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ABSTRACT

Motivation: Inferring global regulatory networks (GRNs) from

genome-wide data is a computational challenge central to the field

of systems biology. Although the primary data currently used to infer

GRNs consist of gene expression and proteomics measurements,

there is a growing abundance of alternate data types that can reveal

regulatory interactions, e.g. ChIP-Chip, literature-derived interactions,

protein–protein interactions. GRN inference requires the development

of integrative methods capable of using these alternate data as priors

on the GRN structure. Each source of structure priors has its unique

biases and inherent potential errors; thus, GRN methods using these

data must be robust to noisy inputs.

Results: We developed two methods for incorporating structure priors

into GRN inference. Both methods [Modified Elastic Net (MEN) and

Bayesian Best Subset Regression (BBSR)] extend the previously

described Inferelator framework, enabling the use of prior information.

We test our methods on one synthetic and two bacterial datasets, and

show that both MEN and BBSR infer accurate GRNs even when the

structure prior used has significant amounts of error (490% erroneous

interactions). We find that BBSR outperforms MEN at inferring GRNs

from expression data and noisy structure priors.

Availability and implementation: Code, datasets and networks pre-

sented in this article are available at http://bonneaulab.bio.nyu.edu/

software.html.

Contact: bonneau@nyu.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Understanding how global regulatory networks (GRNs) coord-

inate systems-level response of a cell or organism to a new en-

vironmental state or perturbation is a key problem in systems

biology, with applications spanning biofuels (Bonneau et al.,

2007), novel therapeutic targets (Carro et al., 2010) and the dis-

covery of novel pathways involved in cellular differentiation

(Ciofani et al., 2012). The cellular response is governed by

multiple regulatory mechanisms that can be encapsulated by

large network models. Recent advances in the quality and avail-

ability of high-throughput technologies enable measurement of

different components of the GRN including mRNA transcript

levels, protein levels, post-translational modifications, as well as

DNA characteristics such as transcription factor-binding regions

and open chromatin locations (ENCODE Project Consortium,

2012). These multi-level and multi-scale datasets have made the

inference of integrative GRNs possible.
As high-throughput data capturing the abundance of mRNA

transcripts are the most mature and readily available, many

methods focus only on this single level of regulation, learning

transcriptional regulatory networks. In transcriptional GRNs,

the regulators are transcription factors (TFs, either previously

known or predicted), and the targets are genes. Time-series

data, capturing the temporal changes in transcript abundance,

allow for the inference of the strength and direction of regulatory

interactions, which can be used to predict how the system will

behave under previously unmeasured conditions (Bonneau et al.,

2007). Here, we are primarily interested in methods for learning

regulatory networks from compendia of expression data, and

combining this data with complementary data sources that pro-

vide priors on network structure. Importantly, the priors we use

in this work provide information about connectivity but do not

provide any information about the relative strength, importance

or dynamic properties of each known regulatory edge (these we

atempt to learn from the data).

Learning networks from single data types has severe limita-

tions, as GRNs operate on multiple levels in addition to the

transcriptome; thus, alternate data types are needed to form a

complete picture of cellular circuits. Even if one is interested in

learning the purely transcriptional layer of a cell’s regulatory

network, many TFs are post-transcriptionally modified in ways

that confound single data-type network inference (the transcript

abundance of a TF is not necessarily correlated with its protein

abundance nor activity), and some regulatory sub circuits pro-

duce transcriptional output that is consistent with multiple

models.
One way to mitigate these pitfalls is to use publicly available

sources of complementary data with bearing on regulation. We

term any data that contains direct TF-target information (either

predicted, or experimentally validated) as structure priors. One

source of such prior information is an ever-growing collection of

experimentally validated and manually curated databases of

regulatory interactions. These databases are especially rich for
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model organisms (Florez et al., 2009; Gallo et al., 2010;

Gama-Castro et al., 2011; Lammers et al., 2010), and the sets

of known regulatory interactions are considered to be accurate

and precise (though not complete). Additionally, the ENCODE

Project Consortium (2012) (a high-profile effort to build an

encyclopedia of coding DNA elements) has generated a wealth

of DNA-binding information that can be used to generate priors

on mammalian regulatory network structure. These are only a

few examples of an ever growing number of sources of GRN

structure priors, and it can be seen that they differ substantially

from organism to organism.
Each source of prior information on GRN structure is an

incomplete recapitulation of the underlying network, and may

contain many incorrect or irrelevant interactions. Thus, incor-

porating structure priors into expression-based GRN inference

poses several interesting algorithmic challenges. Successful meth-

ods for integrative GRN inference must possess the following key

properties: (i) The method must only include the part of the prior

with support from the data. This is important, as the prior infor-

mation typically is a collection of possible regulatory interactions,

of which only a subset might be relevant in a given dataset. Also,

this implies robustness to erroneous interactions in the prior,

which can have various sources, such as non-functional TF bind-

ing reported by ChIP-Seq. (ii) Using a structure prior must not

limit the ability to learn the part of the network for which no prior

information exists. (iii) The user must be able to control the

weight given to the prior. This feature allows the user to tune

the method based on the believed completeness and accuracy of

the prior, while respecting the first two properties over a wide

range of parameters. In this work, we introduce two methods

for incorporating structure priors that possess all three criteria.

1.1 Prior work

A lot of effort has been put into learning GRNs from gene

expression time-series data and prior knowledge. For recent

reviews on the topic we refer to Bar-Joseph et al. (2012) and

Hecker et al. (2009).
Some of the first GRN inference methods allowed for the

inclusion of additional data as structure priors (Imoto et al.,

2003; Tamada et al., 2003). However, they allowed only for a

very limited number of nodes in the network. Werhli and

Husmeier (2007) and Husmeier and Werhli (2007) build on

that work and express the available prior knowledge in terms

of an energy function, from which a prior distribution over net-

work structures is obtained. The complexity of these methods

limits their application beyond small networks. More computa-

tional convenient methods use the static representation of known

regulatory interactions to derive condition-specific topological

changes in network structure (Ernst et al., 2008; Luscombe

et al., 2004; Schulz et al., 2012). Other methods combine expres-

sion data with prior knowledge to estimate transcription factor

activities, which then allow to draw conclusions about the under-

lying network structure (Fu et al., 2011; Seok et al., 2009).

Another method, similar to MEN proposed in this work, uses a

network-constrained regularization procedure for linear models

to incorporate prior information (Li and Li, 2008). However, in

all these cases, it is not clear how sensitive these methods are to

errors in the priors.

The need for benchmarking general methods for GRN infer-

ence using similar datasets and gold standard sets led to the

organization of a field-wide test, the Dialogue for Reverse

Engineering Assessments and Methods (DREAM) (Marbach

et al., 2012; Prill et al., 2010; Stolovitzky et al., 2007, 2009).

The competitions have shown that methods that incorporated

multiple data types in a mutually reinforcing manner typically

performed better. However, in DREAM, all information about

the networks, including gene names, were obfuscated from the

participants; thus, methods that use any sort of prior information

could not be tested.

1.2 Our approach

We extend the recently published Inferelator approach for

GRN inference (Bonneau et al., 2006, 2007; Greenfield et al.,

2010; Madar et al., 2010) to incorporate structure priors

into the inference procedure. We retain the core Inferelator or-

dinary differential equation model and introduce two separate

model selection approaches that can use structure priors.

One involves a modification of the Elastic-Net model selection

approach, and we refer to it as Modified Elastic Net (MEN). This
method has been introduced previously (Yong-a poi et al., 2008;

Zou and Zhang, 2009), and here we incorporate it into the

Inferelator, and rigorously evaluate its performance.

Additionally, we developed a novel model selection approach,

which uses a Bayesian regression framework with Zellner’s

g prior (Zellner, 1983) along with best subset selection for

model selection. We refer to this method as Bayesian Best

Subset Regression (BBSR).
We test MEN’s and BBSR’s ability to incorporate structure

priors on three datasets: (i) the DREAM4 one-hundred node in

silico challenge, (ii) the DREAM5 Escherichia coli dataset and

(iii) a recently published Bacillus subtilis dataset (Nicolas et al.,

2012) (see Supplementary Material for additional description).

As suggested by the DREAM consortium (Marbach et al., 2012;

Prill et al., 2010; Stolovitzky et al., 2007, 2009), we use area under

the precision recall curve (AUPR) as the measure of perform-

ance. Importantly, for the E.coli and B.subtilis datasets, we

evaluate performance only over the subset of genes and TFs

that have at least one known interaction. We test the robustness

of each method by supplying sets of structure priors that have

incorrect prior information added. In doing so, we simulate

the biologically relevant environment where literature- and

experiment-derived priors will have incorrect and irrelevant

information.

2 METHODS

We will first define our core model, a simple ordinary differential equa-

tion (ODE) model where transcription factors effect transcription rate,

and where mRNA degradation rate is proportional to mRNA level.

Following the description of our core model, we introduce two exten-

sions, MEN and BBSR, to our prior method, the Inferelator, that enable

the use of known regulatory edges to influence model selection.

2.1 Problem set-up

We define x ¼ ðx1, x2, � � � ,xNÞ
T to be the observed mRNA expression

levels of N genes, as measured by microarray (or RNAseq). The datasets
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contain two distinct sets of experiments: (i) time-series (Xts), and

(ii) steady-state (Xss). In a time-series experiment, mRNA expression is

measured at consecutive time points after some stimulus. To simplify

notation, and without loss of generality, we assume that Xts is one such

time series experiment, with K observations, t1, t2, . . . , tk [i.e. xðt1Þ,

xðt2Þ, . . . ,xðtKÞ are the columns of Xts]. In a steady-state experiment,

the mRNA expression is observed once, when the system has reached

steady state. We consider all steady state experiments as Xss with L ob-

servations, e1, e2, . . . eL [i.e. xðe1Þ, xðe2Þ, . . .xðeLÞ are the columns of Xss].

The method takes as input Xts and Xss and the output is a matrix S, where

each entry si, j 2 S corresponds to the confidence that there exists a regu-

latory interaction between gene xj and gene xi (i.e. xj ! xi). S can be

thought of as a ranking of every possible regulatory interaction, where

a higher value of si, j indicates a stronger confidence in xj ! xi. A flow-

chart summarizing our approach is depicted in Figure 1.

2.2 Limiting the number of regulators for each gene

When we infer transcriptional regulatory networks, we consider only

a-priori known (or predicted) transcription factors as potential regulators.

We define P to be the set of indices of the regulators in x. For each gene i,

we have a specific set of regulators Pi � P. The members of Pi are deter-

mined using tlCLR as in (Greenfield et al., 2010; Madar et al., 2010),

and limited to the union of the 10 highest-scoring predictors and all

predictors with prior knowledge. Note that we do not attempt to infer

self-regulation in either method presented here, i.e. 8xi, i=2Pi.

2.3 Core model

We assume that the time evolution of the x0s is governed by the

following ODE

dxi
dt
¼ ��ixi þ

X
p2Pi

�i, pxp, i ¼ 1, . . . ,N ð1Þ

Where �i40 is the first order degradation rate [estimated from literature

(Hambraeus et al., 2003; Selinger et al., 2003)], � is a set of parameters

to be estimated and Pi is the set of potential regulators for xi. For clarity,

we describe the model formulation only for a linear combination of regu-

lators, and note that as in Bonneau et al. (2006), this is easily extended

to combinatorial interactions, and other non-linear functional forms.

Recall that xi contains both time-series and steady-state observations,

which we describe separately.

In the case of time-series data, we proceed by applying the finite

difference approximation to the left hand side of Equation (1), isolating

the unknown parameters � on the right hand side, and dividing both sides

by �i. We can now write Equation (1) as

�i
xiðtkþ1Þ � xiðtkÞ

tkþ1 � tk
þ xiðtkÞ ¼ �i

X
p2Pi

�i, pxpðtkÞ,

i ¼ 1, . . . ,N

ð2Þ

Where �i ¼
1
�i

is related to the half-life t1
2
by t1

2
¼ �ilogð2Þ. Note that

here the design variable xpðtkÞ is time-lagged relative to the response

variable xiðtkþ1Þ by one time point. This can easily be extended to con-

sider a lag of multiple time points; however, multiple time-lags did not

increase performance on the datasets tested here.

We summarize the left-hand side of the equation as yi, which we refer

to as the time-series response variable, and approximate it as a linear

combination of the xj’s, which we refer to as the time-series predictor

(i.e. design variable). Over the time series conditions:

yiðtkþmÞ ¼
X
p2Pi

�i, pxpðtkÞ

i ¼ 1, . . . ,N, k ¼ 1, . . . ,K� 1

ð3Þ

Note that the design and response variables are indexed only over the

time-series conditions, and the design variables (xj’s) are time-lagged with

respect to the response variable.

In the case of steady-state observations, dxi
dt ¼ 0, and Equation (1)

becomes

xiðelÞ ¼ �i
X
p2Pi

�i, pxpðelÞ,

i ¼ 1, . . . ,N, l ¼ 1, . . . ,L

ð4Þ

The two sides of the equation correspond to the steady-state response

and design variables. To construct the final response and design variables,

we concatenate the response and design variables over time-series

and steady-state observations. The final step before model selection is

to normalize and scale the response and design variables such that they

have zero mean and variance of 1.

There are many ways to solve Equation (3), including regression.

It was previously shown that sparse models of regulatory networks can

accurately capture the topology and dynamics, and that using L1 shrink-

age (and variations such as the Elastic-Net) can be used to enforce model

parsimony (Greenfield et al., 2010; Gustafsson and Hörnquist, 2010).

Below, we describe MEN and BBSR, two different model selection

procedures, both of which treat y as the response variables and the

x as the predictor variables, learn parsimonious models, and have the

ability to incorporate prior information.

2.4 Modified elastic net

Algorithm Overview Here we describe the MEN approach for estimating

the parameters � in Equation (3). We use MEN to both: (i) enforce a

sparsity constraint on the parameters �, and (ii) incorporate prior know-

ledge of regulatory interactions xj ! yi. This approach has been previ-

ously described, but has never been rigorously tested in the context of

incorporating constraints into GRN inference. We begin by describing

the application of the Elastic-Net to model selection in the context of the

core model described in Equation 3.

Elastic-Net regression The Elastic-Net (Zou and Hastie, 2005) finds a

parsimonious solution to a regression problem [e.g. Equation (3)], and

enforces sparsity through a penalty on the regression coefficients, which is

a combination of the l1 lasso penalty, and the l2 ridge penalty. Let R be

the total number of elements in response and design variable. We estimate

the parameters � in Equation (3) by minimizing the following objective

function (i.e. the sum of squares of the residuals).

Eið�Þ ¼
XR
r¼1

�����yiðrÞ �
X
p2Pi

�i, pxpðrÞ

�����
2

ð5Þ

resample data
matricestime-lagged

response and
design

variables

MEN/BBSR

prior known
interactions

Rank combine
ensemble

Fig. 1. Method flow chart. Our method takes as input an expression

dataset. To build a mechanistic model of gene expression, we create

time-lagged response and design variables, such that the expression of

the TF is time-lagged with respect to the expression of the target. We then

resample the response and designing matrices, running model selection

(using either MEN or BBSR) for each resample. This generates an ensemble

of networks, which we rank combine into one final network
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under the elastic net penalty on regression coefficients,

ð1� �Þ
X
p2Pi

j�i, pj þ �
X
p2Pi

�2i, p � si
X
p2Pi

j�olsi, pj ð6Þ

where �olsi, p is the value of �i, p determined by ordinary least squares

regression. � determines the balance between the lasso and ridge penalties,

where � ¼ 0 amounts to lasso regression, and � ¼ 1 amounts to

ridge regression. In practice, � is a vector, for each value of which we

use 10-fold CV to pick si. The final model for yi is determined by the

value � and si, which minimize the prediction error. This approach

amounts to a grid search of the parameter space as described in Zou

and Hastie (2005).

Modified Elastic Net To incorporate prior information directly into

the model selection approach, we minimize Equation (5) subject to a

new penalty function, closely related to Equation (6)

ð1� �Þ
X
p2Pi

j�i, p�i, pj þ �
X
p2Pi

�2i, p � si
X
p2Pi

j�olsi, pj ð7Þ

Where �i, p is a modifier on the shrinkage incurred on each parameter.

If there is prior belief for a regulatory interaction xp ! yi, then �i, p51

corresponds to less shrinkage being incurred on the corresponding �i, p,

hence making it more likely that this parameter is not shrunk out of the

model. Note that only the degree of shrinkage of a parameter is modified,

not the correlation between a target, TF pair, nor the order in which

predictors are selected by the model. In cases where multiple predictors

are correlated (a common occurrence in biology), �i, p will cause pre-

dictors with no prior information to be shrunk from the model before

predictors with prior information. Note that the �i, p modifies only the l1
norm, as in Zou and Zhang (2009). This implementation is based on the

elasticnet R package (Zou and Zhang, 2009).

2.5 Bayesian best subset regression

We now describe the BBSR method, an alternative inference method that

computes all possible regression models for a given gene corresponding to

the inclusion and exclusion of each predictor. Prior knowledge is incor-

porated by using informative priors for the regression parameters, and

sparsity is enforced by a model selection step based on the Bayesian

Information Criterion (BIC).

Bayesian Regression With Informative Prior Here we introduce the

linear regression we use during the model building step of the algorithm.

We assume the prediction error

�i ¼ yi � X�i ð8Þ

to be independent and identically distributed with mean 0 and variance

�2. The response variable of gene i is denoted as yi, the design variables of

TFs as X and the regression solution as �i. For clarity, we will omit the

index i for the remainder of this section. We assume that the target gene

response is distributed according to a multivariate normal

yj�, �2,X
� �

/ Nn X�, �2I
� �

ð9Þ

with the predicted response as mean, and a variance co-variance matrix

that has the error variance �2 on its diagonal and is 0 otherwise. In this

formulation, n is the number of observations (experiments). This can

be solved by a Bayesian regression where we can incorporate existing

knowledge by tuning the prior on �.

We use a modification of Zellner’s g Prior (Zellner, 1983) to include

subjective information in our Bayesian regression problem. In the original

formulation, the prior distribution of � has the following form

	 �j�2
� �

/ Nn �
0, gðX0XÞ�1�2

� �
, ð10Þ

i.e. a distribution proportional to a multivariate normal with an initial

guess �0 as mean and a data-dependent covariance matrix that is scaled

by a user chosen factor of g 2 ð0,1Þ. The prior distribution of �2 is the

same as is typically used with the non-informative prior, 	 �2
� �
/ 1

�2
. The

choice of a large value for g will lead to results centred around the

ordinary least squares solution, and the error variance will be the

lowest. Values of g close to 0 on the other hand will lead to solutions

that are centred around �0 with higher error variance.

The joint posterior distribution has the functional form

	 �, �2jy
� �

¼ 	 �jy, �2
� �

	 �2jy
� �

, ð11Þ

and the marginal posterior distributions are

	 �jy, �2
� �

/ N
g

gþ 1

�0

g
þ �ols

� �
,
�2g

gþ 1
X0Xð Þ

�1

� �
, ð12Þ

	 �2jy
� �

/ IG
n

2
,
SSR

2
þ
�0 � �ols
� �

X 0X 1
gþ1 �

0
i � �

ols
� �

2

 !
, ð13Þ

where IG is the Inverse Gamma distribution with shape and scale par-

ameter, and SSR is the sum of squares of the residuals of the ordinary

least squares solution �ols.
With this set-up, we can propose a prior guess �0 of the vector of

regression coefficients, and encode our belief in this guess with g.

To allow for different levels of confidence in the different elements

of �0, we extend the original formulation of the g prior to use a vector

�g with one entry per predictor. The scale parameter of the Inverse

Gamma distribution of the marginal posterior distribution of �2 then

becomes

scale ¼
SSR

2
þ
�0 � �ols
� �

GX 0XG �0i � �
ols

� �
2

, ð14Þ

where G is a square diagonal matrix whose diagonal entries starting in the

upper left corner are
ffiffiffiffiffiffi
1

�gþ1

q
and all remaining entries are 0.

In practice, we choose �0 to be a vector with all entries having the

value 0. This reflects our prior belief that the regulatory network is

generally quite sparse. We set the vector �g to values of g for those

predictors that we have additional knowledge for and believe that they

regulate gene i, and to 1
g for the other predictors. A value of g ¼ 1 treats

all predictors equally and we refer to it as ‘no priors’, whereas g41 allows

the predictors with priors to explain for more of the variance of the

response.

Model Selection We use the BIC to select the final model from the

2p possible regression models for a gene i. For a given model m, the BIC

is defined as

BICm ¼ n lnð�2Þ þ k lnðnÞ ð15Þ

where n is the number of observations and k the number of predictors.

To be more robust, we avoid using a point estimator for �2 directly,

but use the expected value of BICm based on the posterior distribution

of �2

E½BICm� ¼ nE½lnð�2Þ� þ k lnðnÞ ð16Þ

E½BICm� ¼ n lnðshapeÞ �DigammaðscaleÞð Þ þ k lnðnÞ, ð17Þ

where shape and scale parameterize the marginal posterior distribution

of �2 as in Equation 14. As a final step, the predictors of the model with

the lowest E½BIC� are selected as the TFs regulating gene i. If p is large

(410), we use an initial filtration step to discover the 10 most promising

predictors (see Supplementary Material for details).

2.6 Ranking interactions and bootstrapping

After model selection is carried out by either MEN or BBSR, the output is a

matrix of dynamical parameters �, where each �i, j 2 � corresponds to the

direction (i.e. activation or repression) and strength (i.e. magnitude) of a

regulatory interaction. These parameters can be used to predict the re-

sponse of the system to new perturbations. If the goal is to rank
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regulatory interactions based on a confidence measure, simply ranking

by j�i, jj is not the best scheme, as this does not take into account the

overall performance of the model for yi. As a result we re-rank inter-

actions, taking into account the relative performance of each model,

and the proportion of variance explained by each �i, j. The result is a

matrix S where the final confidence score for xi, j is given by

si, j ¼ 1�
�2full model for yi

�2model for yi without predictor j

: ð18Þ

To further improve inference and become more robust against

over-fitting and sampling errors, we use a bootstrapping strategy. We

resample the input conditions with replacement and run model selection

on the new dataset. This procedure is repeated 20 times, and the resulting

lists of interactions (S matrices) are rank combined to a final ranked list

as in Marbach et al. (2010).

3 RESULTS

We have conducted systematic thorough testing of the ability of

both MEN and BBSR to accurately reconstruct GRNs using prior

information in biologically relevant settings. We tested both
methods with respect to the number and accuracy of prior

known interactions (PKIs), and the effect of the weight of the

PKIs. Performance is validated against the set of gold standard
interactions (GSIs).

3.1 Effect of varying weight on priors

We assessed how sensitive our performance is to the choice of the
weight parameter (� for MEN and g for BBSR). For this initial

investigation of parameter sensitivity, we used the entire gold
standard as input (the set of PKIs covers all GSIs), and assessed

performance over the set of GSIs. Though this design is circular,

the purpose was to characterize the sensitivity of our method to
the choice of � and g, the parameters that control the relative

influence of the structure prior for MEN and BBSR respectively

(see Section 2). In Figure 2, we see the performance of each
method (in terms of AUPR) as a function of the weight param-
eter. As the value of � is decreased, the performance of
MEN increases to a certain point, followed by a decrease in per-

formance for all datasets (Fig. 2, right panel). This is true for all
tested datasets, and it seems that MEN has a ‘sweet-spot’around
� ¼ 0:01, which results in best performance for all tested

datasets. On the other hand, BBSR has a predictable behaviour
for all tested datasets: performance increases for increasingly
large values of g, limiting to an AUPR of 1 as g approaches

infinity. This trend holds true for all datasets (left panel of
Fig. 2).

3.2 Incorporation of prior interactions is data driven

We next investigated which of the known edges were included in

the resulting network models. We used all GSIs as PKIs and
selected a prior weight of � ¼ 0:5 for all datasets for MEN,
and values for g that resulted in similar AUPRs for BBSR

(g ¼ 1:26, 2.2 and 1.6 for Dream4, E.coli and B.subtilis, respect-
ively). We split the predicted interactions in two sets, high-ranked
(recall � 0:5) and low-ranked (recall 40:5 AND in set of PKIs),

and compared the two sets with regard to the signal in the data.
Signal for an interaction (TF-target pair) is defined as the
time-lagged correlation for that pair. We chose this metric, as
we use the time-lagged response and design matrices for model

building (see Section 2).
For both methods and all datasets, we can see that

high-ranked interactions have more signal (fewer near-zero

correlations) than low-ranked interactions (densities peaked
around zero), see Figure 3. However, for smaller values of �,
this trend is less pronounced for MEN, where more high-

ranked interactions show time-lagged correlation of 0 (see
Supplementary Material).

Fig. 3. Incorporation of prior interactions is data driven. For all three

datasets, we used all GSIs as PKIs. Here, we display the distribution of

time-lagged correlation of predicted TF-target pairs at a recall level of

� 0:5 (higher ranked, blue), and low ranked interactions that are in the

gold standard (lower ranked, red). Note that high ranked interactions are

less likely to have low absolute time-lagged correlation, and the low

ranked GSIs are centred around 0

Fig. 2. Effect of weight parameter on performance. We use all GSIs as

the set of PKIs, and evaluate performance (in terms of AUPR) against

the set of GSIs. We evaluate this performance for a variety of choices

of the weight parameter for both methods
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3.3 Performance on the leave-out set: using constraints

does not damage our ability to learn new interactions

Here we assess if knowing part of the true regulatory network

limits our ability to learn new regulatory interactions. We define
the leave-out set as the set of GSIs that are not input as PKIs into

our methods. For this experiment, we sampled PKI sets ran-

domly resulting in subsets that consisted of 20, 40, 60 and 80%

of the GSIs for each of the three datasets (we carried out five
repetitions of this random sampling). We used the same weight

parameters as in the previous section. AUPR of the leave-out set

was computed when using PKIs and compared with the perform-
ance when no PKIs were used (Fig. 4). We observe similar trends

for the six dataset–method combinations. Neither one method

shows a consistent trend, and using prior information does not
significantly help or damage performance on the leave-out set.

However, very high weights for BBSR lead to a detectable

performance decrease, whereas MEN is less affected by the prior
weight (see Supplementary Material). Overall, performance on

the leave-out set changes only slightly when priors are used.
In line with these observations, we can observe that overall

performance increases linearly as the fraction of GSIs that is

given as PKIs increases (see Supplementary Material). This
trend is true for all three datasets and both methods.

3.4 Robustness to false prior information

As sources of biological prior knowledge (e.g. literature-derived

regulatory relationships, protein–protein interactions, ChIP-seq-
detected binding events) are expected to have large numbers of

incorrect (false prior) interactions, or interactions not relevant in

a given dataset, it is important that methods for incorporating
prior knowledge are robust to these cases. To test the robustness

of MEN and BBSR to incorrect prior information, for each net-

work, we considered half of the GSIs as true prior interactions
(TPIs), and added a varying number of random false prior

interactions (FPIs). We evaluated performance on the complete

set of GSIs, and used as PKIs sets of interactions that have
TPI:FPI ratios of 1:0, 1:2, 1:5, 1:10. A choice of 1:10 TPI:FPI

for the E.coli dataset, for example, results in a set of PKIs that

contains 1033 true interactions that are GSIs, and 10330 false
interactions which are not GSIs. FPIs were drawn randomly in

five repetitions, and results showed a consistently low variance,
so only mean values are presented here. We tested the perform-
ance of both MEN and BBSR on these PKI sets with increasing

error for two choices of the respective weight parameters as fol-
lows. Low weights: � for MEN is 0.5 for all datasets, and g for

BBSR is 1.26, 2.2, 1.6 for Dream4, E.coli, B.subtilis. High
weights: � is 0.01 for all datasets, and g is 2.8, 13, 10. To compare

our results with other methods, we used the web platform
GenePattern (http://dream.broadinstitute.org/) and ran CLR,
GENIE3 and TIGRESS on our data with default parameters.

Additionally, we computed the AUPR of a simple interaction
ranking method which places all PKIs at the top of the list.

In general, high weight parameters make the methods more sus-
ceptible to noise, but for the two large datasets, E.coli and

B.subtilis, performance throughout all noise levels is still better
than any method without PKIs. For low weight parameters,
and the Dream4 and B.subtilis datasets, BBSR is less susceptible

to noise, and results in higher AUPRs than MEN (Fig. 5).
For all three datasets, performance of both methods is always

higher than the naive ranking scheme when false priors are
present.

4 DISCUSSION

We developed two methods for incorporating prior knowledge
into GRN inference. Both methods use the same underlying
ODE model of regulation (see Section 2), but use different

model selection approaches. MEN uses an adaptive weight on
the penalty function to incorporate prior knowledge. BBSR uses

the Bayesian formulation of linear regression, together with
Zellner’s g-prior to incorporate prior information, and best

subset regression with the BIC for sparse model selection.
A key difference between MEN and BBSR is how the choice of

weight (how much influence to give to the prior) effects

performance. Results presented in Figure 2 show that for
BBSR higher values of g result in overall higher confidence in

PKIs, and reduced confidence in all unknown interactions. As
such, g can be interpreted as a confidence measure in the
accuracy and completeness of PKIs, and be chosen accordingly.

It is also possible to introduce multiple sources of prior informa-
tion, each with a different weight (value of g). For MEN,

Fig. 4. Performance change on the leave-out set. PKIs were sampled randomly from 20%, 40%, 60% and 80% of the GSIs in five repetitions. We define

the leave-out set as the set of GSIs that are not PKIs. Here, we compare the AUPR of the leave-out set when using PKIs (y-axis) to the AUPR when not

using PKIs (x-axis). Points above the line indicate a performance increase when PKIs are used
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the prior weight parameter � exhibits a less predictable beha-

viour. Lower values of � generally lead to higher confidence in

PKIs. However, for all datasets, we observed a performance

peak around � ¼ 0:01. This non-linear property could be the
result of cross-validation model selection procedure.

We tested the performance of both methods on different sub-

sets of the GSIs. We see that increasing the number of PKIs
increases performance in a linear manner for all datasets and

both methods (Supplementary Fig. S2). This is in concordance

with the results on the leave-out set (the set of GSIs that are not

PKIs), where both methods showed only minor performance

change in the presence of PKIs, regardless of dataset or

number of PKIs used (Fig. 4).
Finally, and most importantly for application to biological

systems where only incomplete and noisy sets of PKIs are

available, we assessed the robustness of both methods to FPIs.

Both methods are robust to FPIs, and outperform the naive

ranking scheme, which assigns high confidence to all PKIs
(Fig. 5). More specifically, for both large real datasets (E.coli

and B.subtilis), both methods perform better than various base-

lines (no PKIs), with up to 10 FPIs for each true prior inter-

action. This means that both methods, given sufficient genomic

data, are able to act as filters to distinguish between true and

false prior interactions. However, BBSR is slightly more robust to

the presence of FPIs.
A key consideration for any practical application of network

inference methods with prior information is the trade-off

between recapitulating the prior, and discovering novel biology.
Intuitively, as the degree of belief in the prior is increased (by

increasing the weight of the prior information), more of the inter-

actions in the prior will be ranked highly by the inference

method. Thus, high weights can lead to the incorporation of

false interactions in the case of inaccurate PKIs (MEN more

prone than BBSR), and impair performance on the leave-out

set (as seen in BBSR). We suggest to the reader to set the
weight parameter for incorporating prior knowledge based on

the expected completeness and accuracy of the PKIs, and,
when in doubt, to choose a low weight.

5 CONCLUSION

In this work, we have presented two methods for incorporating
additional knowledge to constrain GRN inference by adding
priors on the network structure. In the analysis of the methods,
we focused on parameter choice and robustness to false priors,

and show that both methods are remarkably tolerant to error
in the priors. The inclusion of prior knowledge significantly
improves the quality of inferred networks without damaging

our ability to learn new interactions. Of our two methods,
the BBSR inferred more accurate networks than the MEN in the
presence of noise in the set of network priors used, and provides

an intuitive weight parameter to control the strength of priors.
This makes BBSR an appropriate method for integrating
potentially noisy complementary data such as ChIP-Chip,

ChIP-Seq, protein–protein interactions, literature-derived regula-
tory interactions and regulatory hypothesis derived from
DNA-binding motifs into a data-driven regulatory network

inference process.
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that were not GSIs. We show the AUPR of both methods for multiple choices of the respective weight parameters, as well as methods that do not use

any PKIs (horizontal lines). Additionally, we show the performance of a naive interaction ranking method, which places all PKIs at the top of the list

(gray bars)
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