisons also identified general metabolic pathways like “metabolic
process” (n = 46, FDR = 2.86 × 105), “regulation of protein transport” (n = 10, FDR = 7.30 × 104),
or “protein metabolic process” (n = 23, FDR = 8.94 × 104).

The analyses further identified proteins, that differed in both obese and obese/diabetic models
compared to the lean mice (n = 106, “obesity pattern”). These proteins were related to the obese
phenotype independent of genotypes investigated. Another 19 proteins differed between obese
and obese/diabetic regardless of genotype, and 36 proteins were specific for diabetes despite
obesity as they differ among obese and obese/diabetic (Figure 3, Supplementary Materials Table
S3). In pathway analyses of these protein sets, functional annotation only indicated direct secretion
or vesicle secretion, as expected from experimental design (Supplementary Materials Table S3).
Functional annotation identified key words like “extracellular exosome” (n = 70, FDR = 3.26 × 1041) or
“membrane-bounded vesicle” (n = 75, FDR = 3.36 × 1041) for the obesity pattern, “extracellular region”
(n = 13, FDR = 3.34 × 105) for the diabetes pattern or “extracellular exosome” (n = 24, FDR = 5.89 × 1013),
and “membrane-bounded vesicle” (n = 25, FDR = 3.96 × 1012) for the diabetes despite obesity pattern as
best hits. Other key terms of potential interest to metabolic energy balance showed lower significance
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and limited numbers of assigned proteins e.g., mitochondria (BKS vs. dbdb, n = 17, FDR = 1.76 × 103;
diabetes despite obesity, n = 15, FRD = 6.44 × 107), lipid metabolism (BKS genotype based differences,
n = 11, FDR = 1.12 × 103), lipid catabolic process, lipid- or phospholipid binding (obesity pattern,
n = 5, FDR = 3.17 × 103; n = 12, FDR = 4.68 × 104; n = 9, FDR = 4.68 × 104), or fatty acid degradation
(diabetic despite obesity pattern, n = 3, FDR = 1.42 × 104) (Supplementary Materials Table S3).
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DAG which initiated cellular processes via PKC signaling [19]. As chronical process, the cells get 
insulin resistance with dysfunctional mitochondria resulting in the development of obesity and 
diabetes. With regard to adipocyte function, the combination of both should alter the DAG patterns 
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Figure 3. Venn analyses of differential abundant proteins. Proteins with differential abundance in the
comparisons C57 vs. BKS, C57 vs. obob, BKS vs. dbdb and dbdb vs. obob (>1.5 fold, one-way
ANOVA posthoc p-value < 0.05) were analyzed for overlap to determine genotype specific and
genotype independent alterations. Genotype independent differential abundant proteins for “obesity”
(n = 106, turquoise), diabetes (n = 36, red) and diabetes despite obesity (n = 19, yellow) are highlighted.
p-Value was determined by Welch test. Further information of proteins of all groups are detailed in
Supplementary Materials Table S3.

In general, enrichment analyses were used to facilitate the interpretation of numerous genes
or proteins which are the usual outcome of hypothesis generating experimental designs. Thus,
the accumulation of candidates with known biological function or interaction, either directly experiment
proven or deduced from literature, were monitored in a dataset. Knowledge based pathway annotation
or gene enrichment analyses can help to classify “Omics” data, but also bares some restrictions. Next
to bioinformatics, the main issue being intrinsic to the experimental setting [18]. We use secreted
proteins, so enrichment of secreted proteins or related pathways with highest significance confirmed
our experimental approach. The other bias, for sure is the limited number of differential proteins in the
specific regulations we focus on, which hampers annotations in a general way.

So, we decided to focus on our initial working hypothesis, i.e., to identify alterations in the
adipocyte “communication” with regard to specific physiological states. Adipose tissue controls
systemic energy storage and needs to expand in regard to metabolic needs. In healthy conditions,
this can be due to hyperplasia, but in metabolically affected adipose tissue as in obesity or diabetes,
increased ad libitum storage of fatty acids occurs, even in non-adipose tissues. Increased lipid load in
these cells favors accumulation of fatty acids (FA)-derived metabolites such as fatty acyl-CoA or DAG
which initiated cellular processes via PKC signaling [19]. As chronical process, the cells get insulin
resistance with dysfunctional mitochondria resulting in the development of obesity and diabetes.
With regard to adipocyte function, the combination of both should alter the DAG patterns in adipocytes,
like observed in other insulin-sensitive tissues as liver, skeletal muscle or even pancreas [9,20–22].

Adipose tissue DAGs were determined by mass spectrometry (Figure 4). In contrary to the
obese obob, there was an increase in total DAG content in obese/diabetic dbdb mice compared to
their backgrounds. Nevertheless, the comparison of the distinct DAGs revealed that in both obese
models the DAG species with the fatty acid C18:1 were equally regulated (C18:0_18:1; C18:1_18:1).



Int. J. Mol. Sci. 2017, 18, 1928 14 of 19

DAG species with saturated fatty acid C16:0 and C18:0 were only changed in dbdb (C16:0_C18:0;
C16:0_C18:1, C18:0_C20:4), whereas the DAG species with unsaturated fatty acid C16:1 were only
changed in obob (C16:1_C16:1).
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(µmol or nmol/g tissue) and expressed as mean ± SD (n = 5 of each phenotype). * p < 0.05, ** p < 0.01,
*** p < 0.001 by Student’s t test.

According to our hypothesis, intensities of a vast amount of adipose secreted proteins correlated
to the total adipose derived DAGs (n = 152; 23 SP(+), 53 SP(−), 76 NP). Of these 105 proteins
(20 SP(+), 36 SP(−), 49 NP) also showed differential abundance in either comparison of mouse
phenotypes. In addition, specific DAG species correlate to adipocyte-secreted proteins (Figure 5,
Supplementary Materials Table S4). Here, all secreted correlated proteins can be assigned to metabolic
active proteins with the highest prevalence. Of note, DAG species specific for obob shows poly(A)
RNA binding proteins as highest annotation (poly(A)RNA binding, n = 30, FDR = 6.71 × 109,
RNA binding, n = 31, FDR = 4.10 × 107). This is also observed, if not in highest position with
DAG species specific for dbdb (n = 20, FDR = 5.96 × 104) (Figure 5). This is of interest as it focused
the differences in obesity and obesity/diabetes to the concept of moonlighting enzymes in metabolic
control. Moonlighting proteins or gene sharing defines various functions of a certain gene and are
independent to alternative splicing, posttranslational modification or multifunctionality. Especially
ancestral and conserved proteins in central metabolic processes show moonlighting functions, e.g.,
glycolysis or tricarboxylic acid cycle enzymes [23]. This process of metabolic regulation can account
for expression levels, differential localization, protein interactions and is mediated by binding of RNA
species to a distinct, but not necessary active domain of an enzyme. Best known examples of metabolic
enzymes regulated by binding of RNA species are GOT2, FASN, or GAPDH [24]. We identified
Adk, Aldh6A1, Aldoa, Eno, Lta4h and Hsd17B10 to be secreted from adipocytes and to correlate
to DAG species C16:1_C16:1 or DAG species C18:1_C20:4. All of these proteins were previously
identified in RNA interaction studies and implicated to have moonlighting functions [24]. For example,
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the metabolic enzyme fructose-1,6-bisphosphate aldolase (Aldoa) which catalyzes the reversible
cleavage of fructose-1,6-bisphosphate to glyceraldehyde 3-phosphate and dihydroxyacetone phosphate
in glycolysis and gluconeogenesis pathways, has been shown to regulate insulin-dependent glucose
transporter GLUT4 in mouse adipocyte cell lines 3T3-L1 [25]. Furthermore, enolase (Eno) catalyzes the
dehydrolyzation of 2-phospho-D-glycerate to phosphoenolpyruvate in glycolysis, but has also been
shown to bind plasminogen and to mediate its cell surface peptidase activity [26,27]. So, one could
speculate that alterations in such regulatory processes might interfere with the subcellular localization
and trafficking of proteins, depending on which functions is favored, and are also an essential target
in the overall picture of metabolic regulation.
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Figure 5. Functional network of adipokines correlated to DAG species. Adipokines with significant
correlation to total DAG content or indicated DAG species were used for over representation analyses.
(A) Adipokines correlated to total DAGs, DAG C16:0_C18:0 DAG C16:0_C18:1 species are enriched
in metabolic pathways (highlighted in red); (B) Adipokines correlating to DAG C16:1_C16:1 and
DAG C18:0_C20:4 are enriched in metabolic pathways or poly(A) RNA binding (highlighted in red).
Enrichment FDR is given. Graphs show results of interaction analyses (https://string-db.org).
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3. Materials and Methods

3.1. Mouse Models

C57BL/6 (C57), C57BL/KS (BKS), C57BL/KS.Cg-Leprdb (dbdb) and C57BL/KS.Cg-Lepob (obob)
mice were bred and maintained in a regular 12 h light/dark cycle under constant temperature,
humidity (22 ± 1 ◦C, 50 ± 5% humidity), with free access to water and standard laboratory food (Ssniff,
Soest, Germany). Mice were sacrificed by CO2 asphyxiation at 17 weeks of age. Mice (n = 5 each
genotype, males) were sacrificed at 7 a.m. after 6 h food restriction and visceral adipose tissue was
removed [5,28]. Adipose tissue was either processed directly to isolate adipocytes or was snap frozen
in liquid nitrogen and stored at −80 ◦C for lipid analyses. Serum was collected by left ventricular
punctuation. The Animal Care Committee of the University Duesseldorf approved all animal care and
procedures (Approval#50.05-240-35/06, August 2006).

3.2. Metabolic Characterization of the Mouse Models

Blood parameters were measured at 17 weeks of age (n = 8). Blood glucose was measured with
Freestyle™ and leptin, insulin as well as glucagon levels were determines using quantitative Bio-Plex
Pro Mouse Diabetes 8-Plex Assay (Bio-Rad, Munich, Germany) according to the manufacturer’s
instructions. Data were collected and analyzed using a BioPlex 200 instrument equipped with
BioManager analysis software (Bio-Rad). To determine insulin resistance and pancreatic β cell
function the surrogate parameters HOMA-IR (homeostatic model assessment of insulin resistance)
and HOMA-β (homeostatic model assessment of β cell function) were used. Body composition
was measured using nuclear magnetic resonance (n = 9–23/per genotype, Whole Body Composition
Analyzer; Echo MRI, Houston, TX, USA).

3.3. Secretome Profiling by Liquid Chromatography (LC)-Electrospray Ionization (ESI)-MS/MS and
Data Analyses

Murine mature adipocytes from visceral fat isolated by collagenase digestion were cultured for
24 h (DMEM/F12 without FCS supplementation (Thermofisher Scientific, Darmstadt, Germany)),
and secretomes were harvested as described [29]. Data of all mouse models were acquired in parallel
as described in detail [5]. In brief, secretome samples were tryptically digested and analyzed using
LC-ESI mass spectrometry using an Ultimate 3000 Rapid Separation liquid chromatography system
(Dionex/Thermo Scientific, Idstein, Germany). Afterwards, mass spectrometry was carried out
(Orbitrap Elite high resolution instrument, Thermo Scientific, Bremen, Germany). For the comparison
of mouse strains, log2 PSM values were used. MaxQuant (version 1.4.1.2, Max Planck Institute for
Biochemistry, Munich, Germany) was used for protein and peptide identification and quantification
with default parameters if not otherwise stated. Searches were carried out using 16.671 mouse
sequences from the Swiss-Prot part of UniProtKB (release 9.7.2014) applying the following parameters:
mass tolerance precursor (Orbitrap): mass tolerance precursor: 20 ppm firt search and 4.5 ppm after
recalibration (Orbitrap), mass tolerance fragment spectra: 0.4 Da (linear ion trap), trypsin specific
cleavage (maximum of one missed cleavage site), fixed modification: carbamidomethyl, variable
modifications: methionine oxidation and N-terminal acetylation. For peptide and protein acceptance,
the false discovery rate (FDR) was set to 1%, only proteins with at least two identified peptides
were used for protein assembly. Quantification was carried out using the label-free quantification
algorithm implemented in MaxQuant using a minimal ratio count of 2 and the “match between runs”
option enabled.

3.4. Lipid Analysis of Adipose Tissue

Extraction, purification and analysis of DAGs from frozen adipose tissue samples was conducted
using an LC-MS/MS approach [21]. In brief, 20 mg of adipose tissue was homogenized in 20 mM
Tris/HCL, 1 mM EDTA 0.25 mM EGTA, pH 7.4, using a tight-fitting glass douncer (Wheaton Lab
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Supplies, Birmingham, UK). Internal standard (d517:0-DAG; Avanti Polar Lipids, Alabaster, AL, USA)
was added and lipids were extracted according to Folch et al., [30]. Diacylglycerols were separated
from triglycerides using solid phase extraction (Sep Pak Diol Cartridegs; Waters, Milford, MA, USA).
The resulting lipid phase was dried under a gentle flow of nitrogen and re-suspended in methanol.
Diacylglycerols were separated using a Phenomenex Luna Omega column (1.6 µm 100 A; Phenomenex,
Torrance, CA, USA) on an Infinity 1290 HPLC system (Agilent Technologies, Waldbronn, Germany)
and analyzed by multiple reaction monitoring on a triplequadrupole mass spectrometer (Agilent 6495;
Agilent Technologies), operated in positive ion mode.

3.5. Prediction and Annotation of Secretory Proteins

Secretory protein prediction and functional annotation was done using different independent
methods. First, protein information of all identified proteins was extracted from the Swiss-Prot database
(http://www.uniprot.org/). To assess secretory properties, protein sequences were analysed by
SignalP 4.1 [17]; (http://www.cbs.dtu.dk/services/SignalP/), SecretomeP 2.0. [31]; (http://www.cbs.
dtu.dk/services/SecretomeP/) and Exocarta (http://www.exocarta.org/) [32]. Literature screening
was performed with NCBI/Pubmed (http://www.ncbi.nlm.nih.gov/pubmed) and protein-protein
interaction analyses with https://string-db.org.

3.6. Web-Based Functional Annotation

The identification types were uniprot swissprot accession or gene ID, respectively. Information
driven analyses including functional annotation was performed with String v10.5 (https://string-db.
org) [33], David Bioinformatics Resources 6.8 (https://david.ncifcrf.gov) [34,35], and IPA (IngenuityTM,
Qiagen, Hilden, Germany). For differential protein sets expression analyses, expression fold change
(1.5×) and expression differences (p-value < 0.05) were analyzed following the core analyses modules.
Differential abundant proteins (1.5× fold difference, p-value < 0.05 (one-way ANOVA, post hoc) were
analyzed separately for C57 vs. BKS, C57 vs. obob, BKS vs. dbdb and dbdb vs. obob.

3.7. Statistical Methods

Statistical analyses were performed in GraphPad Prism 5.0 (GraphPad Software, Inc., San Diego,
CA, USA) and SPSS 22 (IBM, Armonk, NY, USA). Data are given as mean ± standard deviation
(SD) and data were directly compared with an unpaired Student’s t test. Figure legends indicate the
statistical tests applied for each experiment in detail.

4. Conclusions

We showed that genetic mouse models, which are susceptible to obesity or obesity/diabetes
according to their genetic background genotype show phenotype-specific differences in primary
adipocyte adipokinome in quantitative proteome analyses. Knowledge based annotation of identified
differentially regulated adipokinome did not add much further information. According to the
predictive value of DAG-species for lipid metabolism and insulin resistance in liver and skeletal
muscle [9], we determined DAG levels also as classifying parameter for lipid metabolism and insulin
resistance in adipose tissue. Adipose tissue DAG patterns differ in obesity and obesity/diabetes
especially of DAG species with saturated fatty acid C16:0 and C18:0 in diabetes and unsaturated fatty
acid C16:1 in obesity or unsaturated fatty acid C20:4 in obesity/diabetes. Our study provides evidence
that the analyses of one “Omics”-like secretome might not be sufficient to get insight in a complex
phenotypical problem.

Here, the combination of specific DAG species and the holistic pattern of primary
adipocyte-secreted proteins helped to get hints to an interacting mechanism and to unravel
RNA-binding proteins involved in metabolic control differing in obesity and obesity/diabetes.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/18/9/1928/s1.
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