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Abstract: This study aimed to elucidate the clinicopathological significance of spread through air
space (STAS) in non-small cell lung cancer (NSCLC) through a meta-analysis. Using 47 eligible
studies, we obtained the estimated rates of STAS in various histological subtypes of NSCLC and
compared the clinicopathological characteristics and prognosis between NSCLC with and without
STAS. The estimated STAS rate was 0.368 (95% confidence interval [CI], 0.336–0.0.401) in patients
with NSCLC. Furthermore, the STAS rates for squamous cell carcinoma and adenocarcinoma were
0.338 (95% CI, 0.273–0.411) and 0.374 (95% CI, 0.340–0.409), respectively. Among the histological
subtypes of adenocarcinoma, micropapillary-predominant tumors had the highest rate of STAS (0.719;
95% CI, 0.652–0.778). The STAS rates of solid- and papillary-predominant adenocarcinoma were
0.567 (95% CI, 0.478–0.652) and 0.446 (95% CI, 0.392–0.501), respectively. NSCLCs with STAS showed
a higher visceral pleural, venous, and lymphatic invasion than those without STAS. In addition,
anaplastic lymphoma kinase mutations and ROS1 rearrangements were significantly more frequent
in NSCLCs with STAS than in those without STAS. The presence of STAS was significantly correlated
with worse overall and recurrence-free survival (hazard ratio, 2.119; 95% CI, 1.811–2.480 and 2.372;
95% CI, 2.018–2.788, respectively). Taken together, the presence of STAS is useful in predicting the
clinicopathological significance and prognosis of patients with NSCLC.

Keywords: lung adenocarcinoma; lung squamous cell carcinoma; spread through air space; growth
pattern; sublobar resection; prognosis; meta-analysis

1. Introduction

Lung cancer is one of the most common causes of cancer-related deaths worldwide [1].
In the recent treatment of lung cancer, histological classification, including molecular
and biomarker profiles, is important due to the need to decide on systemic therapies [1].
Kadota et al. introduced “spread through airspace (STAS)” in lung tumors [2]. STAS is
defined as the spread of lung cancer cells into the air spaces adjacent to the main tumor [2].
STAS should be distinguished from the artificial spreading features. For example, the
discontinuity of spread in airspace from the tumor edge is ruled out as an artifact [2]. In
addition, in daily practice, the differentiation of spreading tumor cells from normal, benign
pneumocytes or bronchial cells can be difficult [2]. They described three morphological
patterns (micropapillary structures, solid nests of tumor cells, and discohesive single cells)
which are frequently identified in STAS of adenocarcinoma (ADC) [2]. STAS rates according
to the histological subtypes of ADC can be different. Non-small cell lung cancer (NSCLC)
includes ADC, squamous cell carcinoma (SCC), and large cell carcinoma. Adenocarcinomas
contain various histological subtypes, such as lepidic, acinar, papillary, micropapillary, and
solid [1]. STAS was significantly correlated with lymphatic and vascular invasions [2]. In
addition, STAS was frequently found in lung cancer with papillary, micropapillary, and
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solid patterns [2]. However, STAS was less frequent in lung cancer with a lepidic pattern
than in those without a lepidic pattern [2]. However, although previous studies have
reported the prognostic roles of STAS, detailed information on STAS rates according to
histological subtypes is unclear [2–6]. Surgical specimens from limited resection can be
limited in the evaluation of STAS due to the limitation of the adjacent parenchyma [2,4].
In addition, because STAS does not include the measurement of tumor size, there is no
impact of STAS on tumor staging. Therefore, due to the possibility of understaging,
further evaluation of the impact of STAS on tumor stage is needed. The clinicopathological
implications of the presence of STAS can differ between patients with the same histological
subtypes and tumor staging. The correlation between histological subtypes and STAS
may be more important. However, detailed information based on histological subtypes
is unclear. This study aimed to elucidate the clinicopathological significance of STAS in
NSCLC through a meta-analysis. First, the estimated rates of STAS were investigated
and evaluated in various histological subtypes and clinicopathological subgroups. In
addition, the prognostic implications of STAS were investigated, and a subgroup analysis
was performed.

2. Materials and Methods
2.1. Published Studies Search and Selection Criteria

Searching was performed using the PubMed and MEDLINE databases on 30 June 2021.
These databases were searched using the following keywords: “lung” and “STAS or spread
through air spaces.” The titles and abstracts of all searched articles from databases were
screened for exclusion. Review articles were also screened to find additional eligible studies.
Articles were included if the study was performed in human NSCLC and if there was
information about the clinicopathological characteristics and prognosis of NSCLC with
and without STAS. Articles were excluded if they were case reports or non-original articles
or if the article was not written in English.

2.2. Data Extraction

The data was extracted from each of the eligible studies by two researchers [2,4,7–51].
Extracted data included: the first author’s name, year of publication, study location, number
of patients analyzed, and clinicopathological information for patients with and without
STAS. Investigated clinicopathological information included histologic subtypes, patients’
age and sex, smoking history, tumor size, tumor location, visceral pleural, venous, and
lymphatic invasion, genetic mutations of anaplastic lymphoma kinase (ALK), epithelial growth
factor receptor (EGFR), ROS1, and KRAS, and survival rate.

2.3. Statistical Analyses

To perform the meta-analysis, all data were analyzed using the Comprehensive Meta-
Analysis software package (Biostat, Englewood, NJ, USA). The incidence rates of STAS were
investigated in NSCLCs. In addition, the presence of STAS and various clinicopathological
characteristics, including genetic mutations, were investigated and performed in the meta-
analysis. The correlations between the presence of STAS and overall and recurrence-free
survivals were evaluated. For a quantitative aggregation of survival results, we obtained
the hazard ratio (HR) using one of the following methods. In studies not quoting the
HR or its confidence interval (CI), these variables were calculated from the presented
data using the HR point estimate, log-rank statistic or its p-value, and the O-E statistic
(difference between the number of observed and expected events) or its variance. If those
data were unavailable, HR was estimated using the total number of events, number of
patients at risk in each group, and the log-rank statistic or its p-value. Finally, if the only
useful data were in the form of graphical representations of survival distributions, survival
rates were extracted at specified times to reconstruct the HR estimate and its variance
under the assumption that patients were censored at a constant rate during the time
intervals [52]. The published survival curves were read independently by two researchers



Diagnostics 2022, 12, 1112 3 of 13

in order to reduce variability. The HRs were then combined into an overall HR using Peto’s
method [53]. Heterogeneity between the studies was checked by the Q and I2 statistics
and expressed as p-values. Additionally, sensitivity analysis was conducted to assess the
heterogeneity of eligible studies and the impact of each study on the combined effect. In
addition, to compare between subgroups with and without STAS, the meta-regression
test was performed. Because eligible studies used various populations, the application
of the random-effect model rather than the fixed-effect model was more suitable. For the
assessment of publication bias, Begg’s funnel plot and Egger’s test were used. If significant
publication bias was found, the fail-safe N and trim-fill tests were additionally conducted to
confirm the degree of publication bias. The results were considered statistically significant
at p < 0.05.

3. Results
3.1. Selection and Characteristics of the Studies

In this study, 47 studies were included among the 201 searched studies. In total,
51 studies were excluded because they were non-original articles. Moreover, 46 articles had
insufficient or no information. Overall, 44 articles were studied for other diseases. Two
reports were excluded due to duplication of patients. In addition, 11 reports were excluded
due to non-English (n = 8) and non-human samples (n = 3). Detailed information for the
included and excluded studies is presented in Figure 1 and Table 1.
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Figure 1. Flow chart of study search and selection methods.

Table 1. Main characteristics of eligible studies.

Author, Year Location Subtype TNM Stage Subgroup No of
Patients

STAS

Present Absent

Alvarez Moreno 2021 [7] USA NSCLC I-III 240 67 173
Bains 2019 [4] USA ADC I Lobectomy 557 191 366

ADC I Sublobar resection 352 126 226
Chae 2021 [8] Korea ADC I 115 20 95
Chen 2020 [9] China ADC I 3346 1082 2264
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Table 1. Cont.

Author, Year Location Subtype TNM Stage Subgroup No of
Patients

STAS

Present Absent

Chen 2020 [10] China ADC I Training cohort 233 69 164
ADC I Validation cohort 112 50 62

Dai 2017 [11] China NSCLC I 383 116 267
Ding 2019 [12] China ADC I-III 208 107 101
Han 2021 [13] Korea NSCLC I-IV NSCLC 1869 765 1104

ADC I-IV ADC 1544 684 860
Hara 2019 [14] Japan ADC I 108 32 76
Hu 2018 [15] Taiwan ADC I-III 500 134 366

Ikeda 2021 [16] Japan NSCLC I-III 636 282 354
Jia 2020 [17] China ADC I-IV ADC 303 183 120

SCC I-IV SCC 121 39 82
Jung 2020 [18] Korea ADC I 506 204 302

Kadota 2015 [2] Japan ADC I 411 155 256
Kadota 2017 [19] Japan SCC I-IV 216 87 129
Kadota 2019 [20] Japan ADC I-IV 735 247 488

Kim 2018 [21] Korea ADC I-III 276 92 184
Kim 2019 [22] Korea ADC I-III 301 154 147

Kimura 2020 [23] Japan ADC ND 164 29 135
Koezuka 2019 [24] Japan ADC I-III 64 18 46

Lee 2018 [25] Korea ADC I-III 316 160 156
Lee 2020 [26] Korea ADC I-III 119 86 33
Liu 2018 [27] China ADC I-III 208 107 101
Liu 2019 [28] China ADC I-III Study cohort 289 143 146

I-III Validation cohort 91 50 41
Lu 2017 [29] USA SCC I-III 445 132 313

Masai 2017 [30] Japan NSCLC ND 508 76 432
Nakajima 2021 [31] Japan ADC I-III 1057 384 673

Qi 2021 [32] China ADC ND 190 47 143
Qiu 2019 [33] China ADC I-III 192 107 85
Ren 2019 [34] China ADC I Lobectomy 634 182 452

I Sublobar resection 118 43 75
Shiono 2016 [35] Japan ADC I 318 47 271
Shiono 2019 [36] Japan NSCLC I 848 139 709
Shiono 2020 [37] Japan ADC I 217 34 183
Song 2019 [38] China ADC I 277 86 191

Terada 2019 [39] Japan ADC III 76 46 30
Toyokawa 2018 [40] Japan ADC I 82 31 51

Toyokawa 2018 [41] Japan ADC II-III Lymph node
metastasis 63 46 17

Vaghjiani 2020 [42] USA ADC I-III 809 350 459
Villalba 2021 [43] USA ADC I 100 43 57

Xie 2021 [44] China NSCLC I-IV 803 433 370
Yang 2018 [45] China ADC I 242 81 161

Yi 2021 [46] Korea ADC I-II 109 41 68
Yokoyama 2018 [47] Japan NSCLC I-III 35 21 14

Zhang 2020 [48] China ADC I-III 762 83 679
Zhong 2021 [49] China ADC I 620 167 453
Zhuo 2020 [50] China ADC ND 212 107 105

Zombori 2020 [51] Hungary ADC I 292 123 169

ND, no description; STAS, spread through air space; NSCLC, non-small cell lung cancer; ADC, adenocarcinoma;
SCC, squamous cell carcinoma.

3.2. Estimated Rates of STAS in NSCLC

The estimated rate of STAS was 0.368 (95% CI, 0.336–0.401) in patients with NSCLC
(Table 2). STAS was found in 33.8% and 37.4% of the cases of SCC and ADC, respectively.
In the subgroup analysis based on histological subtypes of ADC, the STAS rate was the
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highest in micropapillary-predominant ADC (0.719; 95% CI, 0.652–0.778). The STAS rates
were 0.567 (95% CI, 0.478–0.652) and 0.446 (95% CI, 0.392–0.501) in the solid and papillary
predominant subgroups, respectively. Additionally, the STAS rates of the lepidic, acinar,
mucinous, cribriform, and colloid-predominant subgroups were 0.128 (95% CI, 0.092–0.175),
0.352 (95% CI, 0.312–0.394), 0.278 (95% CI, 0.169–0.42), 0.365 (95% CI, 0.337–0.394), and
0.167 (95% CI, 0.010–0.806), respectively.

Table 2. Meta-analysis for the rate of spread through air space in non-small cell lung carcinoma.

Number
of Subset

Fixed Effect
[95% CI]

Heterogeneity Test
[p-Value]

Random Effect
[95% CI]

Egger’s
Test

Overall 53 0.367 [0.361, 0.374] <0.001 0.368 [0.336, 0.401] 0.905
Squamous cell carcinoma 3 0.331 [0.299, 0.365] 0.025 0.338 [0.273, 0.411] 0.735

Adenocarcinoma 43 0.366 [0.358, 0.373] <0.001 0.374 [0.340, 0.409] 0.599
Lepidic predominant 28 0.167 [0.151, 0.183] <0.001 0.128 [0.092, 0.175] 0.126
Acinar predominant 28 0.361 [0.347, 0.374] <0.001 0.352 [0.312, 0.394] 0.699

Papillary predominant 28 0.434 [0.414, 0.454] <0.001 0.446 [0.392, 0.501] 0.559
Micropapillary predominant 25 0.647 [0.614, 0.679] <0.001 0.719 [0.652, 0.778] 0.004

Solid predominant 28 0.465 [0.440, 0.491] <0.001 0.567 [0.478, 0.652] 0.073
Mucinous predominant 7 0.282 [0.190, 0.397] 0.222 0.278 [0.169, 0.421] 0.654
Cribriform predominant 3 0.365 [0.337, 0.394] 0.605 0.365 [0.337, 0.394] 0.642

Colloid predominant 1 0.167 [0.010, 0.806] 1.000 0.167 [0.010, 0.806] -

CI, Confidence interval.

3.3. Correlation between STAS and Clinicopathological Characteristics in NSCLC

Differences in clinicopathological characteristics between patients with and without
STAS were investigated through a meta-analysis. NSCLCs with STAS were significantly
more correlated with frequent visceral pleural, venous, and lymphatic invasions than
those without STAS (Table 3). In NSCLCs with STAS, the estimated rates of visceral
pleural, venous, and lymphatic invasions were 0.322 (95% CI, 0.275–0.373), 0.301 (95% CI,
0.251–0.356), and 0.391 (95% CI, 0.325–0.461), respectively. In addition, STAS is frequently
observed in male patients. However, there were no significant differences in age, smoking
history, tumor size, and tumor location between patients with and without STAS.

Table 3. Comparisons of clinicopathological parameters between lung cancers with STAS and
non-STAS.

Number
of

Subset

Fixed Effect
[95% CI]

Heterogeneity
Test

[p-Value]

Random Effect
[95% CI]

Egger’s Test
[p-Value]

Meta-Regression
Test

[p-Value]

Age (mean)
STAS 25 66.2 [66.0, 66.4] <0.001 63.8 [61.6, 65.9] 0.088 0.653

Non-STAS 25 68.1 [68.0, 68.2] <0.001 63.0 [60.4, 65.4] 0.032
Gender (Male)

STAS 44 0.533 [0.521, 0.545] <0.001 0.546 [0.514, 0.578] 0.298 0.008
Non-STAS 44 0.489 [0.480, 0.497] <0.001 0.484 [0.451, 0.516] 0.748

Current/ex-Smoking
STAS 39 0.465 [0.452, 0.478] <0.001 0.475 [0.418, 0.532] 0.951 0.236

Non-STAS 39 0.422 [0.412, 0.431] <0.001 0.426 [0.369, 0.486] 0.862
Tumor size (cm)

STAS 20 1.91 [1.90, 1.92] <0.001 2.45 [2.21, 2.69] 0.175 0.092
Non-STAS 20 1.65 [1.64, 1.65] <0.001 2.99 [2.52, 3.46] 0.112

Location (upper/middle lobe)
STAS 11 0.646 [0.621, 0.671] 0.079 0.648 [0.612, 0.682] 0.722 0.078

Non-STAS 11 0.702 [0.684, 0.719] 0.003 0.691 [0.658, 0.721] 0.021
Visceral pleural invasion

STAS 30 0.355 [0.341, 0.370] <0.001 0.322 [0.275, 0.373] 0.187 <0.001
Non-STAS 30 0.202 [0.193, 0.212] <0.001 0.177 [0.128, 0.239] 0.478

Venous invasion
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Table 3. Cont.

Number
of

Subset

Fixed Effect
[95% CI]

Heterogeneity
Test

[p-Value]

Random Effect
[95% CI]

Egger’s Test
[p-Value]

Meta-Regression
Test

[p-Value]

STAS 23 0.352 [0.335, 0.370] <0.001 0.301 [0.251, 0.356] 0.093 <0.001
Non-STAS 23 0.151 [0.140, 0.163] <0.001 0.120 [0.080, 0.175] 0.319

Lymphatic invasion
STAS 20 0.495 [0.476, 0.514] <0.001 0.391 [0.325, 0.461] 0.005 <0.001

Non-STAS 20 0.192 [0.180, 0.205] <0.001 0.130 [0.092, 0.181] 0.103

CI, Confidence interval; STAS, spread through air space.

The correlations between genetic alterations and the presence of STAS were investi-
gated in NSCLC. Patients with STAS were significantly more correlated with higher ALK
mutations and ROS1 rearrangement than those without STAS (Table 4). The estimated
rates of ALK mutation and ROS1 rearrangement in patients with STAS were 0.125 (95% CI,
0.102–0.152) and 0.040 (95% CI, 0.023–0.068), respectively. The estimated rates of ALK mu-
tation and ROS1 rearrangement in patients without STAS were 0.027 (95% CI, 0.011–0.067)
and 0.009 (95% CI, 0.004–0.020), respectively. However, there were no significant differences
between EGFR mutations and KRAS mutations between patients with and without STAS.

Table 4. Comparisons of genetic mutation between lung cancers with STAS and non-STAS.

Number
of Subset

Fixed Effect
[95% CI]

Heterogeneity
Test

[p-Value]

Random Effect
[95% CI]

Egger’s Test
[p-Value]

Meta-Regression
Test

[p-Value]

ALK mutation
STAS 7 0.125 [0.102, 0.152] 0.504 0.125 [0.102, 0.152] 0.894 <0.001

Non-STAS 7 0.042 [0.030, 0.059] <0.001 0.027 [0.011, 0.067] 0.120
EGFR mutation

STAS 13 0.464 [0.439, 0.489] <0.001 0.438 [0.373, 0.506] 0.421 0.058
Non-STAS 13 0.519 [0.500, 0.538] <0.001 0.523 [0.473, 0.573] 0.864

ROS1 rearrangement
STAS 3 0.040 [0.023, 0.067] 0.359 0.040 [0.023, 0.068] 0.050 0.003

Non-STAS 3 0.008 [0.004, 0.018] 0.315 0.009 [0.004, 0.020] 0.966
KRAS mutation

STAS 3 0.059 [0.039, 0.089] 0.168 0.053 [0.029, 0.096] 0.161 0.284
Non-STAS 3 0.033 [0.020, 0.053] 0.301 0.033 [0.019, 0.056] 0.375

CI, Confidence interval; STAS, spread through air space.

3.4. Prognosis of NSCLC with STAS

Patients with STAS had worse overall and recurrence-free survival (HR, 2.119; 95%
CI, 1.811–2.480 and HR, 2.372; 95% CI, 2.018–2.788, respectively) (Figures 2 and 3; Table 5).
In the ADC subgroup, patients with STAS were significantly correlated with worse over-
all and recurrence-free survival (HR, 2.093; 95% CI, 1.756–2.496 and HR, 2.633; 95% CI,
2.145–3.232, respectively). In the SCC subgroup, patients with STAS had worse overall and
recurrence-free survival (HR, 4.208; 95% CI, 2.190–8.083 and HR, 1.610; 95% CI, 1.066–2.431,
respectively).

Table 5. Comparisons of prognosis between lung cancers with STAS and non-STAS.

Number
of Subset

Fixed Effect
[95% CI]

Heterogeneity Test
[p-Value]

Random Effect
[95% CI]

Egger’s Test
[p-Value]

Overall survival 25 1.684 [1.584, 1.791] <0.001 2.119 [1.811, 2.480] 0.001
Adenocarcinoma 21 1.656 [1.552, 1.766] <0.001 2.093 [1.756, 2.496] 0.005

Squamous cell carcinoma 1 4.208 [2.190, 8.083] 1.000 4.208 [2.190, 8.083] -
Recurrence-free survival 31 1.888 [1.763, 2.023] <0.001 2.372 [2.018, 2.788] <0.001

Adenocarcinoma 25 2.028 [1.869, 2.200] <0.001 2.633 [2.145, 3.232] <0.001
Squamous cell carcinoma 1 1.610 [1.066, 2.431] 1.000 1.610 [1.066, 2.431] -

CI, Confidence interval; STAS, spread through air space.
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Figure 3. Forest plots for the recurrence-free survival.

4. Discussion

Although the concept of STAS was introduced in 2015, it is not included as a diag-
nostic parameter in daily practice [2]. Because the presence of STAS is correlated with the
prognosis and histological subtype of the patient, a detailed evaluation is needed in the
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pathological examination. However, despite many studies, the diagnostic criteria in daily
practice are unclear. Therefore, the meta-analysis may be appropriate to help understand
the clinicopathological impacts of STAS. Through this meta-analysis, we obtained the
following results: (1) the estimated rate of STAS was 0.368 (95% CI, 0.336–0.401) in NSCLC;
(2) STAS was frequently found in the micropapillary and solid predominant subtype;
(3) STAS was significantly correlated with visceral pleural, venous, and lymphatic invasion;
and (4) patients with STAS had worse overall and recurrence-free survival than those
without STAS.

STAS was first defined by Kadota et al. in 2015 [2]. They reported that STAS is the
identification of tumor cells that spread in the air spaces of the lung parenchyma adjacent
to the edge of the tumor [2]. To evaluate the presence of STAS, the lung parenchyma
adjacent to the edge of the tumor must be included in the pathological examination. The
identification of STAS can be performed on the histological examination of lung cancer.
In addition, the differentiation between tumor cells and other cells within the air space
is not easy. Because the evaluation of STAS can be different from that of pathologists,
obvious criteria are necessary for daily practice. Kadota et al. introduced the morphological
patterns of tumor cells of STAS: (1) micropapillary structures; (2) solid nests of tumor
islands; and (3) scattered discohesive single cells [2]. These patterns can easily differ
from the lepidic growth patterns. Kadota et al. reported that the presence of STAS was
correlated with lepidic, papillary, micropapillary, and solid patterns [2]. In our results,
the estimated STAS rate for the lepidic subtype was the lowest among the ADC subtypes
(0.128; 95% CI, 0.092–0.175). If the tumor component is a pure lepidic subtype, the actual
rate of STAS can be lower than our results. The criterion for a major histopathological
subtype of ADC is >5% of the overall tumor. Because the pure histological subtype of ADC
is rare, differentiation between the components of STAS and tumors can be difficult. As
described above, the morphological patterns of subtypes with low STAS rates, such as
lepidic, acinar, and mucinous subtypes, are different from the morphological patterns of
STAS. In our results, the estimated rates of STAS ranged from 12.8% to 71.9%, according
to the ADC subtypes. The micropapillary subtype showed the highest STAS rate among
the ADC subtypes (0.719; 95% CI, 0.652–0.778). In evaluating STAS, artificial spreading
features should be distinguished from true STAS. Contamination on sectioning tissue and
paraffin block is issued in pathologic examination. Especially in lung resection specimens,
the possibility of the displacement of tumor cells may frequently be present along the plane
of sectioning by a knife [54,55]. Lee et al. described that three tumor slices were observed
under the microscope to avoid confusion with artificially detached cells [25].

STAS has been correlated with aggressive clinical features and a worse prognosis.
However, due to the different diagnostic criteria and populations, conclusive information
is unclear. Therefore, a meta-analysis is useful for obtaining conclusive information. In
this study, STAS was significantly correlated with visceral pleural, venous, and lymphatic
invasion. However, there was no significant correlation between STAS and age, smoking
history, tumor size, and tumor location. Although previous studies have reported a
correlation between STAS and clinicopathological characteristics, the detailed information
between studies is different. Kadota et al. reported that STAS was significantly correlated
with lymphovascular invasion and histological subtypes [2]. A previous study showed a
correlation between STAS and the tumor site and the stage of lymph nodes [7]. In addition,
they reported that STAS was significantly higher in micropapillary growth patterns than in
other histological patterns [7]. However, there were no statistically significant differences
between the presence of STAS and histological subtypes. STAS is more frequently found in
the right lower lobe than in the left lower lobe [7]. In this study, no significant differences
were observed in STAS rates between upper/middle and lower lobes (p = 0.078 in the
meta-regression test).

Kadota et al. reported that STAS was not correlated with visceral pleural invasion [2],
unlike in our results. In addition, they divided the patients into limited and lobectomy
resection groups. In their study, no significant differences in the visceral pleural invasion
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were observed according to the presence of STAS. In addition, they suggested that STAS is
a risk factor for locoregional recurrence. In patients with limited resection, the evaluation of
the presence of STAS is difficult due to the insufficient inclusion of the adjacent parenchyma.
In addition, the impact of the fixation method of inflation on the presence of STAS is unclear.
Kadota et al. reported different prognostic impacts between the limited and lobectomy
groups [2]. STAS was significantly correlated with worse recurrence-free survival in the
limited resection group but not in the lobectomy resection group. However, in studies by
Bains and Ren, a prognostic impact was found in both the limited and lobectomy resection
groups [4,34]. We suggest that upon detecting STAS, close observation or adjuvant therapy
is recommended. Cumulative studies for the necessity of further treatments will be needed
in patients with STAS. Interestingly, the prognostic roles of STAS were different from those
of ADC. The prognostic implications of STAS between stages I and III were not different.
There was a significant difference in prognosis between patients with and without STAS in
stage I but not in stage III (data not shown). Based on our results, the evaluation of STAS
according to the histological subtype can be useful to predict the prognosis of the patient.

We compared the clinicopathological parameters between the STAS and non-STAS
subgroups, unlike the previous meta-analysis. In addition, in this study, we showed
the results using the estimated rate, but not the odds ratio between the STAS and non-
STAS subgroups. Yin et al. reported a correlation between computer tomography and
histological STAS in lung ADC [56]. In addition, Eguchi et al. reported the therapeutic effect
of surgical treatment in T1 ADC with STAS [57]. Wang et al. demonstrated the prognostic
implications of STAS in NSCLC [57]. In the meta-analysis by Liu et al., 12 eligible studies
were included [58]. They studied reports from 2015 to 2018. Chen et al. studied using
14 eligible studies [59]. In Wang’s meta-analysis, the number of eligible studies included
was eight [58]. Among the eight studies, the reports for ADC and SCC were six and
two, respectively [58]. A total of 47 eligible articles were included. In addition, because
33 articles published after 2019 were included, the interest and importance of STAS are
gradually increasing. Therefore, our results can be updated and reliable. In addition, we
investigated STAS rates in various subtypes of NSCLC and compared clinicopathological
characteristics between the STAS and non-STAS subgroups. However, in Wang’s report,
information can be obtained based on tumor subtype, unlike our results [58]. In addition,
unlike previous meta-analyses, the estimated STAS rates were investigated according to
various subgroups.

Unlike previous meta-analyses, our study evaluated the differences in genetic alter-
ations between NSCLC with and without STAS. From our results, detailed information
on the clinicopathological characteristics of patients with and without STAS can be useful
for the interpretation of patients with STAS. NSCLC with STAS had frequent ALK muta-
tions and ROS1 rearrangement compared to NSCLC without STAS. In lung ADC, EGFR
mutations are found more frequently in the micropapillary pattern [60,61]. However, there
was no significant correlation between STAS and EGFR mutations or KRAS mutations.
Understanding these genetic alterations in STAS may be important for the interpretation of
molecular analyses of lung ADC.

There were some limitations to the current meta-analysis. First, the detailed criteria
for STAS in NSCLC are unclear. STAS is within air spaces in the lung parenchyma beyond
the edge of the main tumor, based on the definition of Kadota’s report [2]. However, the
definitive distance was not defined for the edge of the tumor in most eligible studies. Han
and Shiono’s reports described the distance as 0.5 mm and 0.25 mm, respectively [13,36].
However, subgroup analysis based on diagnostic criteria could not be performed due to
insufficient information. Second, information based on mixed histological patterns could
not be obtained from the eligible studies. Third, a detailed evaluation between STAS and
distant metastasis could not be performed due to insufficient information. Fourth, a detailed
investigation of the morphological patterns of STAS based on the histological subtypes of
NSCLC could not be performed. Fourth, evaluating STAS grades may be needed because
the extent and amount of STAS can affect a patient’s prognosis. However, it is difficult to



Diagnostics 2022, 12, 1112 10 of 13

assess due to insufficient information from eligible studies. Further evaluation for grading
STAS will be needed. Fifth, another limitation concerned the lack of prospective studies
for investigating STAS in the included eligible studies. Sixth, the single cell type of STAS
was-not prognostic [62]. STAS is composed of three morphologic categories. However,
it could not be compared the prognostic differences between morphological categories
of STAS.

5. Conclusions

In conclusion, our results showed that STAS is frequently detected as a histological
feature, as 36.8% of NSCLC cases. In addition, among adenocarcinomas, STAS is frequently
found in the micropapillary and solid predominant subtypes. STAS was significantly
correlated with aggressive tumor behavior and a worse prognosis. The recognition of STAS
in daily practice is useful to predict the prognosis of the patient.
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