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Following infection with certain strains of Shiga toxin-producing Escherichia coli (STEC),

particularly enterohemorrhagic ones, patients are at elevated risk for developing

life-threatening extraintestinal complications, such as acute renal failure. Hence,

these bacteria represent a public health concern in both developed and developing

countries. Shiga toxins (Stxs) expressed by STEC are highly cytotoxic class II

ribosome-inactivating proteins and primary virulence factors responsible for major

clinical signs of Stx-mediated pathogenesis, including bloody diarrhea, hemolytic uremic

syndrome (HUS), and neurological complications. Ruminant animals are thought to serve

as critical environmental reservoirs of Stx-producing Escherichia coli (STEC), but other

emerging or arising reservoirs of the toxin-producing bacteria have been overlooked.

In particular, a number of new animal species from wildlife and aquaculture industries

have recently been identified as unexpected reservoir or spillover hosts of STEC.

Here, we summarize recent findings about reservoirs of STEC and review outbreaks

of these bacteria both within and outside the United States. A better understanding of

environmental transmission to humans will facilitate the development of novel strategies

for preventing zoonotic STEC infection.

Keywords: Shiga toxin-producing Escherichia coli, Shiga toxin, STEC reservoir, HUS, environmental transmission

INTRODUCTION

Escherichia coli is a component of the normal flora in the human gut, but some strains
are pathogenic. Based on its pathotypes, intestinal pathogenic E. coli can be classified into
six groups: Shiga toxin (Stx)-producing [STEC, also referred to as verocytotoxin-producing
(VTEC) or enterohemorrhagic (EHEC)], enterotoxigenic (ETEC), enteropathogenic (EPEC),
enteroaggregative (EAEC), enteroinvasive (EIEC), and diffusely adherent (DAEC) (Kaper et al.,
2004). Among those, STEC tends to be a clonal group characterized by somatic (O) antigen, and
more than 200 serotypes of E. coli have been known to produce Stxs based on their molecular and
genetic features. In addition, a new classification scheme of five seropathotypes (A–E) based on
virulence, serological and genetic features has been suggested due to the various symptoms and
severity of clinical STEC infections (Frankel et al., 1998; Nataro and Kaper, 1998; Boerlin et al.,
1999; Karmali et al., 2003). However, a recent massive outbreak in Germany raised questions about
the efficacy of this categorization because the strain involved was not classified as type A or B based
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on its genetics (specifically, it was negative for the LEE Island).
Hence, in this review, we summarize outbreaks and STEC isolates
by serotype, not seropathotype, based on surveillance reports.

Stxs are a family of bacterial exotoxins expressed by Shigella
dysenteriae serotype 1 and STEC (Fraser et al., 1994; Sandvig,
2001). These toxins are primary virulence factors responsible
for bloody diarrheal disease that can progress to life-threatening
systemic sequelae, such as an acute renal failure syndrome (also
known as hemolytic uremic syndrome, HUS), as well as central
nervous system (CNS) abnormalities (Tarr et al., 2005; Lee et al.,
2016; Lee and Tesh, 2019). The toxins produced by STEC are
classified as type 1 (Stx1) and type 2 (Stx2), and several Stx1/Stx2
subtypes and variants have been reported based on the receptor
preference and toxin potency (Scheutz et al., 2012; Melton-Celsa,
2014). And among those, Stx2, which is more potent than Stx1,
causes clinically severe weight loss and renal injury (Lentz et al.,
2011; Pradhan et al., 2016).

Multiple studies have focused on revealing the source and
transmission route of STEC infections in humans and the food
chain (Erickson and Doyle, 2007; Kintz et al., 2017). Animals
are undoubtedly the most important carriers of STEC, as these
strains have been isolated from a wide variety of domestic and
human-associated animal species (Persad and LeJeune, 2014;
Espinosa et al., 2018). Several lines of evidence have confirmed
zoonotic human infections caused by contact with companion
and domestic animals (Chalmers et al., 1997; Luna et al.,
2018). In addition, work in recent decades has emphasized
the importance of wildlife surveillance, as a large proportion
of emerging zoonotic pathogens are of wildlife origin (Jones
et al., 2013), and increasing numbers of wild animals have
been shown to be potential STEC reservoirs (Espinosa et al.,
2018). Although the need for the One Health approach has
been continuously emphasized in STEC research, surveillance
studies have generally been limited to domestic animals (Garcia
et al., 2010). However, a recent STEC surveillance study revealed
that more distantly related fields, such as aquaculture, should
be included as important areas of interest and monitored
accordingly. In this review, we update the list of animal species
recently reported as STEC reservoirs. In so doing, our goal is
to emphasize the importance of applying the interdisciplinary
One Health approach in surveillance systems by strengthening
multi-sectorial collaboration between agriculture, aquaculture,
and wildlife science, as well as to provide a broad perspective on
industrial fields relevant to food production.

STEC GLOBAL OUTBREAKS AND
CLINICAL ISOLATES

Historically, Stxs and verotoxin were studied separately. Stxs
was discovered by Kiyoshi Shiga in 1898 as a factor involved in
bacterial dysentery caused by S. dysenteriae serotype I (Kaper
and O’Brien, 2014). Independently, in 1977, verotoxin was
discovered by Konowalchuck in diarrheagenic E. coli strains
(Konowalchuk et al., 1977). In 1983, Johnson et al. confirmed
that two toxins belonged to the same family (Johnson et al.,
1983), and they began to be considered together in studies of

the first STEC outbreak strains from 1982. Shiga toxin-producing
bacteria, including STEC and S. dysenteriae serotype 1, are
agents of hemorrhagic colitis, which can progress to potentially
lethal complications, such as bloody diarrhea-associated HUS
(D + HUS) with acute renal dysfunction (Figure 1) and CNS
disorders, such as seizure or paralysis. Investigations of major
outbreaks have focused on STEC, rather than on S. dysenteriae
serotype 1 because STEC infections are more common in the
broader community than Shigella infections.

In the United States
In 1982, two severe outbreaks that caused HUS occurred in
Oregon and Michigan. E. coli O157:H7 was isolated from the
stool specimens of patients and determined to be the cause of
disease (Centers for Disease, 1982). After a year, production
of Stxs was confirmed by comparing toxins purified from S.
dysenteriae and three E. coli isolates from the outbreaks (O’Brien
et al., 1983). Since then, STEC O157 has rapidly emerged as a
major problem in the food industry and clinics. In the 30 years
since the first report, a total of 740 outbreaks caused by STEC
O157:H7 and O157:NM were reported in the United States. A
total of 13,526 cases resulted in 2,765 hospitalizations (20%), 653
HUS (4.8%), and 73 deaths (0.5%) (Rangel et al., 2005; Heiman
et al., 2015). In all years since 1994 except for 1997, the annual
outbreak size rose above 30 cases a year.

Food is the best-known transmission route of STEC O157.
The frequency of foodborne outbreaks has increased dramatically
over the past three decades: 183 out of a total of 350 outbreaks
(52%) in the first 20 years (1982–2002) vs. 255 out of a
total of 390 outbreaks (65%) in the last 10 years (2003–2012).
Over the same period, the incidence of outbreaks via other
routes has decreased: person-to-person (14–10%), water (9–
4%), and other or unknown reasons (21–11%). Interestingly,
STEC outbreaks due to animal contact have also become more
common, from 11 (3%) in the first 20 years to 39 (10%) in the last
10 years, indicating that animal resources represent important
STEC reservoirs (Rangel et al., 2005; Heiman et al., 2015) (see
Environmental Transmission section).

Although STEC O157 was the first E. coli strain involved in
Stx–related disease and remains the most important strain in this
regard, non-O157 STEC strains also represent a major public
health concern. The Centers for Disease Control and Prevention
estimates that 265,000 STEC infections occur each year in the
United States, of which STEC O157 causes 36%; thus 64% of
STEC infections are non-O157 (Scallan et al., 2011). More than
50 non-O157 STEC serogroups are involved in human illness.
The first US outbreak of non-O157 STEC, caused by STEC O111,
was reported in 1990; over the next 20 years (1990–2010), 46
outbreaks caused 1,727 illnesses, 144 hospitalizations, and one
death. As with O157, food (n = 20, 43%) is a major transmission
route in non-O157 outbreaks (Luna-Gierke et al., 2014).

Since the first outbreak in 1990, 11 serotypes and one
undetermined type have been observed in non-O157 outbreaks.
The most commonly isolated serotype is O111, followed by O26;
together, O111 and O26 account for more than 60% of outbreaks
(Brooks et al., 2005; Luna-Gierke et al., 2014). O103, O121, O45,
O145, O104, O165, O69, O84, and O141 are also frequently
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FIGURE 1 | After ingestion of food or water contaminated with pathogenic STEC, Stxs may cross the intestinal epithelial barrier via M-cell uptake and transcytosis or

paracellular transport. Once in the submucosa, the toxins activate innate immune cells, such as neutrophils or monocytes that act as “carrier” cells to deliver Stxs in

the bloodstream and may also further exacerbate tissue injury via localized production of proinflammatory cytokines. Ultimately, the toxins are transferred to glomerular

endothelial cells and tubular epithelial cells, which are rich in the toxin receptor Gb3. Damage to the kidney, the primary target organ, leads to D + HUS

(diarrhea-associated hemolytic uremic syndrome).

isolated from outbreak patients. Interestingly, although non-
O157 infection is almost twice as common as O157 infection,
non-O157 strains cause fewer outbreaks thanO157 (Scallan et al.,
2011). This might be due to the greater severity of O157 (more
hospitalization) or issues with subtyping techniques (e.g., it is
difficult to subtype non-O157 strains) (Gould et al., 2013).

Outside the United States
The World Health Organization (WHO) estimated that STEC
infection caused more than 1 million illnesses and 100
deaths in 2010 (Havelaar et al., 2015). Between 1998 and
2016, the European region (EUR) and Western Pacific region
(WPR) reported 211 STEC outbreaks (EUR: 176, WPR: 35),
far fewer than the number of outbreaks in the Americas
(708) (FAO/WHO, 2018).

The largest O157 STEC outbreak ever recorded occurred
in the WPR (Japan, 1996) (Fukushima et al., 1999). Of
12,680 symptomatic patients, 121 (0.95%) developed HUS,
and three died. After that massive outbreak, the frequency of
STEC cases increased dramatically: from 1999 to 2012, more
than 3,000 cases were reported in Japan, whereas during the
previous 5 years (1991–1995) the annual average was only
105 cases. Following O157, the most frequent serotype, other
common serogroups of STEC are O26, O111, O103, O121, and
O145 (Terajima et al., 2014).

The most severe outbreak of non-O157 STEC (O104)
occurred in EUR (Germany, 2011): over a 3 months period,
3,816 cases were reported. Despite the smaller number of
cases relative to the Sakai outbreak, the rates of HUS (n =

845, 22.4%) and death (n = 54) made the German outbreak
historic (Frank et al., 2011). According to surveillance reports
from Food- and Waterborne Diseases and Zoonoses and
the European Centre for Disease Prevention and Control,
the total number of confirmed STEC infections was 3,573
(doi: 10.2903/j.efsa.2011.2090) in 2009, increasing dramatically
to 6,073 cases in 2017 (https://doi.org/10.2903/j.efsa.2018.5500).
As in other regions, the most commonly reported serogroup
from 2009 to 2017 was O157, followed by O26, O103, O91,
O145, andO146. However, the proportion of O157 dropped from
51.7 to 31.9%, whereas the proportion of non-O157 infections
increased accordingly. Among the 31 countries in Europe,
Germany and the United Kingdom had the highest human STEC
infection rates.

ENVIRONMENTAL TRANSMISSION OF
STEC

Over the past decade, interest in zoonotic pathogens of wildlife
origin has increased because those pathogens were shown to
constitute the primary source (>60%) of emerging infectious
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diseases (Jones et al., 2008). Moreover, adaptation of certain
urban exploiter animal species has increased contact between
wild animals and humans, potentiating the transmission of
zoonotic pathogens by fecal contamination of agri-food, the
environment, or the water chain (Rothenburger et al., 2017).
Although most E. coli are commensal organisms of both humans
and animals, the emergence of STEC has been reported in almost
all parts of the world and from a wide variety of animal species,
including mammals, birds, amphibians, fish, and invertebrates
(Persad and LeJeune, 2014; Espinosa et al., 2018). We have
updated the list of animal species reported to be reservoir or
spillover hosts for, or to be contaminated by, STEC strains
(Table 1).

Domestic Animals Are Indisputable
Reservoirs of STEC
Ruminants are recognized as principal reservoirs of STEC,
especially O157 (Gyles, 2007; La Ragione et al., 2009). As with
humans, ruminants are exposed to STEC through contaminated
feed and drinking water, or by exposure to the feces of other
animals that are shedding the bacteria (LeJeune et al., 2001;
Persad and LeJeune, 2014). Among ruminants, cattle (especially
ruminating post-weaning calves and heifers) are considered to
be the most important STEC reservoirs without symptomatic
colonization (Caprioli et al., 2005; Gyles, 2007; Ferens and
Hovde, 2011). The natural absence of vascular receptors
(globotriaosylceramide) in the intestinal vasculature of the cattle
inhibits endocytosis and transportation of Stxs to other organs
that might be sensitive to the toxins, resulting in asymptomatic
colonization in the large intestine (Pruimboom-Brees et al., 2000;
Naylor et al., 2003; Nguyen and Sperandio, 2012). Like cattle,
smaller ruminants, such as sheep and goats are also recognized
as significant carriers due to their ability to harbor STEC O157
and other serotypes; these animals are important asymptomatic
shedders in the epidemiology of bacterial infections in the
United States, Australia, and Europe (Beutin et al., 1993; Cortes
et al., 2005; Gyles, 2007; La Ragione et al., 2009; Brandal et al.,
2012). Also as in cattle, the asymptomatic nature of STEC
colonization in smaller ruminants might be due to their lack
of vascular receptors for Stx (Persad and LeJeune, 2014). In
addition, STEC O157 and non-O157 strains have been reported
in other domestic or captive ruminant species, such as alpacas,
antelopes, American bison, various deer species, elk, llamas,
moose, water buffalo, and yaks (Galiero et al., 2005; French et al.,
2010; Chandran and Mazumder, 2013; Mohammed Hamzah
et al., 2013; Nyholm et al., 2015).

Several recent surveillance studies have provided strong
evidence that monogastric farm animals should now be
considered as important reservoir or spillover hosts of STEC.
Although the prevalence of STEC O157 and other serotypes
varies in swine (Fairbrother and Nadeau, 2006; Ferens and
Hovde, 2011), pigs have been shown to harbor and shed
STEC for up to 2 months post-infection (Booher et al., 2002).
Moreover, because pigs possess Stx-sensitive vascular receptors
(globotetraosylceramide) in their intestines, they are susceptible
to STEC strains possessing Stx2e, which cause edema with

TABLE 1 | Animal species recently identified as potential STEC reservoirs.

Common name Scientific name References

MAMMALS

RUMINANTS

Cattle Bos taurus Gyles, 2007

Goats Capra aegagrus hircus Beutin et al., 1993

Sheep Ovis aries Gyles, 2007

Water buffalo Bubalus bubalis Galiero et al., 2005

White-tailed deer Odocoileus virginianus Sargeant et al., 1999

Red deer Cervus elaphus Bardiau et al., 2010

Fallow deer Dama dama Bardiau et al., 2010

Roe deer Capreolus capreolus Bardiau et al., 2010

American bison Bison bison Reinstein et al., 2007

Elk Cervus canadensis Franklin et al., 2013

Llamas Lama glama Mohammed Hamzah

et al., 2013

Alpaca Lama pacos Leotta et al., 2006

Yak Bos grunniens Leotta et al., 2006

Eland Taurotragus oryx Leotta et al., 2006

Antelope Antilope cervicapra Leotta et al., 2006

Mountain goat Oreamnos americanus Chandran and

Mazumder, 2013

Guanaco Lama guanicoe Mercado et al., 2004

Moose Alces alces Nyholm et al., 2015

Chamois Rupicapra rupicapra Hofer et al., 2012

Ibex Capra ibex Hofer et al., 2012

MONOGASTRICS

Domestic swine Sus domesticus Gyles, 2007

Feral swine (or wild

boar)

Sus scrofa Wacheck et al., 2010

Horses Equus ferus caballus Hancock et al., 1998

Donkey Equus africanus asinus Chandran and

Mazumder, 2013

Dogs Canis lupus familiaris Beutin et al., 1993

Cats Felis catus Beutin, 1999

Coyote Canis latrans Chandran and

Mazumder, 2013

Fox Vulpes vulpes Chandran and

Mazumder, 2013

Rabbit Oryctolagus cuniculus Pritchard et al., 2001

Hares Lepus timidus Espinosa et al., 2018

Pika Ochotona daurica Espinosa et al., 2018

Raccoon Procyon lotor Shere et al., 1998

Rats Rattus spp. Nielsen et al., 2004

Norway rats Rattus novegicus Cizek et al., 2000

Ground hog Marmota monax Chandran and

Mazumder, 2013

Patagonian cavy Dolichotis patagonus Leotta et al., 2006

Agouti Dasyprocta spp. Espinosa et al., 2018

Lowland paca Cuniculus paca Espinosa et al., 2018

Bear Unknown Vasan et al., 2013

Opossum Unknown Espinosa et al., 2018

Armadillo Unknown Espinosa et al., 2018

Cougar Puma concolor Espinosa et al., 2018

(Continued)
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TABLE 1 | Continued

Common name Scientific name References

Macaques Macaca spp. Espinosa et al., 2018

Peccary Unknown Espinosa et al., 2018

Ferrets Mustela putorius furo Woods et al., 2002

Mice Mus spp. Wadolkowski et al.,

1990

BIRDS

Chicken Gallus gallus

domesticus

Ferens and Hovde,

2011

Domestic duck Anas platyrhynchos

domesticus

Koochakzadeh et al.,

2015

Turkeys Meleagris gallopavo Ferens and Hovde,

2011

Pigeon Columba livia Foster et al., 2006

Starling Sturnus vulgaris Kobayashi et al., 2009

Geese Branta canadensis Kullas et al., 2002

Turtle dove Streptopelia turtur Kobayashi et al., 2009

Barn swallow Hirundo rustica Kobayashi et al., 2009

Cockatiels Nymphicus hollandicus Gioia-Di Chiacchio

et al., 2018

Budgerigars Melopsittacus

undulatus

Gioia-Di Chiacchio

et al., 2018

Red-legged

seriema

Cariama cristata Borges et al., 2017

Roadside hawk Rupornis magnirostris Borges et al., 2017

Cattle egrets Bubulcus ibis Fadel et al., 2017

House crows Corvus splendens Fadel et al., 2017

Moorhens Gallinula chloropus Fadel et al., 2017

House teals Anas crecca Fadel et al., 2017

Great egrets Ardea alba De Oliveira et al., 2018

Lesser Kestrel Falco naumanni Koochakzadeh et al.,

2015

Indian peafowl Pavo cristatus Milton et al., 2019

Sarus crane Antigone antigone Milton et al., 2019

Barn swallow Hirundo rustica Kobayashi et al., 2009

Seagulls Unknown Makino et al., 2000

FISH

Nile tilapia Oreochromis niloticus Cardozo et al., 2018

African sharptooth

catfish

Clarias lazera Hussein et al., 2019

Flathead gray

mullet

Mugil cephalus Hussein et al., 2019

Atlantic lizardfish Synodus saurus Hussein et al., 2019

Red porgy Pagrus pagrus Hussein et al., 2019

Catla Labeo catla Sekhar et al., 2017

Grass carp Ctenopharyngodon

idella

Siddhnath et al., 2018

Mrigal Cirrhinus mrigala Siddhnath et al., 2018

Common carp Cyprinus carpio Siddhnath et al., 2018

AMPHIBIANS

Red-eyed tree frog Agalychnis callidryas Dipineto et al., 2010

Oriental fire-bellied

toad

Bombina orientalis Dipineto et al., 2010

(Continued)

TABLE 1 | Continued

Common name Scientific name References

INVERTEBRATES

Blue/Mediterranean

mussel

Mytilus

edulis/galloprovincialis

Gourmelon et al., 2006

Pacific oyster Crassostrea gigas Gourmelon et al., 2006

Common cockle Cerastoderma edule Gourmelon et al., 2006

Indian white

shrimp

Fenneropenaeus

indicus

Surendraraj et al., 2010

European flat

oyster

Ostrea edulis Martin et al., 2019

House fly Musca domestica Alam and Zurek, 2004

Dung beetle Catharsius molossus Xu et al., 2003

Black dump fly Hydrotaea aenescens Szalanski et al., 2004

apparent clinical signs and mortality (Waddell et al., 1998;
Pruimboom-Brees et al., 2000; Fratamico et al., 2004; Steil et al.,
2016). Moreover, although horses are not considered reservoirs
for STEC due to its low prevalence in that species (Hancock
et al., 1998; Pritchard et al., 2009; Lengacher et al., 2010), some
cases of clinical infection from equine contact have been reported
(Chalmers et al., 1997; Luna et al., 2018); therefore, horses
should be considered as a potential source of infection. Domestic
poultry, such as chicken, duck, and turkeys have also been
reported to carry STEC (Doane et al., 2007; Ferens and Hovde,
2011; Koochakzadeh et al., 2015). In particular, chickens which
were experimentally inoculated with STEC O157 can harbor and
shed the bacteria in their feces for almost a year (Schoeni and
Doyle, 1994).

The importance of companion animals (pets) in the
epidemiology of STEC infection should not be underestimated.
Via their feces, pets, such as dogs and cats can serve as
asymptomatic shedders in the epidemiology of a wide range of
STEC serotypes (Beutin, 1999; Roopnarine et al., 2007; Hogg
et al., 2009; Rumi et al., 2012). Accordingly, several clinical
infections due to canine and feline exposure have been reported
(Busch et al., 2007; Persad and LeJeune, 2014; McFarland et al.,
2017). STEC has also been found from the feces of wild canids
but not felids (Mora et al., 2012; Persad and LeJeune, 2014).

Wild Animals Are Important Reservoir or
Spillover Hosts of STEC
The number of STEC outbreaks associated with the consumption
of fruits and vegetables contaminated with wild animal feces is
increasing (World Health Organization, 2016). Hence, from a
global public health standpoint, it is important to investigate the
prevalence of STEC in urban exploiter and wild animals that can
transmit the bacteria to human by direct and/or indirect contact.
Therefore, several studies have investigated the prevalence of
STEC among urban exploiter species, such as rats (Himsworth
et al., 2015), pigeons (Gargiulo et al., 2014; Murakami et al.,
2014), and flies (Kobayashi et al., 1999; Alam and Zurek, 2004;
Keen et al., 2006). In fact, rodents are capable of harboring and
shedding STEC, and various serogroups have been recovered
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from animals living in urban areas and farms (Blanco Crivelli
et al., 2012; Kilonzo et al., 2013). Moreover, many wild bird
species found in close proximity to livestock operations, waste
disposal landfill sites, and human habitation areas have also been
identified as potential sources of STEC infection (Cizek et al.,
2000; Pedersen and Clark, 2007). In addition, houseflies can
harbor and transmit STECO157 to other animals, demonstrating
that insects can be important vectors in the dissemination of
STEC within the environment (Kobayashi et al., 1999; Alam and
Zurek, 2004; Keen et al., 2006). Because domestic animal feed
represents an easy food source for rodents, birds, and insects,
these animals are attracted to farms and may transmit STEC
between livestock and humans or vice versa.

Likewise, wild animals residing in close proximity to livestock
facilities can be contaminated (or harbored) with STEC (Espinosa
et al., 2018). Several recent studies emphasized the urgent need
to investigate the prevalence of STEC in wild animals, as some
large STEC outbreaks were closely related to or originated from
contamination from wild animal feces (Laidler et al., 2013; Crook
and Senior, 2017; Soderqvist et al., 2019). Although wild animals
were identified as a source of STEC in the 1990s, more than 70%
of relevant studies were published since the turn of the century,
and an increasing number of wild animal species have been
identified as reservoir or spillover hosts for STEC (Espinosa et al.,
2018). Nevertheless, very little published research has addressed
the role of wild animals in the transmission of STEC to humans,
domestic animals, and within the food chain. Animals, such
as wild boars, deer, birds, and rodents might be involved in
direct interspecies contact between humans, domestic, and wild
animals, thereby creating a circle of transmission that increases
the prevalence of STEC. These species should be thoroughly
monitored, as they could potentially cause a spillover or spillback
to humans and other animals (Daszak et al., 2000).

Emerging Reservoirs of STEC and Needs
for the One Health Approach
Numerous studies have reported both O157 and non-O157 STEC
in fresh fish and shellfish, and their ready-to-eat products in
retail markets (Thampuran et al., 2005; Surendraraj et al., 2010;
Prakasan et al., 2018), suggesting that human activities, such as
handling, processing, and ingestion of the products might be
a major source of STEC contamination. Interestingly, fish and
shellfish residing in coastal areas, some cultured fish, and those
in close proximity to or downstream of animal livestock facilities
have been found to be contaminated with STEC (Gourmelon
et al., 2006; Sekhar et al., 2017; Cardozo et al., 2018; Siddhnath
et al., 2018; Hussein et al., 2019). These results strongly indicate
that fish and shellfish are a potential reservoir or spillover
hosts of STEC, and that effluent water from STEC-contaminated
culture ponds might also be an additional potential source of
transmission, emphasizing the need for further investigations of
the aquaculture industry.

Based on the findings of recent surveillance approaches, a
wide range of domestic, captive, and wild animals, including
aquatic animals, can transmit STEC to humans directly by
ingestion or contact at farms and petting zoos, or indirectly

through fecal contaminations in water sources, vegetable fields,
or meats and milks. Moreover, STEC is closely associated
with human activities; therefore, the broad expansion of
human activities due to technological advances will expand
contaminations to an increasingly wider variety of wild
organisms and foodstuffs in the future. Therefore, a detailed
identification of the prevalence of STEC in various animal
species will be essential for epidemiological investigations and
the development of proper risk mitigation strategies (Persad
and LeJeune, 2014). The integration of human and animal
health was appreciated in ancient times, but this idea was
comprehensively revisited through the One Health perspective,
which proposes a unification of human and veterinary medicine
to protect against zoonotic pathogens (King et al., 2008; Zinsstag
et al., 2011). Investigations of STEC outbreaks in humans also
clearly demonstrate the relevance of the One Health concept
(Jay et al., 2007; Laidler et al., 2013; McFarland et al., 2017).
Moreover, the importance of a One Health approach for control
or prevention of STEC infection has already been emphasized
in practical cases (Garcia et al., 2010). A number of new
animal species, including those of aquatic origin, have been
identified as unexpected reservoir or spillover hosts of STEC.
Therefore, we propose an alternative One Health approach in
which coordinated multidisciplinary efforts integrate terrestrial
and aquatic animal medicine within future STEC surveillance.
These efforts should facilitate the development of novel strategies
to prevent, control, and treat zoonotic STEC infections.

CONCLUSION

Since the advent of systematic and efficient diagnostic techniques,
reports of national STEC outbreaks have increased dramatically.
The current world-wide surveillance system reveals the impact
of STEC infection, the diversity of STEC, and sources of
contamination. Although contaminated food is the most
prominent source of STEC outbreaks, infections caused by
contact with animals has increased over the past 10 years.
Hence, understanding of animals as potential STEC reservoir
and their transmission is essential for preventing the occurrence
of STEC infections and outbreaks. Multiple complex studies
aimed at discovering numerous STEC in the various animals
have revealed a wide range of strains capable of producing
Stxs, however, it remains to be determined to what extent these
newly identified reservoirs are involved in the pathogenesis
and transmission of the bacteria. In particular, several animals
in more distantly related fields, such as fish produced by the
aquaculture industry and a wide range of underestimated wild
animal species have been reported as potential STEC reservoirs.
Therefore, we propose an alternative One Health approach in
which coordinated multidisciplinary efforts integrate terrestrial
and aquatic animal medicine in the context of future STEC
surveillance efforts.
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