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SUMMARY

With a growing number of available de novo sequenced genomes, protocols for
their applications to population genetics will benefit our understanding of the
human genome. Here we detail analytic steps to apply an example de novo refer-
ence genome to map and detect variants of short-read sequences from
corresponding populations and to discover variants of disease-relevant genes.
Using this protocol, we can improve variant discovery, better investigate popu-
lation-specific genome properties, and evaluate the potential of sequenced ge-
nomes in medical studies.
For complete details on the use and execution of this protocol, please refer to
Lou et al. (2022).

BEFORE YOU BEGIN

Download the test dataset

Timing: 1 h

1. In this protocol, we used the publicly available genome data of Han Chinese as the example data,

including the draft genome in scaffold level of a northern Han Chinese (NH1) (Du et al., 2019), and

the polished primary contigs assembled from the long-read sequences of a southern Han Chinese

(HX1) (Shi et al., 2016). We also used the human reference genome GRCh38 in this protocol. The

Human Genome Diversity Project (HGDP) data were incorporated into the population genetic

analysis (Bergström et al., 2020). We provide links to download these data in Table 1.

2. For a rapid test of this protocol, we extracted and analyzed chromosome 22 from the downloaded

genome data (Table 1), and calculated the time of execution for each step. Make sure that the

input data are consistent in the chromosome identifier, e.g., ‘‘chr22’’, ‘‘Chr22’’, or ‘‘22’’.

The test dataset is freely available at https://www.picb.ac.cn/PGG/resource_download.php?

id=44&file=PGG_Web_Data/protocol_test_data_chr22.tar.gz and at GitHub: https://github.

com/Shuhua-Group/TJ1_STARProtocols.
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Download the software and scripts

Timing: 1–2 days

3. Most of the analyses in this protocol are performed using existing software, which is listed in the

key resources table and can be downloaded via the links provided.

4. We provide scripts to run some of the programs sequentially and to analyze or evaluate the

output data. Some analytic script files used in reads filtering, genome alignment, variants detec-

tion and annotation, and result plots are available on GitHub and Zenodo (see key resources

table).

Compile a list of medically relevant genes

Timing: 1 min

5. Wagner et al. (Wagner et al., 2021) provide a list of medically relevant genes in GRCh38 coordi-

nates, including 4,701 autosomal genes. It is available at GitHub: https://github.com/usnistgov/

cmrg-benchmarkset-manuscript/blob/master/data/gene_coords/

unsorted/GRCh38_mrg_full_gene.bed. You can also curate a list of known disease and

Table 1. Steps to generate the test dataset

Input data Source Description Code Output data

hx1f4.3rdfixedv2.
fa.gz

http://www.
openbioinformatics.
org/hx1/data/hx1f4.
3rdfixedv2.fa.gz

HX1
genome
assembly

>gunzip hx1f4.3rdfixedv2.fa.gz
>samtools faidx hx1f4.
3rdfixedv2.fa 000604F 000707F
000300F 000247F 000361F 000443F
000220F > HX1.chr22.fa
>samtools faidx HX1.chr22.fa

HX1.chr22.fa; HX1.
chr22.fai

GWHAAAS00000000.
genome.fasta.gz

GWH (https://ngdc.
cncb.ac.cn/gwh/):
GWHAAAS00000000

NH1
genome
assembly

>gunzip GWHAAAS00000000.
genome.fasta.gz
>samtools faidx GWHAAAS00000000.
genome.fasta GWHAAAS00000500 >
NH1.chr22.fa
>samtools faidx NH1.chr22.fa

NH1.chr22.fa; NH1.
chr22.fai

Homo_sapiens.
GRCh38.dna.
primary_assembly.
fa.gz

http://ftp.ensembl.org/
pub/release-105/fasta/
homo_sapiens/dna/
Homo_sapiens.GRCh38.
dna.primary_assembly.fa.gz

Human
reference
genome
GRCh38

>gunzip Homo_sapiens.GRCh38.
dna.primary_assembly.fa.gz
>samtools faidx Homo_sapiens.
GRCh38.dna.primary_assembly.
fa 22 > GRCh38.chr22.fa
>sed -i ’s/^>/>chr/g’
GRCh38.chr22.fa
>samtools faidx GRCh38.
primary_assembly.chr22.fa

GRCh38.chr22.fa;
GRCh38.chr22.fai

hgdp_wgs.20190516.
full.chr22.vcf.gz;
hgdp_wgs.20190516.
full.chr22.vcf.
gz.tbi

ftp://ngs.sanger.ac.uk/
production/hgdp

Genotype
data from
HGDP

>bcftools view –force-samples -S
<samples.txt> –threads 20 -f
PASS -m 2 -M 2 -v snps hgdp_wgs.
20190516.full.chr22.vcf.gz |bgzip
-@20 -c > <out.vcf.gz>
>tabix <out.vcf.gz>

<4Han/4Tujia/9Tujia_
43Han>.HGDP.snp.chr22.
b38.vcf.gz; <4Han/
4Tujia/9Tujia_43Han>.
HGDP.snp.chr22.b38.
vcf.gz.tbi

<sample>_1.fastq.gz;
<sample>_2.fastq.gz

ENA (https://www.ebi.
ac.uk/ena/browser/home):
PRJEB6463

Raw sequences
of 4 Han
Chinese and
4 Tujia
samples
from HGDP

The raw sequencing reads were
aligned to the human reference
genome assembly GRCh38 with
BWA and output BAM records.
The BAM files were then sorted
with SAMtools. Duplicated reads
were marked with MarkDuplicates
(Picard) in GATK (see key resources
table). The code for short-reads
mapping and duplicate removal
is given in part 1: variants detection
from the short-read sequences
using linear alignment.

<HGDP00776/HGDP00784/
HGDP00812/HGDP00819/
HGDP01096/HGDP01100/
HGDP01102/HGDP01104>.
dedup.chr22.sorted.bam;
<HGDP00776/HGDP00784/
HGDP00812/HGDP00819/
HGDP01096/HGDP01100/
HGDP01102/HGDP01104>.
dedup.chr22.sorted.
bam.bai

The input data are the original data downloaded from the public resources; the output data are those included in the test dataset.
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phenotype-associated genes related to your trait of interest. There is no strict threshold for the

number of genes in the list.

6. Save all the genes in a BED file, with four columns containing the chromosome, the start position

(bp), the end position (bp), and the gene identifier (Figure 1).

KEY RESOURCES TABLE

MATERIALS AND EQUIPMENT

� Human reference genome assemblies (FASTA files for the human reference genome GRCh38 and

the population-specific reference genome) and the short-read sequences (BAM files) and geno-

types (VCF files) of samples from corresponding populations (see download the test dataset in

before you begin).

Figure 1. Screenshot of a medically relevant gene list

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

A test dataset of human
chromosome 22

In this protocol https://www.picb.ac.cn/PGG/resource_
download.php?id=44&file=PGG_Web_
Data/protocol_test_data_chr22.tar.gz;
https://github.com/Shuhua-Group/TJ1_
STARProtocols

Human gene annotation (Harrow et al., 2006) https://ftp.ebi.ac.uk/pub/databases/
gencode/Gencode_human/release_
34/gencode.v34.annotation.gff3.gz

Software and algorithms

BCFtools 1.6 (Danecek et al., 2021) https://github.com/samtools/bcftools

BWA 0.7.17-r1188 (Li and Durbin, 2010) https://github.com/lh3/bwa

Dipcall v0.3 (Li et al., 2018) https://github.com/lh3/dipcall

EAGLE 2.0 (Janin, 2014) https://github.com/sequencing/EAGLE

FlashPCA2 (Abraham et al., 2017) https://github.com/gabraham/flashpca

GATK 4.1.7.0 (Van der Auwera et al., 2013) https://gatk.broadinstitute.org/hc/en-us

GenMap v1.3.0 (Pockrandt et al., 2020) https://github.com/cpockrandt/genmap

Java 11.0.1 (Eng, 1997) https://www.oracle.com/java/

Liftoff v1.6.1 (Shumate and Salzberg, 2021) https://github.com/agshumate/Liftoff

Minimap2 (Li, 2018) https://github.com/lh3/minimap2

MSMC2 (Malaspinas et al., 2016) https://github.com/stschiff/msmc2

Picard v2.21.9 (Broad Institute, 2019) Integrated into GATK 4.1.7.0

Plink v1.9 (Purcell et al., 2007) https://www.cog-genomics.org/plink/

Python 3.6.4 (Van Rossum and Drake, 2009) https://www.python.org/

RTGtools 3.11 (Cleary et al., 2015) https://github.com/RealTimeGenomics/rtg-tools

R version 3.6.0 (R Core Team, 2020) https://www.r-project.org/

SAMtools 1.6 (Danecek et al., 2021) https://github.com/samtools/samtools

SHAPEIT4 version 4.1.2 (Delaneau et al., 2019) https://odelaneau.github.io/shapeit4/

SnpEff 4.3t (Cingolani et al., 2012) https://pcingola.github.io/SnpEff/

vg v1.23 (Garrison et al., 2018) https://github.com/vgteam/vg

Scripts for data analysis In this protocol https://github.com/Shuhua-Group/TJ1_
STARProtocols or https://zenodo.org/
record/6520447#.YnO6gC-KHUp

Other

Linux server N/A N/A
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� Software and scripts are used in this protocol (see software and algorithms section of key

resources table).

� Basic knowledge about Python, R, and bash scripting is required to understand and apply this pro-

tocol. Getting the basic operations of SAMtools and BCFtools may also be helpful as they are

essential to the sequencing data process. VCFtools (Danecek et al., 2011) is an alternative to

BCFtools in analyzing the VCFs.

� All tests are run on 64-core Intel Xeon CPU E7-4850 v4 2.10 GHz Linux servers. We recommend

using computing clusters to perform the data analyses. Assuming 10 CPUs, at least 100 GB of

RAM is required for analyzing the whole-genome data.

STEP-BY-STEP METHOD DETAILS

Part 1: Variants detection from the short-read sequences using linear alignment

Timing: 1 h

A population-specific reference genome is of importance in detecting variants. We first apply a

linear approach for the short read mapping and variant calling, using NH1 as the reference genome.

To evaluate the variant call rate and genotyping accuracy, we use the simulated short reads from the

HX1 sequences in this step. The path of the scripts and files should be properly indicated when

running the code provided in this protocol.

1. Simulate the short-read sequences (SRS) using EAGLE.

a. Filter out the HX1 contigs < 1 Kb in length and create a sequence dictionary.

CRITICAL: Although not required by EAGLE, contig filtration is necessary for this step, as

we find EAGLE is always interrupted when dealing with those short contigs (trouble-

shooting 1).

b. Input the filtered HX1 sequences to EAGLE to simulate the raw reads of short-read

sequencing, with a read length of 101 bp and sequencing depth of 303.

>python Filter_HX1_fasta_contig_length.py HX1.chr22.fa HX1.chr22.fa.fai

HX1.chr22.filtered.fa

>gatk CreateSequenceDictionary -R HX1.chr22.filtered.fa -O HX1.chr22.filtered.dict

>path/to/configureEAGLE.pl

–run-info=path/to/RunInfo_PairedReads1x1Tiles.xml

–reference-genome=HX1.chr22.filtered.fa

–coverage-depth=30

–motif-quality-drop-

table=path/to/MotifQualityDropTables/DefaultMotifQualityDropTable.tsv

–quality-table=path/to/QualityTables/DefaultQualityTable.read1.length101.qval

–quality-table=path/to/QualityTables/DefaultQualityTable.read2.length101.qval

>cd EAGLE

>make fastq -j 15
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2. Map the simulated reads to the reference genome, and detect variants.

a. Map the simulated HX1 short reads to the NH1 genome using the BWA package.

b. Remove duplicated reads.

c. Detect variants based on the short-read mapping using GATK.

Note:Despite that GATK consumes a large amount of RAM, we do not suggest any alternative

software as it is the most widely used toolkit for sequencing reads processing and variants call-

ing with good performance. The users can refer to the Best Practices Workflows (https://gatk.

broadinstitute.org/hc/en-us/sections/360007226651-Best-Practices-Workflows) for more in-

structions to apply GATK.

>bwa index NH1.chr22.fa

>bwa mem -M -t 10 -R "@RG\tID:HX\tSM:HX1\tLB:HX1\tPU:HX1\tPL:ILLUMINA" NH1.chr22.fa

EAGLE_S1_L001_R1_001.fastq.gz EAGLE_S1_L001_R2_001.fastq.gz | samtools view -bS - >

HX1.pe.bam

>samtools sort -@ 5 -m 4G HX1.pe.bam -T HX1 -o HX1.bam

>samtools index HX1.bam

>cd 111206_EAS987_0567_FC1234TST

>bgzip EAGLE_S1_L001_R1_001.fastq

>bgzip EAGLE_S1_L001_R2_001.fastq

>gatk –java-options "-Xmx4g -Djava.io.tmpdir=HX1/" MarkDuplicates -I HX1.bam -O

HX1.dedup.bam –VALIDATION_STRINGENCY SILENT –REMOVE_DUPLICATES true -M metrics_HX1.txt

-AS true –CREATE_INDEX true

#Variants calling for each chromosome

>ref_chr_list=‘cat NH1.chr22.fa.fai | awk ’{print $1}’‘

>gatk CreateSequenceDictionary -R NH1.chr22.fa -O NH1.chr22.dict

>gatk –java-options "-Xmx3G -XX:ParallelGCThreads=2 -Dsamjdk.compression_level=5"

HaplotypeCaller -R NH1.chr22.fa -ploidy 1 -L GWHAAAS00000500 -I HX1.dedup.bam -O

HX1.GWHAAAS00000500.g.vcf.gz -ERC GVCF -G

StandardAnnotation -G AS_StandardAnnotation -G StandardHCAnnotation –seconds-between-

progress-updates 30

>sh Combine_list.sh

>sh 170.JointCalling.sh

>cd 170.GenotypeGVCFs.joint.calling

>for chr in $ref_chr_list
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d. Perform GATK hard-filtering to filter out probable artifacts from the call set (De Summa et al.,

2017).

Note:Herewedonot recommendusing theGATKVQSRmodule todo variant filtering, as it relies

on known and highly validated variant resources. This step does not guarantee that all the variants

in the filtered calls are reliable, and some variants of particular interest need careful check.

3. Evaluate the accuracy of variants detection by comparing the results of simulated data to that

obtained in real data.

a. Align the NH1 and HX1 genomes using Minimap2, which has been integrated into the script

below.

Note: BWA does not support the alignment of two genomes, and thus should not be used in

this step as an alternative software package to Minimap2.

do

sh 170.${chr}.sh

done

#Combine the VCFs of all chromosomes

>sh 170.combine.sh

>tabix -p vcf HX1.genomewide.hc.vcf.gz

#An optional step to rename the VCF files as we only analyze chromosome 22 here

>mv HX1.genomewide.hc.vcf.gz HX1.chr22.vcf.gz

>mv HX1.genomewide.hc.vcf.gz.tbi HX1.chr22.vcf.gz.tbi

>gatk SelectVariants -select-type SNP -V HX1.chr22.vcf.gz -O HX1.chr22.snp.vcf.gz

>gatk VariantFiltration -V HX1.chr22.snp.vcf.gz

–filter-expression "QD < 2.0 || MQ < 40.0 || FS > 60.0 || SOR > 3.0"

–filter-name "Filter" -O HX1.chr22.snp.filter.vcf.gz

>gatk SelectVariants -select-type INDEL -V HX1.chr22.vcf.gz -O HX1.chr22.indel.vcf.gz

>gatk VariantFiltration -V HX1.chr22.indel.vcf.gz

–filter-expression "QD < 2.0 || FS > 200.0 || SOR > 10.0"

–filter-name "Filter" -O HX1.chr22.indel.filter.vcf.gz

>gatk MergeVcfs -I HX1.chr22.snp.filter.vcf.gz -I HX1.chr22.indel.filter.vcf.gz -O

HX1.chr22.filter.vcf.gz

>bcftools view -f PASS HX1.chr22.filter.vcf.gz | bgzip -c > HX1.chr22.filtered.vcf.gz

>tabix -p vcf HX1.chr22.filtered.vcf.gz

>paftools_wgs_call.sh NH1.chr22.fa HX1.chr22.fa

>bgzip NH1.chr22.HX1.chr22.vcf

>tabix -p vcf NH1.chr22.HX1.chr22.vcf.gz
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b. Run RTGtools to compare the two VCF files – one callset of real data generated in this step,

and another obtained from simulated data in the above step, and output summary metrics

on the screen (Figure 2).

Part 2: Variants detection from the short-read sequences using the graph-based approach

Timing: 1.5 h

The graph-basedmethod is an alternative to the linear method for variants detection in the SRS data,

and it has a much better performance, especially on the genotyping of insertions. The performance

of the linear method only relies on the input sequencing data, while that of the graph-based method

is additionally related to the quality of graph construction. Here we apply the vg toolkit and use NH1,

which provides a comprehensive and reliable variant list representing Han Chinese, to construct a

genome graph.

Note: The vg toolkit is updated frequently, and the results vary largely across different up-

dates. Make sure to use an identical version of vg (R1.23 is recommended) to complete

the entire process, and that your commands conform to the syntax requirements of that

version.

4. Construct a graph genome using vg with a reference genome in a FASTA file (e.g., the

current human reference genome assembly, GRCh38) and a set of variants in a VCF file

(e.g., the NH1 variant call set named ‘‘NH1.GRCh38.chr22.vcf.gz’’ in the test dataset) (trouble-

shooting 2 and 3).

Note: The information lines of the VCF file will affect the output as the merged information

generated by different software may conflict in vg processing, so we recommend keeping

only necessary information, such as ‘‘##fileformat’’ and ‘‘##contig’’. The option ‘‘-S’’ should

be specified in ‘‘vg construct’’ if structural variants are needed in constructing the genome

graph.

>rtg format -o NH1.sdf NH1.chr22.fa

>rtg vcfeval -b NH1.chr22.HX1.chr22.vcf.gz -c HX1.chr22.filtered.vcf.gz -o output -t

NH1.sdf

>workdir=‘pwd‘

>vg construct -C -S -a -R chr22 -r GRCh38.chr22.fa -v NH1.GRCh38.chr22.vcf.gz -t 1 -m 32

--flat-alts 1>chr22.vg 2>chr22.vg.log

Figure 2. Screenshot of the output summary metrics of RTGtools

‘‘Threshold’’ represents the genotyping quality (GQ) threshold, and you can refer to the row where the threshold is ‘‘None’’. ‘‘baseline’’ represents the

true data, and ‘‘call’’ represents the GATK callset. Therefore, ‘‘True-pos-baseline’’ means baseline variants that match between the baseline and calls;

‘‘True-pos-call’’ means called variants that match between the baseline and calls; ‘‘False-pos’’ means called variants not matched in the baseline; ‘‘False-

neg’’ means baseline variants not matched in the call set. ‘‘Precision’’ means the precision rate of called variants; ‘‘Sensitivity’’ means the recall rate of

baseline variants; ‘‘F-measure’’ means the weighted harmonic mean of its precision and sensitivity.
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CRITICAL: To keep vg running smoothly, symbolic structural variants in the VCF file should

be converted into explicit representations. Relevant format specifications can be found at

https://samtools.github.io/hts-specs/VCFv4.2.pdf, and we provide the ‘‘explicitVCF.con-

verter.pl’’ script on GitHub and Zenodo (see key resources table) to convert the format.

5. Build an xg index and a gcsa index for the output graph in the .vg file.

Note: The xg index is a compressed version of the graph that allows fast node, edge and path

lookups; the gcsa index is a pruned substring index used only for read mapping.

6. Map the paired SRS to the graph for variants detection and genotyping. The augmentation step is

for detecting rare variants.

Note: The earlier versions of vg only read input sequencing data in FASTQ files, while recent

versions also support BAM files, which will potentially save the overall analysis time.

Part 3: Haplotype phasing using the population-specific genome as a reference

Timing: 8 h

Haplotype phasing benefits from population-specific contexts like appropriate reference panels.

Here we phase the HGDP Han Chinese genomes using the variant callset of the Han Chinese

genome assembly as reference. We then provide a script to estimate the switch error rate, which

can be further compared across the haplotypes inferred by using different reference panels.

7. Perform variant calling of the NH1 and HX1 genomes based on the human reference genome

GRCh38.

#Build xg index

>vg ids -j chr22.vg

>vg index -b ${workdir} -x wg.xg chr22.vg

#Prune the graph and build gcsa index

>vg prune -r chr22.vg > chr22.pruned.vg

>vg index -b ${workdir} -g wg.gcsa chr22.pruned.vg

#Map the short-read sequences

>vg map -x wg.xg -g wg.gcsa -f EAGLE_S1_L001_R1_001.fastq.gz -f

EAGLE_S1_L001_R2_001.fastq.gz > 001.mapped.gam

>vg convert wg.xg -p > wg.xg.pg

#Augmentation

>vg augment wg.xg.pg 001.mapped.gam -m 4 -q 5 -Q 5 -A wg-001.aug.gam > wg-001.aug.pg

>vg snarls wg-001.aug.pg > wg-001.aug.snarls

>vg pack -x wg-001.aug.pg -g wg-001.aug.gam -o wg-001.aug.pack

>vg call wg-001.aug.pg -r wg-001.aug.snarls -k wg-001.aug.pack -s vg-001 > wg-001.aug.vcf
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8. Run SHAPEIT4 to phase the genotypes of 4 randomly selected Han Chinese samples from the

HGDP dataset (Table 1). A genetic map can be optionally specified with ‘‘–map’’, and

SHAPEIT4 provides the HapMap genetic map in GRCh38 coordinates (https://github.com/

odelaneau/shapeit4/raw/master/maps/genetic_maps.b38.tar.gz) (The International HapMap

Consortium, 2007).

9. Estimate the switch error rate for each sample (provided in a ‘‘.switch_error.txt’’ file, Figure 3).

Note: This estimation is based on the allelic configuration for the adjacent heterozygotes (Lou

et al., 2022), and requires the input of .bam files. It takes more than 7 h.

Part 4: Resolve fine-scale population structure

Timing: 4 h

The population-specific reference genome may also facilitate population genetic analyses, and in

particular, resolve the population differentiation and genetic structure at a fine scale. This part

illustrates the analyses of population genetic relationship and demographic history using whole-

genome variants called from SRS with the population-specific assembly as reference. Here we use

9 Tujia and 43 Han Chinese genome sequences fromHGDP as the test data (see key resources table).

10. Principal component analysis (PCA).

a. Select biallelic SNPs with missing rate < 0.01 and minor allele frequency > 0.05 for further

analyses.

b. Carry out SNP downsampling according to the physical distance of 50 Kb to roughly exclude

possible linkage between loci.

>shapeit4 –input 4Han.HGDP.snp.chr22.b38.vcf.gz –region chr22

–reference HX1NH1_refb38.dip.filtered.bcf –thread 5

–output 4Han.HGDP.snp.chr22.b38.phased.vcf.gz –sequencing

>run-dipcall HX1NH1_refb38 GRCh38.chr22.fa NH1.chr22.fa HX1.chr22.fa > HX1NH1_refb38.mak

>make -j2 -f HX1NH1_refb38.mak

>python prepare_HX1NH1_bcf.py HX1NH1_refb38.dip.vcf.gz

>python run_switch_script.py

>bcftools view -i ’F_MISSING<0.01 && MAF>0.05’ 9Tujia_43Han.HGDP.snp.chr22.b38.vcf.gz |

bgzip > 9Tujia_43Han.HGDP.snp.chr22.b38.miss001.maf005.vcf.gz

>plink -vcf 9Tujia_43Han.HGDP.snp.chr22.b38.miss001.maf005.vcf.gz –make-bed –double

--bp-space 50000 –thin 0.99 –out 9Tujia_43Han.HGDP.snp.chr22.b38.miss001.maf005.thin50
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c. Run FlashPCA2, and plot the first two PCs using a script provided (Figure 4). The script re-

quires an additional file assigning the color of each individual on the plot – two columns

denoting the name of individuals and the colors, respectively. An R package named

‘‘hash’’ needs to be installed in R before applying this script. This analysis only takes a

few minutes.

11. Infer population demographic history. We apply a multiple sequentially Markovian coalescent

approach (MSMC2) to estimate the effective population size (Ne) of the Tujia and Han Chinese

populations over time. We select 4 samples (8 haplotypes) from each population (Table 1).

Note: Both MSMC and MSMC2 work for this analysis, while the memory usage and time con-

sumption are less for the latter. In addition, MSMC loses power in ancient times with

increasing numbers of input genomes (Schiffels and Wang, 2020).

a. Genotype phasing of the Tujia and Han Chinese samples using population-specific reference

genomes, following part 3: haplotype phasing using the population-specific genome as a

reference. Here we use the Han Chinese genomes (HX1 and NH1) as a reference to infer

the Tujia haplotypes, while we suggest using the Tujia reference genome (Lou et al., 2022)

instead to achieve better performance.

Figure 3. Screenshot of the output file of the switch error estimation for phased genotypes

Figure 4. PCA plot of the Tujia and Han Chinese populations, represented by orange and green dots, respectively

>flashpca –bfile 9Tujia_43Han.HGDP.snp.chr22.b38.miss001.maf005.thin50k

-f .9Tujia_43Han.pca

>Rscript pc_plot.r pcs.9Tujia_43Han.pca 9Tujia_43Han.color pcs.9Tujia_43Han.pca.pdf
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b. PerformGenMap to generate a list of low-mappability genomic regions for custom reference

genomes (NH1).

Note: In principle, read mapping tools like BWA can be used to compute the genome mapp-

ability. However, they rely on the read alignment to the reference genome and thus are not

applicable to analyzing the NH1 genome assembly. The GEM mappability program is also

widely used (Derrien et al., 2012). Here we recommend GenMap as it is a magnitude faster

than GEM.

c. Generate a VCF file for each individual, and run BamCaller.py implemented in MSMC2 for

quality control.

d. Mask the low mappability regions in the individual files and make an input file for MSMC2.

e. Run MSMC2 to estimate Ne and plot the Ne dynamics. The Tujia and Han Chinese popula-

tions should be analyzed independently.

Note: The final output (.final.txt) contains the scaled begin and end time of the interval and

scaled inverse Ne of the interval. The ne_plot.r script allows for converting scaled times and

Ne to real numbers (saved in .converted.txt file, Figure 5) with given parameters including a

mutation rate of the human genome (1.253 10�8 per bp per generation by default) and a gen-

eration time (25 years per generation by default), and to plot the dynamic changes of Ne

(saved in a .final.converted.pdf file, Figure 6). This script limits the plot of Ne dynamics during

the period of 1,000–1,000,000 years ago.

>genmap index -F NH1.chr22.fa -I index

>genmap map -K 35 -E 1 -I index/ -O ./ -r -t -w -bg 2> err.log

>awk -F ’\t’ ’$4==1’ NH1.chr22.genmap.bedgraph |cut -f1-3 > NH1.chr22.mappability.bed

>for i in {1..4}

do

bcftools view -s sample${i} -r chr22 <4Han/4Tujia>.HGDP.snp.chr22.b38.phased.vcf.gz |

bgzip > sample${i}.chr22.vcf.gz

samtools mpileup -q 20 -Q 20 -C 50 -u -r <chr> -f <ref.fa> <bam> | bcftools call -c -V

indels | python bamCaller.py <mean_cov> <out_mask.bed.gz> | gzip -c > <out.vcf.gz>

done

>generate_multihetsep.py –mask=NH1.chr22.mappability.bed

–mask=<sample1_mask.bed.gz> –mask=<sample2_mask.bed.gz>

–mask=<sample3_mask.bed.gz> –mask=<sample4_mask.bed.gz>

sample1.chr22.vcf.gz sample2.chr22.vcf.gz sample3.chr22.vcf.gz sample4.chr22.vcf.gz >

msmc_input
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Part 5: Discover variants in medically relevant genes

Timing: 4 h

In this part, we focus on the recall of genome variants in the previously compiled medically relevant

genes (see compile a list of medically relevant genes in before you begin). We examine the HX1 var-

iants detected by mapping the simulated SRS to the NH1 genome, and generate a list of medically

relevant variants genotyped. These variants may provide special insights into the genetic basis of

some phenotypes or diseases in the corresponding population, and deserve further investigations.

12. Analysis of the medically relevant genes requires a liftover of the gene coordinates to match the

NH1 genome coordinates. We apply Liftoff to convert the GFF formatted gene annotation (e.g.,

GENCODE human release 34, see key resources table) file to NH1, using GRCh38 as the refer-

ence genome and the NH1 assembly as the target genome.

13. Extract the variants located in the medically relevant genes in the HX1 callset generated in part

1: variants detection from the short-read sequences using linear alignment, and then perform

variants annotation using SnpEff.

CRITICAL: We recommend using SnpEff version 4.3t, which requires Java 11.0.1. If the

structure of some genes in the converted GFF files is incomplete, SnpEff will report an er-

ror (troubleshooting 4). In this case, we should manually remove these genes in the GFF

file. The GFF file should not be compressed, otherwise, we would not obtain accurate an-

notations for some loci (troubleshooting 5).

EXPECTED OUTCOMES

SRS variant call sets (part 1 and 2)

The first two parts of our protocol generate two VCF files, containing two variant call sets of SRS by

linear and graph-based methods, respectively, with a population-specific assembly as reference. In

addition, Part 1 provides an evaluation outcome of the accuracy of variants detection by simulation

>msmc2 –fixedRecombination -o msmc_output msmc_input

>Rscript ne_plot.r msmc_output <mutation_rate> <generation_time> <color>

>liftoff -g gencode.v34.annotation.gff3 -a 0.9 -s 0.9 -exclude_partial -p 10 -o

NH1.gencode.v34.gff -u NH1_unmapped.txt NH1.chr22.fa GRCh38.chr22.fa

>python get_NH1_medically_genes.py chr22 GRCh38_mrg_full_gene.bed NH1.gencode.v34.gff

>mv NH1.chr22.fa /path/to/snpeff_test/sequences.fa

>bcftools view -R NH1.medically_gene.bed HX1.chr22.filtered.vcf.gz | bgzip >

HX1.chr22.medically_gene.filtered.vcf.gz

>python snpeff_config.py /path/to/snpEff/ /path/to/snpeff_test/

>java -Xmx4g -jar snpEff.jar -v NH1 HX1.chr22.medically_gene.filtered.vcf.gz | bgzip 1>

HX1.chr22.medically_gene.filtered.snpeff_ann.vcf.gz
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(Figure 2). Figure 2 shows that the precision rate of variants detected in the simulated SRS data is

91.7%, with a sensitivity of 86.0%. It is to be expected that the sequence similarity between the

target and the reference genome may contribute to the improvement of variant discovery in SRS.

Inferred haplotypes of the SRS data (part 3)

Phasing of the SRS data using the population-specific genome as reference yields the haplotype in-

formation, which can be stored in VCF or BCF files according to SHAPEIT4. Each file contains the

haplotype of one chromosome. To evaluate the performance of phasing, we further calculated

the switch error rate. The outcome is a ‘‘.switch_error.txt’’ file (Figure 3) providing the estimated

switch error rate for each sample, which can be compared across independent phasing analyses

on an identical genome dataset but using different reference panels. According to our previous

study (Lou et al., 2022), using a population-specific genome as a reference may greatly improve

the genome phasing accuracy of that population.

Plots of the estimated principal components and population demography (part 4)

Pipelines of PCA and population demographic analyses are included in this part, and accordingly,

the output files generated by running the software (e.g., FlashPCA2 and MSMC2) are provided. It

is possible to visualize the results using our scripts. Figure 4 depicts a dot plot of Han Chinese

Figure 5. Screenshot of the converted results of Ne estimation by MSMC2

Figure 6. Plot of the Ne dynamics in Han Chinese (red) and Tujia (blue) populations
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and Tujia samples according to the top 2 PCs; Figure 6 shows the dynamic changes in effective pop-

ulation size of Han Chinese and Tujia populations, based on the converted results in the ‘‘.final.con-

verted.txt’’ file (Figure 5). When using the SRS variant call sets generated using population-specific

assemblies as a reference, we are expected to obtain a high resolution of population stratification

between the two closely related populations. However, Figures 4 and 6 do not show significant ge-

netic differentiation between the Han Chinese and Tujia populations as those in (Lou et al., 2022),

possibly because we use the original HGDP callset as test data, which were generated by the align-

ment to the human reference genome GRCh38, and chromosome 22 provides limited information

compared with the whole genome.

A list of medically relevant variants (part 5)

The outcome of Part 5 is a VCF file listing the medically relevant variants that could be potentially

detected using the population-specific reference genome. Rare or population-specific variants

are expected to be detected with high accuracy using population-specific assembly, and these var-

iants deserve further analyses as they may have large impacts on biological function and

abnormality.

Intermediate files

This protocol compiles multiple analytic steps, and therefore generates a lot of intermediate files.

Here we list some important intermediate files used as input to reach the outcomes in Table 2.

LIMITATIONS

The practical use of a population-specific reference genome relies heavily on the quality of the

genome assembly. It can be expected that an increasing number of population-specific reference

genomes will facilitate human genome studies, but at the current stage, there is no available data

for most the human populations. This protocol provides a comprehensive strategy to explore the

benefits of a population-specific reference genome, which will help bridge the gap between con-

structing a de novo genome assembly and applying it to gain more insights into the human genome.

However, we are not able to include all the applicable methods and algorithms in this protocol, and

we only show the procedures to run some of the commonly used software and analyses. Using pub-

lished software packages may lead to limitations on managing the process and improving the

Table 2. A list of intermediate files is generated in this workflow

Files Description

File generation File usage

Parts (Steps) Software/Scripts Parts (Steps) Software/Scripts

EAGLE_S1_L001_R1_001.fastq.gz;
EAGLE_S1_L001_R2_001.fastq.gz

Simulated short reads of HX1 1(1b) EAGLE 1(2a) BWA

2(6) vg map

HX1.dedup.bam Mapping and alignment output of
the simulated reads of HX1.

1(2b) gatk MarkDuplicates 1(2c) gatk HaplotypeCaller

HX1.chr22.vcf.gz Genome variants called from the
simulated reads of HX1

1(2c) gatk HaplotypeCaller 1(2d) gatk VariantFiltration

HX1.chr22.filtered.vcf.gz Genome variants called from
the simulated reads of HX1
with hard-filtering

1(2d) gatk VariantFiltration 1(3b) RTGtools

5(13) BCFtools

wg.xg; wg.gcsa Index files of a graph genome
reference of GRCh38 constructed
based on the NH1 assembly

2(5) vg construct*;
vg index

2(6) vg map

<4Han/4Tujia>.HGDP.snp.chr22.
b38.phased.vcf.gz

Phased haplotypes of the HGDP
samples

3(8) SHAPEIT4 3(9) run_switch_script.py

4(11c) BCFtools; MSMC2*

NH1.chr22.mappability.bed A list of low-mappability regions
of NH1 that can be removed to
keep high confidence variants

4(11b) GenMap 4(11d) generate_multihetsep.py

Intermediate files that are not used in subsequent steps are not shown. We indicate the software or scripts that do not directly process these files but are key

analyses in corresponding steps with asterisks (*).
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results. We commented on some critical steps and limitations of the software packages, and the

users need to reach the original sources for more information (see key resources table). The users

should make their own decisions on some parameters and standards of quality control based on

the data properties. For instance, we need to balance between limiting false discovery and enabling

true discovery when applying GATK hard-filtering to the variant callset. According to the GATK

recommendation, any variant with a mapping quality (MQ) value less than 40 should be removed.

Increasing the MQ cutoff to 50 to reduce the false positive rate is also acceptable. Similar consider-

ations need to be taken to remove low-quality sites when performing vg augment (e.g., ‘‘-m’’, ‘‘-q’’,

and ‘‘-Q’’), samtools mpileup (e.g., ‘‘-q’’, ‘‘-Q’’, and ‘‘-C’’) or Liftoff (e.g., ‘‘-a’’ and ‘‘-s’’). Althoughmost

of the analytical steps can be done using software and scripts provided, this protocol requires good

knowledge of programming. New users may need to learn some skills underlying the protocol to

execute it fully, including the basic knowledge of Python and bash scripting, at least.

TROUBLESHOOTING

Problem 1

EAGLE commands fail (Figure 7) (step 1a in part 1: variants detection from the short-read sequences

using linear alignment).

Potential solution

Filter out contigs < 1 kb in the input data.

Figure 7. Screenshot of the error message of EAGLE

Figure 8. Screenshot of the error message of SnpEff
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Problem 2

Vg commands fail with an error message: ‘‘ERROR: Signal 6 occurred. VG has crashed’’ (step 4 in part

2: variants detection from the short-read sequences using the graph-based approach).

Potential solution

Set –flat-alts in vg construct.

Problem 3

Vg commands fail with an error message: ‘‘error:[vg::Constructor] non-ATGCN characters found in

chr22’’ (step 4 in part 2: variants detection from the short-read sequences using the graph-based

approach).

Potential solution

Filter out the alleles that do not match with A, T, G, C, or N in the human reference genomeGRCh38.

Problem 4

SnpEff commands fail (Figure 8) (step 13 in part 5: discover variants in medically relevant genes).

Potential solution

Remove the genes listed in the error message from the GFF file.

Problem 5

Incorrect annotations at some loci in the output of SnpEff without any error message when executing

this software. (step 13 in part 5: discover variants in medically relevant genes).

Potential solution

Input the GFF file in an uncompressed form.

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and code should be directed to and will be fulfilled by

the lead contact, Shuhua Xu (xushua@fudan.edu.cn).

Materials availability

This study did not generate new materials.

Data and code availability

The test dataset is freely available at https://www.picb.ac.cn/PGG/resource_download.php?

id=44&file=PGG_Web_Data/protocol_test_data_chr22.tar.gz and at GitHub: https://github.com/

Shuhua-Group/TJ1_STARProtocols. The code generated during this study is available at GitHub:

https://github.com/Shuhua-Group/TJ1_STARProtocols and at Zenodo: https://zenodo.org/

record/6520447#.YnO6gC-KHUp.
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