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With the development of computer technology and theoretical chemistry, the speed and
accuracy of first-principles calculations have significantly improved. Using first-principles
calculations to predict new topological materials is a hot research topic in theoretical and
computational chemistry. In this work, we focus on a well-knownmaterial, sodium chloride
(NaCl), and propose that the triple point (TP), quadratic contact triple point (QCTP), linear
and quadratic nodal lines can be found in the phonon dispersion of NaCl with Fm3m type
structure. More importantly, we propose that the clear surface states connected to the
projected TP and QCTP are visible on the (001) surface. It is hoped that further
experimental investigation and verification for these properties as mentioned above.
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INTRODUCTION

The recent rapid development in topological materials (Kong and Cui, 2011; Cava et al., 2013; Banik
et al., 2018; Kumar et al., 2020; Li and Wei, 2021) makes chemists expect these materials to solve the
current challenges in quantum chemistry. A series of topological materials, including topological
insulators (Müchler et al., 2012; Bradlyn et al., 2017; Kou et al., 2017; Martín Pendás et al., 2019;
Isaeva and Ruck, 2020), spin-gapless semiconductors (Gao et al., 2016; Wang et al., 2016; Wang,
2017; Sun et al., 2020; Yue et al., 2020), and topological semimetals/metals (Zhou et al., 2018a; Schoop
et al., 2018; Xu et al., 2020a; Klemenz et al., 2020; Zhao et al., 2020), were predicted by researchers,
and some of them are confirmed in experiments. Among them, topological semimetals/metals
(Zhong et al., 2016; Zhang et al., 2018; Jin et al., 2019a; Jin et al., 2019b; He et al., 2019; Wang et al.,
2020a; Wang et al., 2020b; Xu et al., 2020b; Guo et al., 2020; Jin et al., 2021) always have nontrivial
band crossings in their electronic band structures. In addition to their potential applications in
technology, they also provide a platform for the study of basic quasiparticles in low cost experiments.

Recently, parallel to electrons, topological concepts have been extended to boson systems such as
phonons in crystal materials, classical elastic waves in macroscopic artificial phonon crystals, and
magnetic oscillators in magnets. Especially important is that the topological phonon in crystal
materials (Jin et al., 2018; Liu et al., 2019; Zheng et al., 2019; Liu et al., 2020; Xie et al., 2021) can
provide a potential prospect for regulating heat transfer and electron-phonon interaction. It should
be emphasized that the phonon is not limited by the principle of Pauli incompatibility, which means
that the experimental detection can be carried out in the whole frequency region of the phonon
spectrum.

This work will focus on a famous realistic material, sodium chloride (NaCl). NaCl is with the
Fm3 m type cubic structure and with the space group number 225. The experimental lattice constants
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of sodium chloride (Abrahams and Bernstein, 1965) are a � b � c �
5.62 Å. The Na locates at 4a (0, 0, 0) Wyckoff position, and the Cl
locates at 4b (0.5, 0.5, 0.5) Wyckoff position. In this work, using the
first principles calculations, we will study the topological signatures
of the NaCl’s phonon dispersion. We found that triple points with
linear phonon bands dispersion and quadratic phonon bands
dispersion coexist in NaCl’s phonon dispersion. More
importantly, we will exhibit the interesting phonon surface states
of the (001) plane. The authors hoped that the uncovered triple
points and their connected surface states in the NaCl phonon system
could be confirmed in experiment soon.

METHODS

The crystal structure of Fm3 m NaCl is selected from the Materials
Project database (Materials Project, 2021). Somematerial information,
including the magnetic ordering, final magnetic moment, formation
energy/atom, band structure, and the phonon dispersion of NaCl, can
be found in ref. (Materials Project, 2021). One concludes from ref.
(Materials Project, 2021) that NaCl is a nonmagnetic semiconductor
with a band-gap value of 5.145 eV. The obtained lattice constants
based on first-principle calculations are a � b � c � 5.6916 Å,
consisting well with the experiment values (Abrahams and
Bernstein, 1965). The primitive cell and the unit cell of the NaCl
are shown in Figure 1. The yellow and green balls represent the Na
and Cl atoms, respectively. This work will focus on the phonon
dispersion of NaCl because we would like to uncover its topological
signatures. The phonon dispersion of NaCl is determine based on the
density functional perturbation theory with the PHONOPY codes
(Togo and Tanaka, 2015), and the topological surface properties are
constructed by the WANNIERTOOLS package (Wu et al., 2018)
based on the phononic Wannier tight-binding Hamiltonian.

Calculated Phonon Dispersion and the
Related Topological Signatures
In Figure 2, we plotted the three-dimensional BZ and some high
symmetry points, X, K, W, Y, L, and Γ. Along the Γ-X-U-K-Γ-L-
W-X paths, the phonon dispersion of NaCl is calculated, and the
results are shown in Figure 3. During the phonon dispersion

FIGURE 1 | (Upper) primitive cell and (Bottom) unit cell of NaCl
material.

FIGURE 2 | Three-dimensional Brillouin zone (BZ) and the two-
dimensional (001) surface BZ. The X, K, W, Y, L, Γ are the symmetry points of
3D BZ. Γ, X, and X points are projected to ˜Γ, ˜X, and ˜M points of the (001)
surface.

FIGURE 3 | Phonon dispersion of NaCl along the Γ-X-U-K-Γ-L-W-X paths.
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calculations, we built a 2×2 × 2 supercell for the NaCl system.
From Figure 3, at first glance, one concludes that the NaCl is
dynamically stable because the NaCl system has no imaginary
frequencies.

Moreover, from Figure 3, one obtains the following
information: 1) Along the Γ-X path and in the range of
4–5 THz frequencies, there are one doubly-degenerate phonon
band and a non-degenerate phonon band, and these two bands
cross at a point (see the green circle in Figure 3) along the Γ-X
path. This point along the Γ-X path is a triple point; 2) along the
K − Γ path and in the range of 4-5 THz frequencies, one
concludes that three phonon bands touched at the Γ point,
forming a triple point (see the orange circle region in
Figure 3). However, we would like to point out that the triple
point on the Γ-X and at Γ are different because the point on the
Γ-X is with linear band dispersion and the point at the Γ is with a
quadratic band dispersion. Hence, the triple point on the Γ-X is
called triple point (TP) (Zhu et al., 2016; Tian et al., 2021), and the
triple point at the Γ is usually called quadratic contact triple point
(QCTP) (Hu et al., 2019). QCTP features a quadratic band
splitting along any direction in momentum space. Along the Γ −
L path, one can see that there are also a doubly degenerate band
and a non-degenerate band in the range of 4.5–6 THz
frequencies.

One may wonder whether the doubly degenerate band along
the Γ-X (around the TP) and the Γ-L (around the QCTP) paths

are the same. In the following, we will answer this question
affirmatively. To better answer this question, in Figure 4A,C, we
divided the Γ-X (around the TP) and Γ-L (around the QCTP)
paths into five parts and selected some more symmetry points.
Namely, we selected a1-a4 along the X-Γ and b1-b4 along the L-Γ

FIGURE 4 | (A), (C) some selected symmetry points along the X-Γ and the L-Γ, respectively. (B) and (D) calculated phonon dispersions along the L-an and X-bn
(n � 1–4). The linear two-degenerate points and the quadratic two-degenerate points are highlighted with orange and green circles, respectively.

FIGURE 5 | Calculated surface states along the ˜M − ˜Γ − ˜X paths of the
(001) surface.
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paths, respectively. The phonon dispersions along the L-an and
X-bn (n � 1, 2, 3, 4) are shown in Figure 4B,D, respectively. One
finds the points at a1, a2, a3 a4 are all with a quadratic band
splitting, however, for the points b1, b2, b3, b4, they are with a
classic linear band splitting. Hence, the doubly degenerate band
along the X-Γ, is composed of doubly degenerate points with
linear band splitting, forming a linear nodal line (Zhou et al.,
2018b; Chen et al., 2018; Chang et al., 2019; Yan et al., 2019; Li
et al., 2020a; Kirby et al., 2020; Meng et al., 2020; Wang and Yang,
2021). The doubly degenerate band along the Γ − L, is composed
of doubly degenerate points with quadratic band splitting,
forming a quadratic nodal line (Yu et al., 2019; Wang et al.,
2020c).

A summary of this section is shown as follow: NaCl phonon
hosts a QCTP at the Γ point, a TP along the X-Γ path, a two-
degenerate linear nodal line along the X-Γ path, and a
quadratic nodal line along the Γ − L. It is hoped that such
rich topological signatures in NaCl can be confirmed in
experiment soon.

Calculated Surface States on (001)
Surface BZ
In this section, we come to study the project surface states of the [001]
NaCl phonons. As shown in Figure 2, we selected some symmetry
points, Γ, X and X, and projected these points to ˜Γ, ˜X, and ˜M points
of the (001) surface. In Figure 5, we collected the results and labeled
the positions of the projected TP (green dot) and the projected QCTP
(orange dot). One concludes that prominent surface states (Xu et al.,
2015; Morali et al., 2019; Li et al., 2020b) connected to the projected
TP, which is benefit for experimental detection. Although the surface
state connected to the QCTP is a little fuzzy, we can observe its trend
and general shape.

For clarity, we also exhibit the iso-frequency surface contours at
4.86 THz and 4.57 THz in Figure 6A,B, respectively. In Figure 6A,
the positions of the projected TP and the connected surface states are
marked by a green dot and black arrows, respectively. In Figure 6B,
the positions of the projected QCTP and the connected surface states

are marked by a black dot and black arrows, respectively. The
projected TP/QCTP connected surface states are visible.

SUMMARY

In this study, we proposed the topological signatures of the NaCl’s
phonon dispersion. A systematic theoretical investigation found
that this material hosts quadratic and linear nodal lines, TP and
QCTP in its phonon dispersion. The QCTP is located at the Γ
position, the TP is along the X-Γ, the linear nodal line is along the
X-Γ path, and the quadratic nodal line is along the Γ − L. Besides,
the surface states are computed and clear surface arc states
connected to the projected TP and QCTP can be observed on
the (001) surface. Further experimental investigation and
verification for these rich topological signatures are expected.
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