
Research Article
Construction of Diagnosis Model of Moyamoya Disease Based on
Convolution Neural Network Algorithm

Xiangcheng Hao , Li Xu , Yin Liu , Cheng Luo , Yiming Yin , Xiao Chen ,
and Xiaoyang Tao

Department of Neurosurgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215000, China

Correspondence should be addressed to Yiming Yin; yinyiming770831@126.com, Xiao Chen; chenxiao941213@163.com,
and Xiaoyang Tao; taoxiaoy1990@163.com

Received 12 April 2022; Revised 3 June 2022; Accepted 30 June 2022; Published 25 July 2022

Academic Editor: Xue Fei Deng

Copyright © 2022 Xiangcheng Hao et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Objective. The convolutional neural network (CNN) was used to improve the accuracy of digital subtraction angiography (DSA) in
diagnosing moyamoya disease (MMD), providing a new method for clinical diagnosis of MMD. Methods. A total of 40 diagnosed
with MMD by DSA in the neurosurgery department of our hospital were included. At the same time, 40 age-matched and sex-
matched patients were selected as the control group. The 80 included patients were divided into training set (n = 56) and
validation set (n = 24). The DSA image was preprocessed, and the CNN was used to extract features from the preprocessed
image. The precision and accuracy of the preprocessed image results were evaluated. Results. There was no significant
difference in baseline data between the training set and validation set (P > 0:05). The precision and accuracy of the images
before processing were 79.68% and 81.45%, respectively. After image processing, the precision and accuracy of the model are
96.38% and 97.59%, respectively. The area under the curve of the CNN algorithm model was 0.813 (95% CI: 0.718-0.826).
Conclusion. This diagnostic method based on CNN performs well in MMD detection.

1. Introduction

Moyamoya disease (MMD) is a cerebrovascular disease
characterized by chronic progressive stenosis or occlusion
of the distal ends of bilateral internal carotid arteries
followed by an abnormal vascular network at the base of
the skull [1]. In the digital subtraction angiography (DSA),
the compensatory vascular network showed a “smog”
appearance, so it is called “MMD” [2]. MMD is most com-
mon in Asian countries such as Japan and China and affects
women between the ages of 5 years and 40 years [3, 4].
MMD mainly presented with unilateral or bilateral stenosis
or occlusion of the distal internal carotid artery, middle cere-
bral artery, and proximal anterior cerebral artery, accompa-
nied by the formation of smoky and small vessels at the base
of the brain and pia meningeal [5]. MMD includes ischemic
and hemorrhagic blood types. In general, ischemic MMD is
predominant in children and adults, and cerebral hemor-

rhage mainly occurs in adults. The mortality rate of hemor-
rhagic MMD is higher than that of ischemic MMD [6].

With the continuous development of medical technology,
the commonly used diagnostic techniques of MMD mainly
include magnetic resonance angiography (MRA), computed
tomography angiography (CTA), and DSA [7]. The DSA is
the gold standard for diagnosing MMD with high time and
density resolution [8]. DSA imaging can not only clearly see
the stenosis degree and the formation of smog-like vessels at
the bifurcation of the internal carotid artery but also clarify
the location and nature of vascular lesions, the establishment
of collateral circulation, and the situation of extracranial ves-
sels to intracranial compensation [9, 10].

DSA is a kind of angiographic video, which can provide
richer vascular information, and MMD detection can be
more effective on DSA [11]. With the development of bio-
medical engineering and artificial intelligence, deep learning
has been widely used in medical diagnosis and treatment
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[12–14]. In this study, the diagnostic model of MMD was
constructed based on the preprocessing DSA images by a
convolution neural network (CNN), and its diagnostic value
was discussed.

2. Materials and Methods

2.1. General Information. A total of 40 diagnosed with MMD
by DSA from January 2016 to June 2018 in the neurosurgery
department of our hospital were included in this study. The
age ranged from 2.5 to 69 years, with a mean of 38 ± 3:9
years. Clinical symptoms include motor or sensory dysfunc-
tion, cognitive dysfunction, headache, involuntary move-
ment, visual impairment, and transient ischemic attack.
Postoperative follow-up was 6-39 months, with a median
of 13 months. At the same time, 40 age-matched and sex-
matched patients were selected. These patients with unre-
lated ischemic cerebrovascular disease and all patients were
screened in the outpatient department of our hospital.

Inclusion criteria were as follows: (1) the patients met
the guidelines for the diagnosis and treatment of MMD in
adults and were diagnosed with MMD by DSA imaging
and CT perfusion imaging; (2) conform to the operation
indications; and (3) informed consent signed by family
members. Exclusion criteria were as follows: (1) autoim-
mune diseases; (2) complicated with meningitis; (3) compli-
cated with a brain tumor; (4) head trauma; (5) recently
received head radiation; and (6) operative contraindications.

2.2. Image Preprocessing. Because of the need to prevent
overlearning in the deep learning method, the training and
verification sets of images are preprocessed. The first step
is to remove the noise. The Gaussian filter function removed
mechanical noise, and an algorithm removed moving noise.
The second step is image enhancement. After denoising, his-
togram equalization is processed to increase the contrast dif-
ference between pixels in the image. The third step is image
normalization (Figure 1). The enhanced data is normalized
to near “0” to improve the training efficiency.

2.3. Construction of Convolutional Neural Network Model. In
this study, CNN was used as the classifier of preprocessed
images. Compared with traditional manual feature extrac-
tion methods, CNN can extract not only obvious features
from images but also extract higher-level abstract features
[15]. It alternately carries out convolution and pooling and
then outputs the obtained features through the full connec-
tion layer to complete classification [16]. For the spatial lim-
itations of images, the 2D convolution layer and pooling
layer in 2D-CNN can be used to filter these limitations.
The Conv2D convolution layer is used to extract image fea-
tures, and the MaxPooling2D layer is used to reduce features
and parameters and speed up training. The output of the
convolution layer cannot be directly connected to the dense
layer, so the flatten layer is needed to flatten the data of the
convolution layer. The fully connected layer is used to com-
bine features to reduce the impact of feature locations on
classification, and the dropout layer can reduce overfitting
and speed up training.

The activation function defines the output of the convo-
lution kernel in the model. The activation functions used in
this study include the ReLU function and Softmax function.
The ReLU activation function used in the 2D convolution
layer and the fully connected layer before the last layer can
be expressed as follows:

ReLU xð Þ =max 0, xð Þ: ð1Þ

The activation function used in the last fully connected
layer is the Softmax function, which can compress an arbi-
trary k-dimensional vector containing real numbers into
another k-dimensional real vector so that the range of each
element is in the interval of (0,1), and the sum of all elements
is “1.”

σ zð Þj =
ex

Twj

∑K
k=1e

xTwk

j = 1,⋯, kð Þ: ð2Þ

This output represents the probability value, represent-
ing the probabilities that fall into each category.

The loss function in a neural network is used to measure
the difference between model training sample output and
model output in the training stage. The loss function
requires an optimizer to get the minimum. There are many
loss functions in neural networks, and the cross-entropy loss
function is commonly used in deep learning.

C = −〠
y

ln að Þ: ð3Þ

In this formula, y represents the real value, and a repre-
sents the output value of the model.

To make the deep learning network better learn the fea-
tures of class V and class S, the loss function with weight
coefficient is proposed in this study.

C = −〠
ay

ln að Þ: ð4Þ

In this formula, α is the weight coefficient. The value of α
is 1 when the type is N and 5 in other cases. The optimizer
used in this study was Adam, and the initial learning rate
was 0.001.

The CNN structure used in this study is shown in Figure 2.
Conv2D_1 and Conv2D_2 each contain two convolution
layers, and the length and width of each convolution window
are 3. Conv2D_1 output space dimension is 64, Conv2D_2 out-
put space dimension is 128, and the activation function is ReLU.
Conv2D_3 contains three convolution layers, the size of the
convolution window is 3 × 3, the dimension of the output space
is 256, and the padding of the convolution layer is the same. The
step size of the maximum pooling layer is 2 × 2. The dropout
layer has a ratio of 0.5.

2.4. Training of the Model. Subsequently, we randomly
divided the data set into a training set (n = 56) and a verifi-
cation set (n = 24) in a 7 : 3 ratio. After preprocessing, the
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training set data is used to construct the prediction model of
deep learning, and then, the model is trained by CNN. Val-
idation set data verifies the validity of the model. Then, the
predictive efficiency of the model is evaluated. The specific
process is shown in Figure 3.

2.5. Evaluation of the Model. All DSA images were prepro-
cessed. The preprocessed images were trained by 5-fold
cross-validation. The precision and accuracy of the prepro-
cessed image results were evaluated. In addition, the predic-
tion efficiency of the model was evaluated through the curve
segment of receiver operator characteristic (ROC). The big-
ger the area under the curve, the higher the prediction
efficiency.

2.6. Statistical Analysis. The Mann-Whitney U-test and
Fisher’s exact probability test were used to compare the data
between the training set and validation set. All statistical
analyses were conducted using the SPSS version 22.0 soft-
ware (IBM, Armonk, NY, USA), and P < 0:05 was consid-
ered statistically significant.

3. Results

3.1. Data Comparison of Data Sets. In the training set, there
were 22 male patients and 34 female patients. The mean age
of the patients was 34.4 years. There were 28 patients with
MMD. In the validation set, there were 10 male and 14
female patients, with an average age of 33.7 years. There
were 12 patients with MMD. There was no significant differ-
ence in baseline data between the two groups (P > 0:05)
(Figure 4).

3.2. Results of Image Preprocessing. DSA images are prepro-
cessed with the same method, and the preprocessed images
are detected. We obtained the related parameters of DSA
image results before and after CNN processing. The preci-

sion and accuracy of the images before processing are
79.68% and 81.45%, respectively. After image processing,
the detection performance is significantly improved, and
the precision and accuracy of the model are 96.38% and
97.59%, respectively. The specific results were shown in
Table 1.

3.3. Evaluation of the Effectiveness of Prediction Models. The
prediction efficiency of the model was evaluated through the
curve segment of the ROC. The ROC curve was shown in
Figure 5. The area under the curve (AUC) of the CNN algo-
rithm model was 0.813 (95% CI: 0.718-0.826).

4. Discussion

MMD has been known more and more since it was named
in 1957 years [17]. However, the etiology of MMD is still
unknown, and many factors such as heredity, immune sys-
tem disease, and infection may be related to the formation
of MMD to some extent [18]. The disease has a higher inci-
dence in East Asia, particularly in Japan and China than in
the United States [19]. The incidence of MMD was higher
in females than in males. The peak of onset in adults is
around 40 years old. The main clinical manifestations of
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Figure 1: Flow chart of image preprocessing in MMD.
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MMD patients are transient ischemic attack, hemiplegia,
cranial nerve disorder, headache, and dizziness. Some
patients may also have visual field defect, epilepsy, syncope,
and other symptoms [18, 20].

With the progress of imaging, more and more detection
methods appear, such as MRA, CTA, and DSA [7, 21, 22].
This study constructs the MMD detection model based on
the deep learning of the CNN algorithm. Firstly, the DSA
image is preprocessed to extract the temporal and spatial
features of DSA. The CNN algorithm can fine-tune the pre-
trained network in a small data set to prevent it from over-
fitting [23]. In this study, CNN was used as the classifier of
preprocessed images. Compared with traditional manual
feature extraction methods, CNN can extract noticeable fea-
tures from images and higher-level abstract features [24].
For the spatial limitations of images, the 2D convolution
layer and pooling layer in 2D-CNN can be used to filter
these limitations. The pretrained Inception-ResNetV2 net-
work is used to extract spatial features of DSA to help pre-
vent network overfitting [25].

In patients with MMD, the stenosis or occlusion of the
internal carotid artery system easily leads to insufficient
cerebral blood supply and hypoperfusion of brain tissue,
resulting in cerebral infarction or ischemia [26]. Therefore,
early diagnosis of MMD patients is essential. This study con-
structs MMD diagnostic model based on the CNN algo-
rithm. Because of the need to prevent overlearning in the
deep learning method, the training and verification sets of
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Figure 4: Data comparison between the training set and validation set. The difference between the two sets was not statistically significant
(P > 0:05).

Table 1: Diagnostic efficiency before and after image
preprocessing.

Diagnostic efficiency Before After

Precision 79.68% 96.38%

Accuracy 81.45% 97.59%
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Figure 5: ROC curve of CNN prediction model.
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images are preprocessed. In this study, there was no signifi-
cant difference in baseline data between the two data. The
same method was used to detect the images before and after
preprocessing. The precision and accuracy of the images
before processing are 79.68% and 81.45%, respectively, after
5-fold and cross calculation. After image processing, the
detection performance is significantly improved (96.38%
and 97.59%, respectively). Compared with the pretreatment,
the detection accuracy of the model is increased by 15%.
This shows that the diagnosis model based on deep learning
has a good practical effect.

In addition, the diagnostic efficacy of the model was
evaluated. The AUC of the CNN algorithm model was
0.813 (95% CI: 0.718-0.826). The area under the ROC curve
is the AUC value. The larger the AUC is, the better the clas-
sification performance of the classifier will be. Thus, the bet-
ter the detection effect will be.

5. Conclusions

This study diagnosed MMD based on CNN and performs
well in MMD detection. This method provides a reference
for the diagnosis of MMD in neurosurgery. This study has
several limitations. First of all, CNN cannot process timing
information. In image preprocessing, only the central part
is input to reduce the influence of the surrounding back-
ground area. This will result in insufficient input images.
In addition, due to a large number of original DSA
sequences, the sequence images we selected are not necessar-
ily the best choice. Finally, the number of patients enrolled
in this study was small and single centers.
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