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Abstract

Understanding habitat selection of top predators is critical to predict their impacts on ecologi-

cal communities and interactions with humans, particularly in recovering populations. We

analyzed habitat selection in a recovering population of bobcats (Lynx rufus) in south-central

Indiana using a Random Forest model. We predicted that bobcats would select forest habi-

tat and forest edges but avoid agriculture to maximize encounters with prey species. We

also predicted that bobcats would avoid developed areas and roads to minimize potential

antagonistic interactions with humans. Results partially supported our predictions and were

consistent with bobcats in the early stages of population expansion. Bobcats exhibited ele-

vated use near forest edges, thresholds of avoidance near agriculture, and thresholds of

selection for low and intermediate habitat heterogeneity. Bobcats exhibited peak probability

of use 1–3 km from major roads, >800 m from minor roads, and <1km from developed

areas, suggesting tradeoffs in reward for high-quality hunting areas and mortality risk. Our

Random Forest model highlighted complex non-linear patterns and revealed that most shifts

in habitat use occurred within 1 km of the edge of each habitat type. These results largely

supported previous studies in the Midwest and across North America but also produced

refinements of bobcat habitat use in our system, particularly at habitat boundaries. Refined

models of habitat selection by carnivores enable improved prediction of the most suitable

habitat for recovering populations and provides useful information for conservation.

Introduction

Habitat selection is an emergent property that reflects decisions made by individuals interact-

ing with their environment [1]. Which habitats a species collectively selects, tolerates, or avoids

can have far-reaching consequences for interspecific interactions and ecosystems [2–4]. From

an ecological perspective, understanding habitat selection is important for species such as

mammalian carnivores that are often apex predators and tend to have a disproportionately

greater impact on other species in their respective landscapes [5, 6]. From a conservation
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perspective, habitat selection by top predators has practical implications because it often

engenders conflict with humans [7–10]. In particular, understanding habitat selection for spe-

cies experiencing population recovery after decline is critical, because individuals within a

population may use habitat differently during different phases of expansion [7, 11, 12].

Bobcats (Lynx rufus), the most widespread felid in North America [13], experienced severe

declines and local extirpations in the midwestern U.S. by the mid-1900s [14–16]. Main causes

of these declines were overharvest, conversion of forested habitats to cropland, and human

persecution [17]. By the mid-1990s, most midwestern states experienced increasing bobcat

populations after harvest was halted and the species began to naturally recover [18]. However,

from 1970 to 1995 only 7 records were confirmed in Indiana [19]. In the mid-1990s, a remnant

population began to expand in forested counties in the south-central portion of the state [17,

19].

To determine habitat selection during recovery of this population, we monitored bobcats

from 1998 to 2006 using radio telemetry methods. Based on prior research in the midwestern

U.S. in partially recovered populations in Illinois, Iowa, and Michigan [20–22], and recovering

populations in Ohio [23, 24] we predicted that bobcats in Indiana would select forest habitat

and forest edges but avoid agriculture to maximize encounters with prey species. We also pre-

dicted that bobcats would avoid developed areas and roads to minimize antagonistic interac-

tions with humans [20, 22, 25, 26]. We modeled habitat selection by bobcats in our population

using Random Forest, which can capture non-linear patterns in habitat selection compared to

traditional models [27] and thus aid understanding of bobcat use of habitat boundaries.

Materials and methods

Study area

Our study was conducted in the Crawford Upland and Escarpment Sections of the Shawnee

Hills Natural Region [28] in south-central Indiana, USA. This rural 5654-km2 study area con-

tained portions of 16 counties (Fig 1A). The study area was largely unglaciated, with

Fig 1. Map of 5,654-km2 study area for bobcats (Lynx rufus) in south-central Indiana, U.S.A from 1998–2006 (a). The crosshatched area represents the study

site within 16 counties in Indiana. The area outlined in black within the study area represents Naval Support Activity Crane. Map of major habitat types (b),

habitat heterogeneity values (c), and spatial predictions for the probability of habitat selection at the study area scale (d).

https://doi.org/10.1371/journal.pone.0269258.g001
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undulating terrain characterized by low wooded hills, entrenched valleys, and narrow ridge

tops. Mature second-growth forests, primarily oak–hickory stands (e.g., Quercus alba, Q.

rubra, Q. velutina, Carya glabra, C. ovata) and mixed upland hardwoods (e.g., Liriodendron
tulipifera, Fagus grandifolia, Acer saccharum, Fraxinus americana), comprised 54% of the

study area [National Land Cover database 2001, 29]. Agricultural crop fields (mainly corn and

soybeans) and grasslands (hay fields, pastures) comprised, respectively, 35% and 4% of the

study area. The remaining area contained open water (2%) and developed areas (5%), includ-

ing roads. Bobcat captures were centered on the Naval Support Activity Crane (NSA Crane), a

252-km2 military support installation with contiguous blocks of forested habitat.

Data collection

We trapped and tracked bobcats via radio telemetry from December 1998 to April 2006. Bob-

cats were trapped during the winters of 1998–2005. After capture, we determined sex and fitted

bobcats with a 135 g very high frequency (VHF) radio telemetry collar with a mortality switch

(Telonics, Inc., Mesa, AZ) and lined with compressible foam for expansion. Bobcats were anes-

thetized with an intramuscular injection of a 5:1 mixture of ketamine HCl (KetasetH; Fort

Dodge Animal Health, Fort Dodge, IA) and xylazine (Taylor Pharmaceuticals, Decatur, IL) at

a dosage of 10 mg/kg of estimated body weight. Further capture methods are described in [17].

Data collection was conducted by personnel from the Indiana Department of Natural

Resources. Capture and handling of bobcats followed all ethical guidelines for mammals [30]

and all necessary legal permissions for conducting the study were acquired.

We typically relocated collared bobcats 3 days per week using conventional aerial and

ground-based telemetry techniques [31]. For ground tracking, we used a 2-element handheld

antenna at geo-referenced points to record sequential azimuths within a 15-minute period.

We estimated locations using the maximum likelihood estimator in software program LOAS

(Location of a Signal; Ecological Software Solutions, Sacramento, CA). Mean error polygon for

locations generated by LOAS (n = 5761) was 2.7 ha (SD = 3.6). We obtained aerial locations

using homing techniques from a helicopter equipped with 2 skid-mounted antennae. Error of

aerial locations, expressed as the linear distance between estimated and actual coordinates of

test collars, averaged 94 m (2.8 ha). We converted locations to Universal Transverse Mercator

coordinates (Zone 16, North American Datum 1927) and imported them into a Geographic

Information System (GIS) for analyses.

We assessed habitat selection by bobcats at two scales. We used ArcMap 10.5.1 (ESRI, Red-

lands, CA, U.S.A.) to identify the scale of our study area [2nd order selection, 32] and its habitat

characteristics. The spatial extent of our study area was defined by mapping all location esti-

mates for known bobcat points, and buffering each point by the radius (6555 m) of the mean

size of all bobcat home ranges [135.0 km2, 33], and dissolving lines within overlapping areas

[Fig 1A, 34]. To quantify habitat selection within home ranges [3rd order selection, 32], we cal-

culated 95% kernel density estimates (KDE) in the ‘ks’ package in R using the direct plug-in

bandwidth selector [35] and converted them to shapefiles. This method performs better when

hard boundaries occur in the landscape, such as agricultural fields and hedgerows in our land-

scape mosaic [36].

To determine habitat selection by bobcats at both scales, we applied a use-availability design

to create a resource-selection function [1, 37]. We compared known locations for bobcats to

available points randomly selected across our study area and within 95% KDE home ranges.

Inadequate sampling of available points compared to known points can provide misleading

results for studies of habitat use [38]. Thus, we examined ratios of 1 known to 1, 2, 5, 10, and

20 available bobcat points. Ultimately, we used a 1:10 ratio because that was the minimum
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ratio at which the mean and standard deviation (SD) stabilized across our range of available

points for habitat variables (S1 and S2 Figs). We randomly generated all available points at

both the study area and within home range scales in ArcMap 10.5.1.

We selected variables to include in the RSFs based on findings from other bobcat studies

[13, 20, 22, 25] and available habitat types in southern Indiana. We used nine variables at both

scales, including habitat heterogeneity (defined below), gender of bobcats, proximity to five

habitat types (forest, agriculture, grassland, developed areas, open water) and proximity to

major roads and minor roads (S1 Table). Developed areas comprised human population (or

activity) centers that lacked natural habitats. We modified a raster file (30 x 30 m resolution)

from the 2001 National Land Cover Database [32] to create our 5 habitat types (Fig 1B) and

added road shapefiles for the state of Indiana in ArcMap 10.5.1 (ESRI, Redlands, CA). Forest

habitat included deciduous, evergreen, mixed forests, and forested wetlands. Agriculture

included hay and cultivated crops, predominantly corn and soybeans. Grassland included her-

baceous grasslands, emergent herbaceous wetlands, and shrub-scrub habitats. We considered

U.S. highways and state routes as major roads due to higher traffic volumes and speed limits

compared to rural county roads, which we considered as minor roads. Major road types were

associated with higher mortality risks for bobcats overall compared to minor roads in Califor-

nia and Ohio [26, 39].

Habitat edges, particularly forest edges in the Midwestern U.S., provide bobcats access to

additional prey species [13, 20, 22, 25]. Thus, we used proximity covariates to directly quantify

ranges of bobcat selection or avoidance at distances to boundaries between each specific habi-

tat type in our RSF. Classifying covariates by this distance-based measure is better suited than

habitat categories to identifying edges and also mitigates misclassification of habitats due to tri-

angulation error [40]. Because>57% of used and available locations were in forest, we treated

these locations as negative distances to the nearest non-forest edge for this variable to avoid

ambiguous interpretation and to better test for the effects of proximity to forest edge in both

analyses [41].

Bobcats often use a mix of habitat types for hunting different prey species [13, 20, 22, 25].

Thus, we included in RSFs an index of habitat heterogeneity to account for variation in the

composition of habitat types (Fig 1C). For each known and available point, at both study area

and home-range scales, we calculated heterogeneity as an index of the proportion of five habi-

tat types (forest, agriculture, open water, grassland, developed areas) within a moving window

consisting of a circular buffer equaling the mean size of all bobcat home ranges [135.0 km2,

radius of 6555 m, 33]. We used the following equation of habitat evenness (HEk) from [42],

based on the Shannon-Weaver index of species diversity [43]:

HEk ¼ �
Xn

i¼1

ðPi � ln PiÞ
ln n

where n equals the number of habitat types in k at either the study area or within home ranges

scale, and Pi is the proportion of area of habitat i. Values for habitat evenness range from 0–1,

with 0 representing an area completely covered by a single habitat type, and 1 representing the

same area if it were evenly shared by all 5 habitat types.

Statistical analysis

To assess habitat selection by bobcats in our recovering population, we used a machine-learn-

ing approach and fit a Random Forest model [44] using the ‘party’ package in R [45]. We

chose a Random Forest modeling framework because we anticipated potential non-linear

trends in habitat use by bobcats near habitat boundaries [13]. In addition, our Random Forest
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models yielded more nuanced and biologically interesting results than generalized linear

mixed models (not presented), consistent with results of a comparison of the two modeling

approaches for resource selection by mule deer (Odocoileus hemionus) in Nevada [27].

We determined the best settings for our Random Forest models based on the lowest values

for out-of-bag (OOB) error among a wide range of parameters [27, 46]. For our model at the

study area scale, the lowest OOB error occurred with 200 inference trees, a data fraction of

0.623 [default of 0.623, within recommendations of 46], and using 6 of 9 variables selected ran-

domly as the splitting criterion (S2 Table). Within home ranges, the lowest OOB error

occurred with the same settings, except that 2 of 9 randomly selected variables were used as the

splitting criterion (S3 Table). We created partial dependence plots to visualize the effects of

predictors on habitat selection. Finally, we created a spatial map of the study area by applying

the Random Forest model to raster maps of each variable except sex to predict relative values

for habitat selection (0–1) for each pixel [27].

Interactions were included in our models because Random Forest evaluates univariate and

bivariate effects simultaneously and also accommodates multicollinearity of predictor variables

[44, 47]. The relative importance of each predictor variable (importance value) includes its

contribution to interactions [44, 47] and is computed from random permutation of values of

the focal predictor variable for the OOB sample [48]. We explicitly computed interactions

among our predictor variables to determine how they may interact at habitat edges. Specifi-

cally, we separately calculated and ranked the strength of two-way interactions using root

mean squared error (RMSE), according to procedures from [46] and [27]. For each potential

two-way interaction, we divided data for each variable into 10 bins, creating a total of 100 bins.

Holding other variables constant at mean values, we used the Random Forest model to predict

resource selection propensity for each bin. We treated these 100 predictions as the response in

a linear model with no interaction terms. We calculated the RMSE from this linear model and

used it as an index to rank the focal interaction’s relative importance compared to other inter-

actions, which we calculated in the same manner. The maximum drop in RMSE among ranked

interactions was used as a cut-off to select interactions that merited consideration.

Cross-validation.–We conducted cross-validation to compare the predictive power of the

Random Forest for bobcat resource selection, following [27]. Specifically, we reran the analysis

after omitting each individual bobcat from the data set one at a time, and then calculated area

under the curve (AUC) using a Receiver Operating Characteristic (ROC) analysis in the

‘ROCR’ package in R [49], to measure predictive skill. Thus, we conducted a total of 54 analy-

ses for both scales of our bobcat study (27 bobcats x 2 scales). All statistical analyses were per-

formed and figures were created in program R 3.5.1 [50].

Results

We monitored 27 bobcats (14 males, 13 females) and collected 6,958 locations during our

study. Used points per individual averaged (± SD) 257.7 ± 36.0. At the study-area scale, used

points were, on average, farther from agriculture and closer to forest and grassland compared

to available points (S1 Table). At the scale of home ranges, used points were closer on average

to forest and agriculture (S1 Table).

Model performance

For the study-area scale, the mean AUC value (± SE) across individuals for Random Forest

was high (0.86 ± 0.02). However, predictive performance was poor at the scale of the home

range, with a mean AUC of 0.59 ± 0.01. Thus, our results indicated that model fit was too poor

to justify further exploration of habitat selection by bobcats at the home-range scale.
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Study-area scale

The top four variables, ranked in order of importance value, were agriculture, heterogeneity,

grassland, and major roads (Fig 2A). The importance value for agriculture was more than

twice that of heterogeneity, the predictor with the next highest importance value (Fig 2A). The

remaining five variables had importance values approximately half or less than values for the

four most important predictors (Fig 2A). The importance value for forest was second to last

among predictors (Fig 2A). Two interactions (agriculture and heterogeneity, agriculture and

developed) were also important, according to RMSE values (S4 Table).

Partial dependence plots revealed complex patterns, such as thresholds and plateaus in use,

often <1 km from habitat boundaries (Figs 2 and 3). Bobcat habitat use typically was low near

agriculture, increased rapidly as distance to agriculture increased to ~1 km (Fig 3), and was

more common in areas with average or above average habitat heterogeneity (Fig 3A). Probabil-

ity of use increased and then plateaued at approximately 800 m from grassland (Fig 2D) and

peaked 1–3 km from major roads (Fig 2E). Contrary to expectations, probability of use was

slightly more common near developed areas than far from them (Fig 2F). Peaks in probability

of use occurred at approximately 1 km from open water (Fig 2G) and>800 m from minor

roads (Fig 2H). Use of forest was characterized by a range of elevated values from 300 m inside

forest to 50 m outside of it, with a peak at approximately 225 m within forest (Fig 2I).

Two interactions further characterized the effects of distance to agriculture, the most

important predictor of habitat use by bobcats. The interaction of agricultural proximity and

habitat heterogeneity showed that propensity of use for low habitat heterogeneity, relative to

high and mean heterogeneity, switched rapidly from greatest to least over a short range

(approximately 500–700 m) of distances to agriculture (Fig 3A). The interaction of proximity

to agriculture and development predicted uniformly low use near agriculture, followed by

peak use closer to agricultural edges (~500 m) and stabilization at lower levels (~0.2) far from

development compared to predictions closer to development (Fig 3B).

Fig 2. Importance variables (a) and partial dependence plots (b–i) for main effects, ranked by importance values,

characterizing habitat selection at the scale of the study area in Random Forest analyses for bobcats (Lynx rufus) in

south-central Indiana, U.S.A. from 1998–2006.

https://doi.org/10.1371/journal.pone.0269258.g002
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Spatial projections of resource selection

Although forest and agriculture were the most prevalent habitat types in our landscape (Fig

1C), only distance to agriculture was important in the model. In particular, habitat heterogene-

ity was more important than forest proximity. Low and intermediate values of habitat hetero-

geneity were concentrated in large blocks of forest sharing fewer edges with other habitat types

(Fig 1C). At the scale of the study area, spatial predictions of increased probability of habitat

use by bobcats were generally associated with forested areas and avoided agricultural areas

(Fig 1D). Spatial predictions showed that overall, larger blocks of forest contained high proba-

bilities of use (Fig 1D). However, the highest probabilities were in large, forested blocks on

NSA Crane and adjacent areas (Fig 1D), more closely mirroring areas of low habitat heteroge-

neity (Fig 1C).

Discussion

Habitat selection by a recovering population of bobcats in south-central Indiana largely sup-

ported previous studies in the Midwest and across North America [13, 20–22] but also pro-

duced refinements in habitat use, particularly at habitat boundaries. Bobcats selected forest

and forest edges and avoided agriculture, supporting our first prediction and consistent with

previous studies [20–22]. However, only partial support emerged for our second prediction

that bobcats would avoid developed areas and roads. Similar to other studies, bobcats in our

population avoided minor roads [20–22]. In contrast to populations in other areas, our bobcats

tended to select locations nearer developed land cover types and at intermediate distances to

major roads [25, 39, 51]. Our Random Forest model highlighted complex non-linear patterns

and revealed that most shifts in habitat use occurred within 1 km of the edge of each habitat

type.

Bobcat selection of forest edges is well documented [13, 20–22]. Bobcats use these features

to ambush prey, especially rabbits (Sylvilagus), small rodents, and avian species [13]. Our Ran-

dom Forest results predicted a range of peak use from 300 m within to 50 m outside of forest,

providing additional quantitative information delineating the spatial range over which habitat

selection occurred along forest edges in our system.

Fig 3. Partial dependence plots for interactions with agriculture and significant variables characterizing habitat

selection at the scale of the study area for Random Forest analyses for bobcats (Lynx rufus) in south-central

Indiana, U.S.A. from 1998–2006.

https://doi.org/10.1371/journal.pone.0269258.g003
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Avoidance of agriculture and selection for intermediate and low heterogeneity (calculated

within moving circular windows the size of a bobcat home range) were the primary drivers of

habitat selection in our landscape. Thresholds and plateaus predicted by Random Forest also

improved our understanding of use by bobcats for these landscape predictors. At>500 m

from agriculture, Random Forest predicted plateaus of higher use associated with areas of low

and intermediate habitat heterogeneity. Maps of habitat types and heterogeneity showed that

low-heterogeneity regions were predominantly concentrated in large forest blocks on or near

NSA Crane. Accordingly, spatial predictions showed the highest probabilities of use for bob-

cats in this area of forested habitat and lower values in forested tracts outside of low-heteroge-

neity areas. These results are supported by a previous study in adjacent Illinois; use of smaller

forest fragments surrounded by agriculture or other habitat types is less commonly docu-

mented for bobcats and was associated with low-density populations [52].

Indiana’s bobcat population during our study period was recovering and at low density

[19]. Selection of low heterogeneity areas by bobcats in our population likely reflected their

selection of the highest quality habitat, which presumably was more widely available to the

individuals at our study site. Our results differed from a statewide model of bobcat habitat suit-

ability in Indiana that was developed using similar predictors and presence-only data from

2010–2020 [53]. A critical distinction is that this statewide model was based on data from a

time when population trends indicated bobcats were increasing rapidly and appeared to even-

tually reach stable and high numbers across the state [19]. In the data used for this statewide

model, forest represented only 22.9% of Indiana’s landscape. The most important predictors

for habitat suitability in this statewide model were intermediate values for proportion of natu-

ral habitats (forest, wetlands, grasslands) < 4 km from bobcat locations, and close proximity to

forest [53]. Beyond differences in data type and analyses, another key distinction between the

statewide model and the results of this study in south-central Indiana is that this study was

conducted when Indiana’s bobcat population size was low. Habitat selection studies on other

carnivores suggest that recolonizing populations occupy habitat of highest quality first, fol-

lowed by use of lower quality habitats after population expansion. Such trends have been docu-

mented for Eurasian lynx (Lynx lynx) in Sweden [12], wolves (Canis lupus) in the north-

central U.S. [7], and Eurasian otters (Lutra lutra) in the Iberian Peninsula [11]. Our results are

consistent with these patterns.

Understanding bobcat probability of use for roads in our system was improved by the Ran-

dom Forest model compared to previous studies [26, 39, 54, 55]. For example, Random Forest

identified a range of peak use 1–3 km from major roads and trough of low habitat use 0–800 m

from minor roads. Our results likely represent ranges of bobcat tolerances to these road types

due to mortality risks [39, 51]. The peak in use at intermediate distances to major roads may

indicate a tradeoff between decreased foraging opportunities >3 km from major roads and

avoidance of roads within 0.5 km due to mortality risks [23, 39]. Other carnivores have dem-

onstrated the same tradeoff in different contexts, selecting increased reward in high-quality

hunting or foraging areas and avoiding mortality risks near roads associated with humans

[56–58]. For example, Eurasian lynx established home ranges within areas of high prey and

road densities but avoided roads within home ranges [56]. Wolves and grizzly bears (Ursus
arctos) seasonally select areas near forest roads to improve access to prey or fruiting resources

but avoid the same areas due to human presence in other seasons [57, 58].

Surprisingly, bobcats in our study tended to select locations nearer developed areas. Previ-

ous studies indicated that bobcats typically avoid developed areas and humans [13, 51, 52].

Our results likely were driven by land management on NSA Crane, where most bobcats were

trapped and Random Forest predicted the highest-quality habitat. Developed areas at Crane

included many buildings near forested habitat such as storage facilities that were infrequently
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used by humans compared to other areas of the base. The edges for many of these developed

areas were consistently mowed and maintained by base personnel, creating open areas abut-

ting forest. Such habitat edges are ideal habitat for bobcats due to high availability of prey such

as rabbits [13]. Structural resources can also affect predation near habitat edges [59]. In partic-

ular, bobcats use forest structure to provide concealment when ambushing prey [13], which

could enhance the value of edges near developed sites on Crane. Anecdotally, we regularly

observed bobcats in these areas at Crane. A few studies have shown higher-than-expected bob-

cat densities in urban or suburban areas [39, 60], suggesting some level of tolerance of humans

where habitat is suitable. Still other felid species including Eurasian lynx, cougars, and African

lions select areas nearer human development at night, when risk of human detection is low

compared to daytime [61–63]. At the scale of home ranges, predictive skill was poor for our

model, possibly because one or more important predictor variables were missing from our

models. Alternatively, the precision of our bobcat location estimates (2.7 ha) and resulting

habitat classification errors could have been too coarse to allow meaningful home-range scale

inference. The distance-based approach we used to estimate habitat predictors tends to miti-

gate misclassification of habitats due to triangulation error [40], but it may have been insuffi-

cient at the home-range scale for our study. In particular, the 30 x 30 m landcover data may

not have provided sufficient resolution to observe selection of habitat features like gaps within

forest [64]. Consequently, we could not test if our bobcats selected forest openings within their

home ranges. Forest openings provided the highest bobcat densities and smallest home ranges

in Alabama [65]. Similarly, bobcats in the Appalachian mountains selected canopy openings

and avoided the forest interior within home ranges [66].

Understanding complex patterns of habitat selection by carnivores enables improved pre-

diction of the most suitable habitat for recovering populations [12, 67] and provides useful

information for carnivore conservation [6, 68]. For bobcats in south-central Indiana, Random

Forest models revealed specific thresholds and ranges of habitat use at forest and anthropo-

genic boundaries that were consistent with previous studies and with an expanding popula-

tion. Our results imply that bobcats in our study area would benefit most from maintenance of

forested areas furthest from other habitat types. Additionally, our results indicate that bobcats

view anthropogenic boundaries such as roads, development, and agriculture in terms of con-

text-dependent tradeoffs and not as simple selection or avoidance of these features [39, 51].

Such complex behavioral tradeoffs likely apply more broadly to other carnivore species, espe-

cially those inhabiting human-dominated landscapes [57, 61, 62].
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