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Newborns are exceedingly susceptible to infection. However, very little is known about
what governs the immunological differences seen in early life that result in extreme vulner-
ability to infection, nor how this changes during infancy. Herein, I provide evidence that the
reduced ability to mount a protective immune response to pathogens is not due to an inher-
ent immaturity of neonatal immune cells but instead the functions of these immune cells
are actively suppressed by CD71+ erythroid cells. Furthermore, the role of CD71+ erythroid
cells in host defense against infection is examined. CD71+ erythroid cells are enriched in
newborns and have distinctive immunosuppressive properties that leave them vulnera-
ble to infection. Moreover, immature erythroid cells possess exclusive immunomodulatory
properties and may play a role in immune ontogeny. In addition to these distinct features,
CD71+ erythroid cells impact digestive health by preventing excessive inflammation fol-
lowing the sudden transition from a sterile in utero setting to excessive colonization with
commensals in the external environment. Ongoing research in identifying the beneficial
and/or detrimental effects of immature erythrocytes on immune responses may serve to
enhance protective newborn immune responses to infection and enable better vaccination
strategies for the young to be designed.
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INTRODUCTION
Neonates suffer more severely and die more often than adults from
a wide range of infections (1). According to a WHO estimate,
almost 7 million children die each year before reaching their fifth
birthday (2, 3). Strikingly, two thirds of these deaths are due to
infectious diseases (3, 4). While infant mortality is approximately
5 and 7 per 1,000 live births in Canada and the U.S., respectively, the
rate is often >30 times higher in developing countries [e.g., 280,
160, 150 per 1,000 in Sierra Leone,Angola, and Congo, respectively
(1, 2)]. Even in developed countries, infections in young infants
incur an enormous burden. Approximately one infectious disease
hospitalization for every 14 infants in the U.S. alone results in an
annual cost of approximately $700 million (5). Infectious disease
in newborn and infants is a well recognized global issue and the
United Nations has outlined a serious of eight millennium devel-
opment goals to reduce infection-related mortality by two thirds
by 2015 (6). However, the mechanisms underlying the suscep-
tibility of neonates to infection and the molecular basis for the
transition of immunologic function from fetal to postnatal life
have been remained a mystery. The fetus is antigenically differ-
ent from its mother, and is thus analogous to a semi-allogeneic
transplant, with the risk of immunologic rejection. As such, the
immune response during pregnancy appears to have evolved to
prevent potentially damaging inflammation that may result in
spontaneous abortion or preterm delivery (7).

As beneficial as the tolerogenic state might be in utero, grow-
ing evidence suggests that it predisposes the newborn to severe
infections, especially those due to intracellular pathogens, and as

well, impairs immune responses to vaccinations in postnatal life
(8). Thus, the observed difference in neonatal innate and adaptive
immune responses from those elicited later in life and the vul-
nerability to infection may stem from this fetal tolerogenic state.
Moreover, the ability of vaccines to induce protection is increased
when immunization starts later possibly due to less interference
with maternal immunity (9, 10). However, it has been unclear
whether the reduced ability to mount pathogen-specific T and B
cell responses is due to an inherent immaturity of effector cells and
antigen-presenting cells (APC), or because the functions of these
cells are actively inhibited by suppressor cells that are induced
during gestation or post-parturition. These discordant observa-
tions elucidate the need for a more clarification as to why the
immune response to pathogens and vaccines is compromised in
the newborn. More recent studies with the discovery of immature
erythroid suppressor cells have shown that infection susceptibil-
ity in the newborn is not due to an immune-cell-intrinsic defect
but instead it is associated with the presence of active immuno-
suppression mediated by CD71+ erythroid cells (11). This finding
fundamentally changed the notion of infection susceptibility in
newborns by suggesting it is caused by an active immune suppres-
sion during this developmental period as opposed to an immune-
cell-intrinsic defect. However, CD71+ erythroid cell-mediated
susceptibility to infection is counterbalanced by CD71+ erythroid
cell protection against aberrant immune cell activation in the intes-
tine, where colonization with commensal microorganisms occurs
swiftly after parturition (11). Therefore, better understanding the
role of CD71+ erythroid cells in imprinting the immune cells that
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affect the generation and maintenance of protective immunity to
infection will assist in the design of better interventions to improve
the quality of life in this most vulnerable population.

The purpose of this review is to examine existing evidence
regarding the immunological properties of immature erythroid
cells and to highlight their role in immune pathogenesis of prena-
tal infection. I will discuss distinct aspects of immunosuppression
associated with erythropoiesis in particular CD71+ erythroid cells
mainly on innate immunity. Next I will explore the cross talk
between CD71+ erythroid cells and gut microbiota and how this
interaction could affect intestinal health. Lastly, I will discuss
future directions in the field and elaborate on further studies for
novel therapeutic possibilities aimed at dissociating the beneficial
and harmful effects of CD71+ erythroid cells in augmenting host
defense against infections in the newborn.

NUCLEATED ERYTHROCYTES IN VERTEBRATES
The main function of vertebrate erythrocytes is considered to
be oxygen-transport, however, other functions such as interac-
tions with immune cells have also been assigned to these cells
(12). Nucleated erythrocytes in vertebrate mammals are defined
as immature erythroid cells and are seen mainly in newborns, but
interestingly, these cells are abundant throughout the life cycle of
non-mammalian vertebrates (12).

Intriguingly,nucleated erythrocytes from non-mammalian ver-
tebrates such as fish and birds express and regulate specific pattern
recognition receptors (PRR), including members of toll-like recep-
tors (TLRs) and peptidoglycan recognition protein (PGRP) recep-
tor families, and are also capable of specific pathogen-associated
molecular pattern (PAMP) recognition that is instrumental to the
innate immune response (13–15). Furthermore, it has been shown
that erythrocytes constitutively express transcripts for different
TLRs and respond to TLR ligands by up-regulating type I IFN,
IL-8, CCL-4, as well as nitrite production in non-mammalian
vertebrates (13, 15). The production of type I IFN is a well-
defined immune response that bridges the innate and adaptive
immune responses (16). Thus, an essential role in pathogen recog-
nition must be given to non-mammalian nucleated erythrocytes.
However, the potential contribution of mammalian nucleated
erythrocytes in non-respiratory physiological processes such as
immune-regulation is not very well appreciated. Therefore, stud-
ies aimed at further characterization of immunological role of
nucleated erythrocytes in mammalian vertebrates are crucial.

IMMUNOSUPPRESSION AND IMMUNOMODULATION
MEDIATED BY NUCLEATED ERYTHROCYTES
In 1979, the concept of immunosuppression mediated by splenic
nucleated erythrocytes was revealed for the first time (17, 18).
These studies showed that nucleated erythrocytes were able to sup-
press primary and secondary antibody-mediated responses in vivo
(17, 19). Later on, these nucleated erythrocytes were described
as erythroid immunosuppressor cells (ESC), capable of inhibit-
ing B cell proliferation and humoral immune responses both in
mice and human beings (20). Interestingly, these studies noted
that erythropoietic disturbances lead to the appearance of imma-
ture red blood cells and subsequently resulted in the suppression
of B cell proliferation in the peripheral blood and lymph nodes

(20). The mechanism by which ESC-mediate immunosuppression
was reported to be associated with soluble factors. For example,
it was reported that erythroid precursors produce a species-non-
specific type of soluble factor (1–10 kD) that suppresses both IgM
and IgG secretion and proliferation of human B cells (21). In
line with these observations, Seledtsova et al. found that ESC not
only exert suppression of LPS-driven B cell proliferation but also
inhibit proliferative cytotoxic T cell responses (22). Although the
underlying mechanism(s) of suppression was not clearly deter-
mined, their data indicated that a soluble heat stable molecule
(80°C for 20 min) with low molecular weight was capable of effec-
tively reducing the allogeneic-driven proliferation of peripheral
blood mononuclear cells (PBMC) isolated from allergic patients
(22). Subsequent studies by Seledtsova et al. indicated that the
immunosuppressive activity of ESC might be partially mediated
through TGF-β (23) and direct cell–cell interactions (24).

A second important piece of immature erythroid cell function-
ality relates to their ability to produce cytokines or other immune-
modulatory molecules. Although, hematopoiesis is regulated
through a complex network of paracrine and autocrine mecha-
nisms involving cytokines, growth factors and their receptors (25),
erythroid-sourced cytokines in the microenvironment can have
potential immunomodulatory effects on other non-hematopoietic
cells such as immune cell lineages.

Patterns of cytokine production and the cytokine milieu can
promote polarization of naive CD4 T cells into distinct Th1, Th2,
or Th17 subtypes (26). Presence of regulatory cytokines such as
IL-10 and TGF-β could also induce and expand regulatory T cells
(Tregs) (26). In fact, it has previously been reported that ESC from
newborn mice are capable of expressing a wide array of mRNA
cytokines such as IL-1α, IL-1β, IL-4, IL-6, and GM-CSF (27).
Similar studies have shown that human bone marrow-derived
erythroid nuclear cells produce a wide range of cytokines such
as IL-1β, IL-2, IL-4, IL-6, IFN-γ, TNF-α, TGF-β, and IL-10 (25,
28), suggesting that these cells can respond to microenvironmental
changes by altering their cytokine production profile. Recently, up-
regulation of IL-4 expression in activated CD4+ T cells co-cultured
with immature erythroid cells was noted in newborn mice (29).
Further studies by this group indicated that the immature ery-
throid cells have the ability to produce IL-6 during activation of
CD4 T cells, which contributes to IL-4 up-regulation in CD4 T
cells and therefore promotes a bias toward Th2 phenotype effector
cells in neonatal mice (29).

More recently, arginine depletion has been documented as a
mechanism of suppression by immature erythroid cells (11), sim-
ilar to the suppressor cells that are associated with persistent infec-
tion (30). Interestingly, the suppression by neonatal but not adult
immature erythroid cells parallels the markedly higher expression
of arginase-2 in these cells compared to immature erythroid cells
obtained from adult phlebotomized mice (11).

Although, some discrepancies can be seen between the data
from different groups, in my view, such inconsistency in cytokine
production capabilities of immature erythroid cells can be
explained by multiple factors: (a) The cell source; immature ery-
throid cells originating from different organs might be an impor-
tant factor to consider when interpreting the data, for instance
human embryonic liver cells and/or bone marrow-derived cells
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versus cord blood immature erythroid cells. (b) The experimental
approach and stimulus; for instance, the type of stimuli, whether
testing a single cell population versus whole splenocytes and the
duration of stimulation could all impact the outcome. (c) The
heterogenicity of immature erythroid cells; lack of defining mark-
ers for immature erythroid cells in the previous studies might
have impacted their outcome. Future studies aimed at imma-
ture erythroid cells require using CD71TER119 and CD71CD235a
markers for mice and human beings, respectively.

Despite multiple supportive reports regarding immunosup-
pressive properties of immature erythroid cells, further compre-
hensive studies aimed cytokine production capabilities of CD71+

erythroid cells originated from different organs are required. In
addition, utilizing deep RNA sequencing may provide some clues if
there are base-line differences in the transcriptomes from CD71+

cells sourced from different organs such as fetal liver, neonatal
spleen, and adult spleen.

Taken together, on one hand, nucleated erythrocytes through
cytokines, arginase-2, other possible unidentified soluble factors,
and cell–cell contact-dependent manners suppress innate and
adaptive immune responses (immunosuppressive effects). On the
other hand, they might create a balanced mediator microen-
vironment providing the necessary signals required for natural
development of different hematopoietic and immune cell lineages
(immunomodulatory effects) (Figure 1).

IMPACT OF NUCLEATED ERYTHROID CELLS ON NEONATAL
INNATE IMMUNE SYSTEM
Neonates are thought to be significantly dependent on their innate
immune system for protection against invasive pathogens. The
innate immune response not only plays an instrumental and non-
antigen specific protective role against pathogens in the newborn
(7), but also through the interaction with T and B cells, regulates

tolerance to self and generates immune responses to vaccines and
memory responses to antigens. Although the immunosuppressive
activity of murine neonatal splenocytes co-cultured with adult
lymphocytes was first reported by Pavia et al. (18), this field has
since received limited attention. As described above, immature
erythroid cells possess the capability of secreting a wide range
of cytokines. Induction of cytokines by immature erythroid cells
following innate immune stimulation can influence the cytokine
milieu and could contribute to the differentiation and function of
immune cells. In agreement, it has been reported that nucleated
immature erythroid cells (expressing erythroid marker TER119,
LY-76) are capable of secreting cytokines such as IL-6 which alters
the Th1/Th2 cytokine balance and contributes to the induction of
a Th2 phenotype observed in the neonate (29).

Most recent observations in the field have demonstrated that
erythroid precursor cells are abundant in the neonatal spleen. They
co-express the transferrin receptor CD71 and the erythroid lin-
eage marker TER119 (11). However, they gradually decay and
reach to the adult levels by day 21 post-parturition (11). Simi-
larly, human cord blood contains an equally enriched proportion
of erythroid precursor cells co-expressing CD71 and the erythroid
marker CD235a (11). Accordingly, as discussed above, these cells
have distinctive immunosuppressive properties by diminishing the
production of innate immune cytokines by adult cells following
adoptive transfer into neonatal mice and also in vitro, co-cultured
with adult or neonatal cells. Remarkably, their presence after birth
inhibits innate immune responses and contributes to the sus-
ceptibility of newborns to perinatal pathogens such as Listeria
monocytogenes and Escherichia coli (11). More importantly, the
ablation of CD71+ erythroid cells in neonates using neutralizing
antibody, or the decrease in accumulation of these cells in spleen as
postnatal development progresses parallels the loss of suppression
and restored resistance to perinatal pathogens (11). It is important

FIGURE 1 | Model depicting how CD71+ erythroid cells mediate
immunomodulatory functions. CD71+ erythroid cells by secreting
soluble immunosuppressive factors, depletion of arginine, and direct
cell–cell contact manners inhibit CD4, CD8, B cell, macrophage (MQ),

and dendritic cell (DC) responses. CD71+ erythroid cells could also
skew a Th2 type immune response or expand regulatory T cells
(Tregs), by the production of cytokines and influence on the cytokine
milieu.
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to mention the possibility of CD71 expression by other immune
cell lineages in the neonate of both mice and human beings. Thus
studies to determine the inclusion or exclusion of non-erythroid
CD71 + cells using anti-CD71 antibodies are required.

Taken together, these data demonstrated that neonatal infec-
tion susceptibility results from the temporal presence of ery-
throid immunosuppressive CD71+ cells. This in fact challenges
the notion that the susceptibility of neonates to infection reflects
immune-cell-intrinsic defects bust instead highlights the pres-
ence of active immune suppression in this developmental period.
One of the caveats of the above study is that the intraperitoneal
infection route was utilized, since vast majority of infectious
agents enter the body via mucosal surfaces notably the lungs and
intestines. Thus, it remains to be determined whether these mecha-
nisms also regulate immune responses to pathogens when infected
at mucosal sites, and whether these cells compromise innate
immune response to viral infections. Furthermore, it is important
to investigate whether these cells exhibit other immunomodula-
tory properties by secreting cytokine, chemokine, and/or other
soluble factors. Finally, further investigation aimed at studying the
frequency and function of these cells in newborns may explain
some of the distinct and unpredicted immune responses seen in
human newborns and infants.

IMPACTS OF NUCLEATED ERYTHROID CELLS ON ADAPTIVE
IMMUNE SYSTEM
Newborns are restrained from exposure to antigens in utero to gen-
erate adaptive immunity. The adaptive immune system consists of
cell mediated and antibody-mediated responses. It is plausible to
predict that nucleated erythroid cells may impact the development
and function of peripheral helper T cells, cytotoxic T cells, and also
B cells to mediate acquired immunity.

Early studies on nucleated erythrocytes demonstrated that
these cells are capable of inhibiting B cell proliferation and
humoral immune response both in mice and human beings (20).
Interestingly, these studies noted that erythropoiesis disturbances
lead to the appearance of immature red blood cell precursors and
subsequently result in the suppression of B cell proliferation in the
peripheral blood and lymph nodes (20). In agreement, Mitasov
et al. reported that immature murine erythroid cells suppress both
IgM and IgG secretion and the proliferation of B cells (21). In
line with these observations, Seledtsova et al. found that nucle-
ated erythroid cells not only exert suppression of LPS-driven B
cell proliferation but also proliferative cytotoxic T cell responses
(22). More recent studies indicated that CD71+ erythroid cells
hinder up-regulation of early activation markers (e.g., CD25 and
CD69) among T cells following anti-CD3 antibody stimulation
in vitro (11). These studies underline the sophisticated nature of
the immune response in neonates and suggest further required
investigation on the effects of immature erythroid cells on adaptive
immune response in the newborn.

ERYTHROID CD71+ CELLS AND DIGESTIVE HEALTH
Under normal circumstances, the fetal gastrointestinal tract is
supposed to be sterile, with the initial exposure of the new-
born’s mucosa to commensals taking place during passage through
birth canal and exposure to outside environment as well as milk.

Colonization with a diverse variety of microorganisms is critical
for the normal development of the newborn’s commensal micro-
biota (31). Although the early interactions between the host and
the microbiota are considered to set the tone for the mucosal
and systemic immune system for the long term, the acquisi-
tion of a diverse microbiota following the dramatic transition
from a sterile in utero setting to excessive colonization with these
commensals in the external environment can be tricky and may
come at a price. Birth triggers a sudden shift that challenges the
newborn’s immune system with a massive influx of foreign anti-
gens including microorganisms, yet a pro-inflammatory response
against these new invaders will be counterproductive and detri-
mental. The mechanism by which the neonate mucosal surfaces,
in particular the gastrointestinal tract, adapt to the alarming chal-
lenge of microbial colonization has remained a mystery. In this
context, more recent studies have revealed that CD71+ erythroid
cells mediate a swift transition from a sterile intrauterine com-
partment to the non-sterile external environment, as depletion of
CD71+ erythroid cells results in excessive inflammation in new-
born mice (11). In particular, intestinal CD11b+ and CD11c+ cells
from CD71+ cell-depleted neonatal mice produce significantly
more TNF-a and up-regulate expression of the co-stimulatory
molecules CD40, CD80, and CD86 compared with controls. By
contrast, depletion of CD71+ erythroid cells did not alter the
activation status of immune cells in the spleen and lung, which
remain sterile or transiently become colonized with fewer com-
mensals. Interestingly, CD71+ erythroid cell depletion did not
induce significant alteration in intestinal immune cell activation
in germ-free and antibiotic-treated neonatal mice (11), demon-
strating cross talk between CD71+ erythroid cells and immune
cell lineages in the gut.

Therefore, neonatal CD71+ erythroid cells contribute to the
maintenance of this immunoregulatory environment by limit-
ing the surge of mucosal pro-inflammatory signals and allowing
swift adaptation to its newfound allies (11). An immune response
against colonization of commensals in the neonate could inter-
fere with establishing a symbiotic equilibrium and subsequently
could compromise the fundamental role of microbiota in shap-
ing the immune system of the infant (32). Taken together, the
higher susceptibility of newborns to perinatal pathogens seems to
be a by-product of the greater benefits of active immune suppres-
sion during this crucial developmental period, when tolerance to
colonization with commensals is more constantly propitious.

In addition to CD71+ erythroid cells, the transfer of anti-
bodies, live microbes and immune cells as well as cytokines via
colostrum and breast milk, plays an important role in shaping the
composition of the gastrointestinal tract microbiota (31). These
factors synergize to shape the breast-fed infant micobiota and the
immune response of the host to these microbes. For instance,
IgA limits immune activation and microbial attachment by bind-
ing microbial antigens, and the presence of metabolites including
oligosaccharides in mother’s milk promotes the expansion of
defined constituents of the microbiota such as Bifidobacterium
(33, 34).

Although Bifidobacterium is a dominant bacterial genus in
the neonatal gut microbiota (32), gestational age is also an
instrumental factor that strongly influences the subsequent
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establishment of the infant’s intestinal microbiota. Comparison
of the fecal microbiota of full term and preterm infants has
revealed significant niche differences. In full term infants, the
diversity of the fecal microbiota is greater and more common
genera such as Bifidobacterium, Lactobacillus, and Streptococcus
are present (35) whereas Enterobacteriaceae and other potentially
pathogenic bacteria such as Clostridium difficile or Klebsiella pneu-
moniae are found in greater numbers in preterm infants (36).
Different Lactobacillus species activate dendritic cells, inducing
them to produce different arrays of inflammatory cytokines, thus
playing a major role in the modulation of the Th1, Th2, and
Th3 balance (37, 38). Therefore, Lactobacillus species can augment
host intestinal defenses by promoting anti-inflammatory signal-
ing, blocking inflammatory signaling, and improving gut barrier
function (39). In contrast, dominance of Enterobacteriaceae and
C. difficile in preterm infants diminishes intestinal host defense
mechanisms by a Th1 inflammatory response (40) and may result
in pathological alterations such as Necrotizing enterocolitis (NEC)
(Figure 2).

In preterm babies, NEC is the most devastating gastrointestinal
emergency with high morbidity and mortality (41). Unfortu-
nately, despite extensive clinical and basic research, the etiology
and the exact mechanism(s) underlying the inflammation and
injury leading to NEC are poorly understood. However, the lower
bacterial diversity and presence of pathogenic bacteria may con-
tribute to increased apoptotic signaling, enhanced inflammatory

response, and a reduced gut barrier function which predisposes
the preterm to NEC (42). In addition, the expression of pro-
inflammatory cytokines such as TNF-α has been associated with
NEC pathogenesis (43).

Of note, the cytokine profile toward Th1, Th2, or Th17 pre-
dominance has been shown to contribute to chronic inflammatory
bowel disease in human beings and animal models and likely influ-
ences TLRs expression in the intestinal mucosa (44). Although,
TLR signaling is tightly regulated and coordinates homeostatic
responses to commensal bacteria (45, 46), Th2 cytokines, and pre-
dominantly IL-4, and it appears to dampen TLR expression and
function in human intestinal epithelial cells (IECs) (45). There-
fore, it is possible to predict that the selective accumulation of
CD71+ cells may explain the apparent differences observed in the
type of immune responses (Th2) generated in neonates (29). Con-
sequently, the Th2 phenotype down-regulates expression of TLRs
in order to quench the excessive inflammation induced by sudden
colonization with commensal bacteria after parturition (Figure 3).
It has been reported that the premature intestinal environment is
predisposed to exaggerated inflammatory responses, possibly lead-
ing to NEC (47, 48). Because host-mediated inflammation alone is
sufficient to perturb the composition of the intestinal microbiota,
it eliminates a subset of bacteria while supporting the growth of
others (40). With this concept, it is plausible to hypothesize that
the hyperinflammation leading to destruction of the intestine seen
in NEC in premature infants might take place because the immune

FIGURE 2 | Model depicting differential factors influencing
intestinal homeostasis in full term versus preterm newborns. High
proportion of CD71+ erythroid cells in full term infants skews their
immune response toward a Th2 phenotype which influences the
bacterial composition to a diverse commensal colonization and

subsequently a regulated intestinal immune response. Whereas, lower
frequency of CD71+ erythroid cells in preterm infants results in a Th1
bias immune response, which favors colonization of the gut with more
pathogenic bacteria, subsequently predisposes the preterm to
necrotizing entrocolitis (NEC).
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FIGURE 3 | Proposed mechanisms of CD71+ erythroid cells-induced
gut immune-regulation in full term versus preterm newborns. In full
terms, enriched CD71+ erythroid cells generate a suppressed immune
environment by regulatory and Th2 type cytokine in the intestine, which
down-regulates TLR expression, maintains symbiosis and intestinal

integrity. In contrast, lower and/or dysfunctional CD71+ erythroid cells in
preterm disrupts normal immune homeostasis in the gut leading to a
switch from a suppressed environment to a pro-inflammatory state,
up-regulates TLR expression, dysbiosis, and pathological alterations
associated with NEC.

system of the infant overreacts to the commensal colonization as
the immunosuppressive CD71+ erythroid cells has yet to be devel-
oped. Specifically, nucleated erythroid cells can produce cytokines
that contribute to the Th1/Th2 balance, an important one being
IL-6 (29). As IL-6 has pro-resolution properties, including inhi-
bition of neutrophil migration (49), this polarization may serve
to reduce the risk of an excessive pro-inflammatory/Tn1 response
during the initial colonization of the gut with microbiota. Further
studies are required to determine whether CD71-depletion in full
term newborn results is dysbiosis or any histopathological alter-
ations such as increased intestinal permeability and subsequent
bacterial translocation.

CONCLUSION REMARKS
Susceptibility of newborn to infection stems from the accumu-
lation of immature erythroid cells in this stage of life. These
findings highlight the pivotal role of CD71+ erythroid suppressor
cells in compromising the innate immune response and immune
ontogeny, which makes them the primary target cells for enhanc-
ing the immune responses against infection. Further investigations
aimed at dissociating the beneficial/detrimental role of CD71+

erythroid cells for possible therapeutic approaches are required.
Ongoing studies characterizing the effects of CD71+ erythroid
cells on neonatal innate and adaptive immunity and assessing
potentially beneficial effects of these cells on prevention of NEC
will inform efforts to modify or enhance immune response in this
most vulnerable population. Using animal models with defined
genetic deletions and high-throughput sequencing techniques
could shed some light on the cross talk between CD71+ erythroid

cells with other immune cells and their influence on TLR signaling
in the gut.
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