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Predicting direct and indirect breeding 
values for survival time in laying hens using 
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Abstract 

Background:  Minimizing bird losses is important in the commercial layer industry. Selection against mortality is chal-
lenging because heritability is low, censoring is high, and individual survival depends on social interactions among 
cage members. With cannibalism, mortality depends not only on an individual’s own genes (direct genetic effects; 
DGE) but also on genes of its cage mates (indirect genetic effects; IGE). To date, studies using DGE–IGE models have 
focussed on survival time but their shortcomings are that censored records were considered as exact lengths of life 
and models assumed that IGE were continuously expressed by all cage members even after death. However, since 
dead animals no longer express IGE, IGE should ideally be time-dependent in the model. Neglecting censoring and 
timing of IGE expression may reduce accuracy of estimated breeding values (EBV). Thus, our aim was to improve pre-
diction of breeding values for survival time in layers that present cannibalism.

Methods:  We considered four DGE–IGE models to predict survival time in layers. One model was an analysis of 
survival time and the three others treated survival in consecutive months as a repeated binomial trait (repeated 
measures models). We also tested whether EBV were improved by including timing of IGE expression in the analyses. 
Approximate EBV accuracies were calculated by cross-validation. The models were fitted to survival data on two pure-
bred White Leghorn layer lines W1 and WB, each having monthly survival records over 13 months.

Results:  Including the timing of IGE expression in the DGE–IGE model reduced EBV accuracy compared to analysing 
survival time. EBV accuracy was higher when repeated measures models were used. However, there was no universal 
best model. Using repeated measures instead of analysing survival time increased EBV accuracy by 10 to 21 and 2 to 
12 % for W1 and WB, respectively. We showed how EBV and variance components estimated with repeated measures 
models can be translated into survival time.

Conclusions:  Our results suggest that prediction of breeding values for survival time in laying hens can be improved 
using repeated measures models. This is an important result since more accurate EBV contribute to higher rates of 
genetic gain.

© 2015 Brinker et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Minimizing bird losses in the commercial layer industry 
is important, both from welfare and economic points of 
view. Thus, selection against mortality has been of inter-
est to researchers [1–3] but has not always been effec-
tive [4]. Genetic improvement of mortality in poultry 
breeding is challenging for several reasons. In addition to 

having a low heritability, one of the main complications 
is that the time until death is often not observed because 
most laying hens are still alive at the end of the record-
ing period [5, 6]. Hence, only a lower bound of the true 
survival time is known for most hens, which is referred to 
as censoring [5]. Excluding censored records from analy-
ses or considering the lower bound as the actual record 
is expected to reduce the accuracy of estimated breeding 
values (EBV).
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The fact that commercial laying hens live in groups 
complicates selection for lower mortality even more. 
Group housing allows social interactions between group 
members, such that survival time in laying hens might 
be adversely affected by harmful social behaviours 
such as feather pecking [7, 8]. In these cases, survival 
time depends on both the genes of the potential victim 
(known as the direct genetic effect; DGE) and on the 
genes of its cage mates (known as the indirect genetic 
effect; IGE) [2, 9–13]. In other words, the environment 
that individuals experience contains a heritable compo-
nent (IGE), expressed by the cage mates. Such IGE can 
affect response to selection considerably and neglecting 
IGE when selecting for lower mortality can even result in 
a negative response to selection [1, 14].

Ellen et al. [15] and Peeters et al. [16] investigated the 
contribution of IGE to heritable variation in survival time 
of laying hens. These two studies used a DGE–IGE linear 
mixed model to estimate genetic parameters. Shortcom-
ings of this model are that censored records were con-
sidered as exact lengths of life and it assumed that IGE 
were continuously expressed by all individuals in a cage, 
irrespective of whether they were alive or dead. The latter 
assumption is invalid because cage composition changes 
over time due to death of animals, as dead animals no 
longer express IGE on their cage mates. Thus, to increase 
the accuracy of estimates of DGE and IGE for survival 
time, methods that can cope with censoring and timing 
of IGE expression should be explored.

Ellen et  al. [17] investigated opportunities of survival 
analysis models with DGE and IGE to account for censor-
ing. Survival analysis models exploit information on both 
censored and uncensored records properly by accounting 
for the non-linearity of survival time data and can also 
include time-dependent effects [18, 19]. Ellen et  al. [17] 
used a two-step approach that combined survival analysis 
and a DGE–IGE linear mixed animal model for survival 
time because it was not possible to estimate the vari-
ance of correlated genetic effects with existing survival 
analysis software. However, Ellen et al. [17] showed that 
the accuracy of EBV was not improved with the two-step 
approach compared to the DGE–IGE linear mixed ani-
mal model for data in which all surviving animals were 
censored at the same time.

Several other statistical techniques for analysing sur-
vival data have been proposed that can consider cen-
soring and time-dependent effects, including repeated 
measures models [20–24]. In repeated measures models, 
a survival indicator is used to circumvent censoring. Sur-
vival is measured as a binomial trait (0/1), which indi-
cates that an individual is dead (0) or alive (1) at specific 
time points [24], or that an individual has survived or 

not during a specific time period [22]. In the first case, 
survival has no missing records, whereas in the second 
case, records for time periods after death of an individ-
ual are set to missing. The trait definition differs in each 
approach since the method of Jamrozik et al. [24] approx-
imates the survival function of the proportional haz-
ard model, whereas the method of Veerkamp et  al. [22] 
approximates the hazard function of the proportional 
hazard model. Modelling the hazard function enables to 
estimate covariances between independent time intervals 
whereas modelling the survival function enables to esti-
mate covariances between cumulative averages of time 
intervals [25].

In a study on survival in dairy cows, Veerkamp et  al. 
[22] found that the repeated measures model was robust 
to censoring since the correlations between EBV from 
uncensored and randomly censored data were high. Øde-
gård et  al. [26] confirmed this finding in a comparative 
analysis of different models for survival data in Atlantic 
salmon. They showed that the repeated measures model 
had a greater predictive ability than survival analysis 
[26]. Thus, repeated measures models appear to be an 
appropriate tool for analysing survival data since they 
can account for censoring and timing of IGE expression. 
However, to date, the potential of repeated measures 
models for estimating DGE and IGE on survival time has 
not been investigated.

The aim of this study was to improve prediction of 
breeding values for direct and indirect effects on survival 
time in two purebred White Leghorn layer lines in which 
the level of mortality was high due to cannibalism [15]. 
For this purpose, we compared EBV for survival (0/1) 
from repeated measures models to EBV for survival time 
from a linear mixed model. The predictive ability of EBV 
from both models was assessed by cross-validation.

Methods
Populations and pedigree
Data were collected under the control of the Institut de 
Sélection Animale B.V. (ISA), the layer breeding division 
of Hendrix Genetics. Hendrix Genetics complies with 
the Dutch law on animal welfare. ISA provided data on 
two purebred White Leghorn layer lines, denoted W1 
and WB [15].

For each line, matings between sires and dams were 
randomly assigned and occurred in two batches with a 
6-month interval. For each batch, each sire (36 for line 
W1 and 35 for line WB) was mated to approximately 
eight dams, resulting in an average of 12.3 female off-
spring per dam. Each batch was partitioned into four age 
groups that differed in age by 2 weeks. Laying hens had 
intact beaks.
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Housing
Laying hens of the same age were randomly allocated 
to four-bird battery cages approximately 17 weeks after 
hatching. Each batch was transported to a different 
laying house, coded as 1 and 2. The laying houses had 
eight double rows of cages and each row comprised 
three levels (top, middle, and bottom). Hens in laying 
house 2 were not placed on the top level. A standard 
commercial layer diet and water were provided ad libi-
tum in the front and back parts of each cage, respec-
tively. Light intensity was stronger in laying house 2 
than in laying house 1 [15]. Further details are in Ellen 
et al. [15].

Data
Dead hens were removed daily. After death, wing band 
number, cage number, date of death, and cause of death 
were recorded. The latter was done subjectively by the 
employees of ISA without dissection. The study was ter-
minated when hens were on average 75  weeks old. In 
total, 59 % W1 and 54 % WB laying hens survived (Fig. 1). 
Survival rates of W1 and WB hens differed most during 
the first 4 months of the experiment (Fig. 2). Most hens 
died because of cannibalism; only 37 W1 and 15 WB 
hens died for other reasons, e.g. some hens were killed by 
mink. Observations on hens that died for other reasons 
were removed from the dataset because the objective 
was to investigate death from cannibalism. However, the 

identification numbers were retained in their cage mates’ 
observations for IGE modelling.

Survival time was defined as the number of days from 
entry in the laying house to death. Since each batch con-
sisted of four age groups that differed in age by 2 weeks, 
the maximum number of survival days differed between 
age groups. Thus, the maximum number of survival days 
was cut off at 416  days, which is the maximum survival 
time of the youngest age group, which means that all hens 
that were still alive at 416 days of age had censored records 
on survival time. In the statistical analysis of survival time, 
those hens were given a value of 416 days. In total, records 
on 6276 and 6916 hens were used for statistical analysis of 
survival time for lines W1 and WB, respectively.

To define survival, the laying period was divided into 
13  months. For each month, survival was coded as 1 if 
the laying hen was alive at the end of that month, and as 
0 if not. Thus, a survival record (0/1) was available for 
each month. This resulted in a total of 81,588 and 89,908 
monthly records for lines W1 and WB, respectively.

Statistical models
Four statistical models were compared: a linear mixed 
model for survival time, two linear mixed models for sur-
vival (0/1), and a generalized linear mixed model for sur-
vival (0/1). Five generations of pedigree were included in 
all genetic analyses. All models were implemented using 
ASReml [27].

Fig. 1  Percentage of survival of layer chickens for lines W1 and WB throughout the experiment (max = 13 months)



Page 4 of 10Brinker et al. Genet Sel Evol  (2015) 47:75 

Survival time model STM
DGE and IGE for survival time were estimated using a 
survival time model (STM) [11, 12] with the following 
linear mixed model:

where yijk is the observed survival time (days) for indi-
vidual i, with cage mates j, in cage k, the fixed term is the 
fixed effect of the combination of laying house-row-level, 
ADi is the random DGE of individual i, 

∑n−1
j �=i AIj is the 

sum of the n − 1 random IGE of the cage mates j, with n 
denoting cage size at the start of the experiment (n = 4), 
cagek is the random cage effect, and eijkl is the residual. 
Individuals that were still alive at the end of the recording 
period were assigned a survival time record of 416 days. 
Genetic effects were assumed to follow a normal distri-

bution ∼ N (0,C⊗ A), with C =
[

σ 2
AD

σADI

σADI σ 2
AI

]

, the Kro-

necker product of matrices ⊗, a relationship matrix A, 
direct genetic variance σ 2

AD
, indirect genetic variance σ 2

AI
,  

and direct–indirect genetic covariance σADI.
Residuals of cage members may be correlated 

because of non-heritable indirect effects, with: 
ρ =

(

2σEDI + (n− 2)σ 2
EI

)

/σ 2
e  [12]. In cases where cage 

members are ‘similar’, i.e. when ρ is positive, a random 
cage effect can be fitted instead of fitting correlated 

(1)yijk = fixed + ADi +
n−1
∑

j �=i

AIj + cagek + eijk ,

residuals, with σ 2
cage = 2σEDI + (n− 2)σ 2

EI
= ρσ 2

e . Based 
on a previous study [15], the correlation was estimated to 
be positive, and a random cage effect was therefore fitted 
in this study. The cage effect cannot be fitted as a fixed 
effect because the indirect genetic variance is not statisti-
cally identifiable when a fixed cage effect is included [28].

Repeated measures model RMM.t
Monthly survival (0/1) was analysed using a repeated 
measures model that included random DGE and IGE 
regressions on time (hence RMM.t) based on a sire-
dam model. No genetic effects for intercept were fitted, 
because there is no phenotypic variation at the start of 
the experiment (t = 0), since all hens were alive at time 
0. After that, phenotypic variance in survival increases 
over time until it reaches a maximum at 50 % mortality, 
and then declines again. In this experiment, mortality 
was less than 50 %, so phenotypic variance only increased 
over time. This increase in variance over time is consist-
ent with a model with random regressions on time, for 
which the variance is proportional to the square of time. 
The model with random regressions on time was:

(2)

yijklm = fixed + AsdDi · tm +
n−1
∑

j �=i

AsdIj · tm

+ cagekm + cagek · tm + PEl · tm + eijklm,

Fig. 2  Hazard function λ(t) of layer chickens for lines W1 and WB throughout the experiment (max = 13 months)
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where yijklm is the observed survival (0/1) for individual 
l, offspring of sire-dam combination i, with cage mates 
from sire-dam combination j, in cage k, at time tm meas-
ured in months since entry of the experiment, the fixed 
term is the fixed interaction effect of laying house-row-
level, which was fitted with a sixth-order polynomial of 
time, AsdDi is the DGE of the sire-dam combination as 
a function of time, 

∑n−1
j �=i AsdIj is the sum of the n −  1 

IGE of the sire-dam combination of the cage mates as a 
function of time, cagekm is the random effect of cage k 
at time m, cagek is the random effect of cage k as a func-
tion of time, PEl is the random permanent environmental 
effect of individual l as a function of time, tm is the time, 
and eijklm is the residual. A separate residual variance 
was estimated for each month. The DGE and IGE were 
allowed to be correlated. Sire-dam effects were assumed 
to follow a normal distribution ∼ N (0,C⊗ A), with 

C =
[

σ 2
ADsd

σADsd Isd

σADsd Isd
σ 2
AIsd

]

, direct genetic sire-dam variance 

σ 2
ADsd

, indirect genetic sire-dam variance σ 2
AIsd

, and direct–

indirect genetic sire-dam covariance σADsd Isd
.

This model contains two random cage effects: one is a 
random cage effect at each time, cagekm, and the other, 
cagek · tm, is a random regression on time. The cagekm 
effect accounts for covariances among cage members 
at specific time points. A single variance was estimated 
for this effect. The cagek · tm term accounts for covari-
ances between records on the same cage at different time 
points, and for increasing variance over time. Both ran-
dom cage effects were very significant and when exclud-
ing one or the other, the variance explained by cage was 
not fully covered.

Repeated measures model RMM.p
The regressions on time in the RMM.t model (Eq.  2) 
imply that variances are a quadratic function of time; 
e.g. var(a · t) = t2var(a), where a is the genetic effect 
and t is time. However, the true variance for binomial 
traits equals p(1− p), where p is the probability for 
an individual to survive until time t. In other words, p 
is the mean survival at time t. A quadratic function of 
time does not fit a p(1− p) function well because the 
slope of t2 increases with t, whereas the slope of p(1− p) 
decreases with p. To better fit the variance, the regression 
on time was replaced by a regression on 

√

p(1− p), so 
that fitted variances were proportional to p(1− p); e.g. 
var

(

a · √p(1− p)
)

= p(1− p) · var(a). In other words, 
monthly survival (0/1) was analysed using a repeated 
measures model including DGE and IGE regressions on a 
function of mean survival (RMM.p), rather than on time. 
The model was:

where xm =
√

pm(1− pm), pm denoting the mean sur-
vival at time m. For each time m, the pm was calculated 
separately for each fixed effects class. The other terms are 
the same as for Eq. 2.

Generalized linear mixed model GLMM
To account for the binomial distribution of monthly sur-
vival, DGE and IGE for survival were estimated using a 
generalized linear mixed model (GLMM) with a logit link 
function. The GLMM was:

where η() is the logit link function that links the probabil-
ity p of surviving to the linear predictor, E(yijklm) is the 
probability of survival for individual l, offspring of sire-
dam combination i, with cage mates from sire-dam com-
bination j, in cage k, at time m. The other terms are the 
same as for Eq. 2.

In contrast to the survival models, the GLMM only 
includes a genetic intercept rather than a regression on 
time. This is because the non-linear link function takes 
the change in variance over time into account. Hence, 
at the beginning of the recording period, the variance 
of survival probabilities can be (near) zero even when 
var[η(E(yijklm))] is substantially greater than 0.

Time‑dependent IGE
The data structure of the survival models (RMM.t, 
RMM.p, and GLMM) allows inclusion of time-dependent 
random effects. The composition of the cage changes over 
time because animals die. Thus, we tested if the predic-
tion of breeding values could be improved by including 
timing of IGE expression in the model. For this purpose, 
the cage mates that were alive at the beginning of each 
month were indicated for each monthly survival obser-
vation. Hence, in models RMM.t, RMM.p and GLMM, 
the 

∑n−1
j �=i AsdIj was time-dependent, and included only 

sires-dam combinations of cage mates that were still alive 
at the beginning of the month. Thus, the sires and dams 
of cage mates that were no longer alive were set to miss-
ing. For time periods after death of the focal individual, 
the cage composition was kept identical to that at the 
time of death because these observations were no longer 
impacted by changes in cage composition.

(3)

yijklm = fixed + AsdDi · xm +
n−1
∑

j �=i

AsdIj · xm + cagekm

+ cagek · xm + PEl · xm + eijklm,

(4)

η(E(yijklm)) = fixed + AsdDi +
n−1
∑

j �=i

AsdIj + cagekm + PEl ,
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Cross‑validation
The quality of EBV from each model was assessed by 
cross-validation, which is a technique of model vali-
dation where the correlation between predicted and 
observed phenotypes serves as a quality measure [29]. 
With this procedure, known phenotypes are set to miss-
ing, their values are predicted, and finally the predicted 
values are compared to the observed values. In this study, 
five mutually exclusive subsets were created, where sur-
vival phenotypes for approximately 20  % of the cages 
were removed. Those cages were selected at random. 
These subsets were used to predict the phenotypes of 
the individuals that belonged to the 20 % cages that were 
removed. All fixed effect classes were present for each 
subset. A bivariate analysis in ASReml [27] of the ranks 
of observed and predicted phenotypes, with a fixed effect 
for each subset (from 1 to 5), was used to calculate the 
Spearman rank correlation and corresponding standard 
error across the five validation sets [27]. We used rank 
correlations because survival phenotypes were unknown 
for the censored individuals (see below). The following 
sections describe how observed and predicted pheno-
types were obtained.

Observed and predicted phenotypes
For the individuals that were not censored, observed 
phenotypes were the observed survival days. First, these 
were adjusted for fixed effects using a linear model with 
fixed effects only; y = Xb + e, with y being a vector of 
observed survival times, X being an incidence matrix 
linking survival time observations to fixed interaction 
effects of laying house-row-level, b being a vector of the 
fixed effects, and e is the residual term. Hence, the resid-
ual of this model represents the adjusted phenotypes. 
For the censored individuals, the observed phenotype 
is unknown but these observations contain important 
information because they correspond to hens with the 
largest number of survival days. To allow calculation of 
the rank correlation between predicted and observed 
phenotypes, we followed the approach presented in [17], 
which assumes that censored individuals died in random 
order after surviving up to 416 days. Under this assump-
tion, censored individuals can be given the average rank 
of all censored individuals. For example, when 5 out of 
10 individuals are censored, then the average rank of the 
censored individuals is (6 + 7 + 8 + 9 + 10)/5 = 8 and all 
censored individuals are given a rank of 8, while uncen-
sored individuals were given their observed rank (after 
correction for fixed effects).

Predicted phenotypes were the rank of predicted sur-
vival times of individuals. Phenotypes were predicted 
by combining the estimated DGE (ÂDi) of the individual 
itself and the estimated IGE of its cage mates (n = 3) that 

were present at the start of the experiment 
(

∑

ÂIj

)

 (see 
Additional file 1 for details).

Approximate accuracy
Based on the method described in Ellen et  al. [17], 
approximate accuracies of EBV were calculated for all 
models. These were approximations because accuracy 
refers to the ranks rather than to the phenotypic values 
and EBV themselves. If EBV underlying the predicted 
phenotypes were estimated with an accuracy of 1, the 
expected rank correlation would be:

where the numerator is the genetic component of pheno-
typic variance. The approximate accuracy was calculated 
as:

where Pi − P̄ represents the observed phenotype cor-
rected for fixed effects, and P̂i represents the predicted 
phenotype. Genetic parameter estimates from model 
STM were used to calculate 

√
r2 (see Table 1).

Genetic parameters
In addition to EBV, we were interested in estimating 
genetic parameters for survival time, which can, e.g., give 
an indication of the amount of genetic progress that can 
be made for a trait. To make genetic parameter estimates 
from the different models comparable, they were trans-
formed to the survival time scale, as described in the fol-
lowing section for RMM.t. For RMM.p and GLMM, the 
translation of genetic parameters to the survival time 
scale involves tedious integrals and, thus, genetic param-
eters from these models are not presented here.

For STM, parameters for survival time follow directly 
from the estimates. In the presence of social interactions, 
where each individual interacts with n −  1 cage mates, 
the total heritable variance for response to selection is 
given by [12, 30]:

phenotypic variance equals:

and the ratio of heritable variance and phenotypic vari-
ance is equal to:

(5)
√

r2 =
√

(

σ 2
AD

(n− 1)σ 2
AI

)/

σ 2
P ,

(6)r̂IH = corr
[

rank(Pi − P̄)i, rank(P̂i)
]/

√

r2,

(7)σ 2
TBV = σ 2

AD
+ 2(n− 1)σADS + (n− 1)2σ 2

AS
,

(8)σ 2
P = σ 2

AD
+ (n− 1)σ 2

AS
+ σ 2

cage + σ 2
e ,

(9)
T 2 = σ 2

TBV

σ 2
P

.
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T2 is an analogy of heritability that expresses the total 
heritable variance that is available for response to selec-
tion relative to phenotypic variance [13, 30].

To obtain genetic parameters for survival time from 
the models for monthly survival (0/1), survival has to 
be translated into survival time. Survival time (ST) of an 
individual is the sum of its survival records (S = 0,1) for 
each day over time,

where c is a multiplication factor that translates monthly 
survival (0/1) into days; c  =  30.4  days. With this rela-
tionship it is possible to translate the estimated genetic 
parameters for survival to the survival time scale (see 
Additional file 2). Hence, a survival model can be used to 

(10)STi = c ·
t=end
∑

t=start

(Si)t ,

estimate genetic parameters and breeding values for sur-
vival time.

Results and discussion
Cross‑validation
The rank correlations between observed and predicted 
phenotypes, corr

[

rank(Pi − P̄)i, rank(P̂i)
]

 and the cor-
responding approximate accuracy (r̂IH) of the four mod-
els (STM, RMM.t, RMM.p, and GLMM) are in Table 2. 
Rank correlations ranged from 0.135 to 0.162 for line 
W1, and from 0.170 to 0.190 for line WB. Corresponding 
r̂IH ranged from 0.44 to 0.53 for line W1, and from 0.46 to 
0.52 for line WB. Although rank correlations appear low, 
they are in fact within our range of expectations because 
if breeding values were predicted with an accuracy of 1, 
the rank correlation would be equal to the square root of 
the proportion of phenotypic variance explained by the 

Table 1  Estimates of  genetic parameters (±SE) for  survival time using models STM, RMM.t, and  RMM.t with  time-
dependent indirect genetic effects (RMM.t-td) for two layer lines W1 and WB

Estimates of genetic parameters are provided for survival time in days for both W1 and WB lines. σAD, σAI, and σADI are the direct genetic standard deviation, indirect 
genetic standard deviation, and direct–indirect genetic covariance. σTBV is the total genetic standard deviation, σP is the phenotypic standard deviation, T2 is the total 
heritable variance relative to the phenotypic variance, and rA is the genetic correlation between direct and indirect genetic effects. Additional file 1 describes the 
procedure to translate genetic parameters of RMM.t to survival days

W1 WB

STM RMM.t RMM.t-td STM RMM.t RMM.t-td

σAD 28 ± 3 28 ± 3 29 ± 3 41 ± 4 38 ± 4 41 ± 4

σAI 10 ± 2 11 ± 2 33 ± 2 16 ± 3 12 ± 2 20 ± 1

σADI 57 ± 67 57 ± 64 255 ± 129 −158 ± 120 −111 ± 87 −311 ± 112

σTBV 45 ± 8 46 ± 7 109 ± 8 55 ± 9 46 ± 8 58 ± 7

σP 107 ± 1 107 ± 1 114 ± 1 135 ± 1 123 ± 1 128 ± 1

T
2 0.18 ± 0.06 0.19 ± 0.06 0.93 ± 0.11 0.16 ± 0.05 0.14 ± 0.05 0.21 ± 0.05

rA 0.20 ± 0.22 0.19 ± 0.20 0.26 ± 0.13 −0.24 ± 0.18 −0.24 ± 0.19 −0.38 ± 0.13

Table 2  Rank correlations between observed and predicted phenotypes (±SE) and approximate accuracies for lines W1 
and WB

Rank correlations between observed and predicted phenotypes and approximate accuracies using STM, RMM.t, RMM.p, and GLMM are provided for lines W1 and WB. 
All models were analysed by either excluding (time-dependent = no) or including (time-dependent = yes) timing of IGE expression
a  Compared to STM

Model Time-dependent Rank correlation Approximate 
accuracy

W1 % Improvementa WB % Improvementa W1 WB

STM – 0.135 ± 0.012 – 0.170 ± 0.012 – 0.44 0.46

RMM.t No 0.148 ± 0.012 +10 0.185 ± 0.012 +9 0.48 0.51

RMM.p No 0.162 ± 0.012 +20 0.174 ± 0.012 +2 0.53 0.47

GLMM No 0.150 ± 0.012 +11 0.190 ± 0.012 +12 0.49 0.52

RMM.t Yes 0.063 ± 0.013 −53 0.134 ± 0.012 −21 0.20 0.37

RMM.p Yes 0.049 ± 0.013 −64 0.124 ± 0.012 −27 0.16 0.34

GLMM Yes 0.081 ± 0.013 −41 0.149 ± 0.012 −12 0.26 0.41
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genetic variance, i.e. 
√
r2 (Eq. 5) [17]. Using the genetic 

parameters from STM (Table 1), 
√
r2 is equal to 0.31 and 

0.37 for lines W1 and WB, respectively. These values are 
the upper bounds of the rank correlations in Table 2.

Model comparison
Previous studies analysed survival time with an animal 
model [15–17]. Our objective was to investigate whether 
predictions from such models could be improved, and 
for this reason, STM was analysed with an animal model, 
while RMM.t, RMM.p, and GLMM were analysed with a 
sire-dam model. Sire-dam models were used because ani-
mal models may result in biased genetic parameter esti-
mates because of the “extreme category problem” when 
analysing binomial/categorical data [31]. At the start of 
the experiment no variation exists, but as hens start to 
die the variation within classes of fixed effects starts to 
change. Moreover, for some classes of fixed effects, the 
variation is not apparent until later in the experiment. 
It is not an option to remove these fixed-effect classes 
because they contain important information on survival. 
Hence, we found sire-dam models more appropriate than 
animal models to predict breeding values and genetic 
parameters.

To justify these comparisons with STM, we investigated 
whether analysis of survival time using an animal model 
or a sire-dam model were comparable. Genetic parame-
ters of survival time (see STM in Table 1) and rank corre-
lations between observed and predicted phenotypes (see 
STM in Table 2) were the same for the animal model and 
the sire-dam model. In addition, correlations between 
EBV that were predicted for the cross-validation sets by 
the animal and sire-dam models were higher than 0.99 
for both lines. Thus, sire and animal models for survival 
time gave very similar results.

Comparing EBV from RMM.t, RMM.p, and GLMM 
with EBV from STM showed that accuracies increased 
for all three models (Table  2), by up to 20  % for line 
W1, and 12  % for line WB. Model RMM.p resulted in 
the highest predictive ability for line W1 but led to little 
improvement over STM for line WB. Based on theory, 
RMM.p was expected to improve prediction of breed-
ing values for both lines compared to RMM.t because 
RMM.p fits a variance that better agrees with the true 
binomial variance. However, the results using survival 
data on line WB were not in line with this expectation, 
which might be caused by differences in survival curves 
between both lines.

A comparison of GLMM with RMM.t indicated that 
the predictive ability of these two models was quite simi-
lar, although the GLMM resulted in 1 % (line W1) to 3 % 
(line WB) greater accuracies than RMM.t. The ranks of 
predicted phenotypes from GLMM and RMM.t were 

highly correlated: 0.97 for line W1 and 0.98 for line WB 
(Table  3), which means that there was almost no re-
ranking by using GLMM or RMM.t to predict breeding 
values. This is in line with other studies that found no 
advantage of analysing binomial/categorical data with 
binomial/categorical models compared to using linear 
models [32, 33].

Survival analysis is a commonly used method to deal 
with censoring and time-dependent effects [18, 19]. 
However, it is not possible to estimate the variance for 
correlated genetic effects with the current software for 
survival analysis. Veerkamp et al. [22] used a method that 
approximates survival analyses by analysing survival as 
dead (0), alive (1) or missing (for time periods after the 
death of an individual) with a repeated measures model 
regressed on time and an intercept. This is different from 
our study, in which we coded survival as either dead (0) 
or alive (1), without missing records, following Jamrozik 
et al. [24]. The method of Veerkamp et al. [22] has simi-
larities with the hazard function used in survival analysis. 
For our data, we found that rank correlations obtained 
with the method of Veerkamp et al. [22] were lower than 
those obtained with RMM.t, RMM.p and GLMM and 
were similar or lower than those obtained with STM. 
When coding survival as dead (0), alive (1) or missing, 
rank correlations were equal to 0.132 and 0.157 for lines 
W1 and WB.

Ellen et al. [17] explored the potential of survival analy-
sis by applying a two-step approach that combined sur-
vival analysis and STM. Similar to the Veerkamp et  al. 
method [22], the Ellen et  al. [17] method approximates 
survival analysis. Applying the method of Veerkamp et al. 
[22] to our data yielded results that were in line with 
those of Ellen et al. [17], who observed no improvement 
in rank correlations using the two-step approach com-
pared to STM.

Time‑dependent IGE
Including timing of IGE expression in the repeated meas-
ures models had a substantial negative effect on rank 

Table 3  Rank correlations between predicted phenotypes 
from models without timing of IGE expression (±SE)

Rank correlations between predicted phenotypes from STM, RMM.t, RMM.p, and 
GLMM excluding timing of IGE expression are provided for lines W1 (below the 
diagonal) and WB (above the diagonal)

Model STM RMM.t RMM.p GLMM

STM 0.876 ± 0.003 0.789 ± 0.005 0.883 ± 0.003

RMM.t 0.910 ± 0.002 0.878 ± 0.003 0.976 ± 0.001

RMM.p 0.795 ± 0.005 0.876 ± 0.003 0.881 ± 0.003

GLMM 0.926 ± 0.002 0.973 ± 0.001 0.874 ± 0.003
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correlations; compared to the results obtained with STM, 
rank correlations decreased by 12 and 64 % for lines WB 
and W1, respectively (Table  2). Lipschutz-Powell et  al. 
[34] performed a simulation study to investigate whether 
DGE–IGE models applied to infectious disease data 
could accommodate the dynamic nature of such data. 
The non-infected individuals in Lipschutz-Powell et  al. 
[34] are equivalent to dead individuals in our study, since 
both traits do not express the IGE. Lipschutz-Powell et al. 
[34] found that accounting for timing of IGE expression 
in the DGE–IGE model inflated the variance for IGE, 
similar to what we observed (Table  1). They indicated 
that the problem probably arises from the fact that modi-
fication of the incidence matrices that link observations 
to IGE directly depends on the observations [34]. As a 
consequence, a considerable amount of the phenotypic 
variance will be explained by IGE and IGE variance will 
be overestimated. Other methods to incorporate timing 
of IGE expression need to be explored.

Censoring
Our results indicate that it is important to use methods 
that incorporate censoring when analysing survival time. 
With STM, only a lower bound of the true survival time 
is known for censored records, which results in reduced 
accuracy. In the repeated measures models, this prob-
lem was circumvented by using a survival indicator, i.e. 
dead (0) or alive (1) at a given time. In this case, accuracy 
of predictions of breeding values increased by up to 20 
and 12  % for lines WB and W1, respectively, compared 
to accuracies from STM. In this study, censored records 
were obtained at the same time for all individuals, which 
is often the case in layer breeding programs. Censoring 
at various times during the laying period will result in 
different accuracies compared to what was presented in 
this study. We investigated the effect on predicted breed-
ing values when 50  % of the censored individuals were 
censored half way during the laying period using STM 
and RMM.t. Compared to analyses where all hens were 
censored at the same time, rank correlations using STM 
decreased by 16 to 25  %, while rank correlations using 
RMM.t decreased by only 3 to 6 % (results not shown). 
Thus, RMM.t was more robust to censoring at various 
times than STM. Similar results are expected for RMM.p 
and GLMM compared to STM. Thus, the benefits of 
RMM.t, RMM.p, and GLMM observed here are conserv-
ative estimates because all individuals were censored at 
the same time.

Genetic parameters
Estimates of genetic parameters for DGE and IGE from 
STM (Eq. 1) and RMM.t (Eq. 2) are in Table 1. Genetic 

parameters were expressed on the survival time scale 
(see Additional file 1), which demonstrates that it is pos-
sible to translate the variance components estimated 
with RMM.t to STM. Genetic parameters of survival 
time were very similar for the two models but prediction 
of breeding values was improved by using RMM.t com-
pared to STM.

Estimates of genetic parameters for the same data 
were slightly different than those reported in Ellen et al. 
[15]. The total heritable variance relative to the pheno-
typic variance, T2, was estimated at 19 % in Ellen et  al. 
[15], and 18 % in our study. In our study, the maximum 
number of survival days was cut off at 416 days, which 
was the maximum survival time of the youngest age 
group. In Ellen et  al. [15], the maximum survival time 
was 447  days. Furthermore, Ellen et  al. [15] included 
the average survival time of the back neighbours as a 
fixed covariate because hens shared drinking nipples. In 
our study, the fixed effect of survival of the back neigh-
bours was excluded because this effect may indirectly 
result from the focal cage itself; if a back neighbour 
effect exists, then mortality in the focal cage will affect 
mortality of back neighbours, and vice versa, creating 
a feedback loop. Consequently, fitting a fixed effect for 
mortality of back neighbours might indirectly correct 
for the mortality observed in the focal cage itself, at least 
partly.

As in the study of Ellen et  al. [15], covariances 
between direct and indirect genetic effects were 
positive for line W1 and negative for line WB. As 
described by these authors, with death due to can-
nibalism it is expected that the covariance between 
DGE and IGE will be negative because of strong com-
petition. A positive covariance would mean that hens 
benefit from not harming others [12]. However, in our 
study, covariance estimates were not significantly dif-
ferent from zero.

Conclusions
Our results indicate that including timing of IGE expres-
sion in analysis of survival reduces the accuracy of EBV 
for survival. Moreover, our results show that repeated 
measures models improve accuracy of EBV for survival 
time in laying hens. Although there was no universal 
best method, accuracies of EBV increased by up to 20 
and 12 % for lines WB and W1, respectively. Thus, it is 
important to use methods that can incorporate censoring 
when analysing survival data, such as using a repeated 
measures model instead of a general linear mixed model 
to analyse survival data. This is an important finding 
since more accurate EBV contribute to increased rates of 
genetic gain.
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