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The time around 3.7 Ga ago was an epoch when substantial changes in Mars occurred: a substantial decline
in aqueous erosion/degradation of landscape features; a change from abundant phyllosilicate formation to
abundant acidic and evaporitic mineralogy; a change from olivine-rich volcanism to olivine-pyroxene
volcanism; and maybe the cessation of the martian dynamo. Here I show that Mars also experienced
profound changes in its internal dynamics in the same approximate time, including a reduction of heat flow
and a drastic increasing of lithosphere strength. The reduction of heat flow indicates a limited cooling (or
even a heating-up) of the deep interior for post-3.7 Ga times. The drastic increasing of lithosphere strength
indicates a cold lithosphere above the inefficiently cooled (or even heated) interior. All those changes
experienced by Mars were most probably linked and suggest the existence of profound interrelations
between interior dynamics and environmental evolution of this planet.

aleo-heat flows based on determinations of lithospheric strength are useful for obtaining information on the

thermal evolution of a planetary body' . So, Ruiz et al.’ used paleo-heat flow estimates for 22 martian

regions of different periods and geological contexts, derived from the effective elastic thickness of the
lithosphere or from faulting depth beneath large thrust faults, to constrain the thermal history of Mars. The
results obtained by these authors suggest that Mars has been losing less heat than predicted from most thermal
history models**. The martian mantle could even have been heating-up during a substantial portion of its
evolutionary history.

An interior of Mars inefficiently cooled is, as pointed out by Ruiz et al.?, consistent with several independent
geophysical and geological observations: the present-day existence of a (at least partly) fluid core’, and the
simultaneous absence of an endogenic magnetic field®, are in agreement with high mantle temperatures reducing
core cooling, and weakening or suppressing core convection; a lower amount of global contraction since the Early
Noachian than expected from thermal history models, as deduced from thrust faults recorded on the surface’,
because lack of mantle cooling limits the thermal contraction that can drive surface contraction; the evidence for
recent extensive volcanism'® also suggest the retention of a substantial amount of internal heat. On the other hand,
a limited interior cooling would be in agreement with a recent thermal history modeling", which take into
account phase transitions and compositional changes due to mantle melting.

I add here that recent petrologic modeling'*"* of magma production finds higher potential mantle temperature
for magmas originating shergottite meteorites (which typically have ages younger than 0.6 Ga) than for magmas
originating Gusev and Meridiani basaltic rocks, which are Noachian in age. (This period corresponds to ages older
than 3.7 Ga, and was followed by the Hesperian; e.g., Ref. 15) Shergottite meteorites could have originated in a
hot-plume environment, and therefore be not representative of the average mantle, but a long-term heating-up
mantle would be a solution to the problem of the high-temperature shergottites.

The relatively low paleo-heat flows deduced for Mars from lithospheric strength are mostly related to post-
Noachian times’. Otherwise, most of paleo-heat flows obtained for Noachian times are high or lower limits, and in
the second case the heat flows could also be high; this would be consistent with an early time of intense interior
cooling. In this work I investigate the key question of timing the change from high heat flows to comparatively low
heat flows, through both (1) the comparison between radioactive heat production and surface heat flow as a
function of time, and (2) the temporal pattern of lithospheric strength evolution, which relates to the thermal
evolution of the lithosphere. I then compare this timing with other major events in the martian history, and
discuss the implications of the heat loss history of Mars for the evolution of mantle temperature, core dynamo,
and climate of this planet.
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Results

The evolution of the interior heat budget as constrained by paleo-
heat flows. The Urey ratio (Ur), the ratio between the total radio-
active heat production and the total heat loss through the surface of a
planetary body, constitutes an excellent means to visualize the
internal heat budget of a planetary body. Thus, information on
both paleo-heat flows and global planetary composition can be
used to constrain the evolution of the Urey ratio, and hence the
thermal evolution of a planetary body.

I have calculated Urey ratios (or more exactly, paleo-Urey ratios)
for Mars from paleo-heat flows derived from lithospheric strength
and the total radioactive heat production (function of age) derived
from the global compositional model of Winke and Dreibus'®. The
Urey ratio values were calculated extrapolating heat flows obtained
for a given region to the entire planet. It is obvious that those “local”
paleo-heat flows are not necessarily representative of globally average
values, but so-derived “equivalent” Ur values are certainly inform-
ative, as I show below. For Ur > 1 (Ur < 1) the interior, as an average,
is heating-up (cooling-down). Thus, for a given feature and time I
have selected the upper limit surface heat flow (Figure 1), which in
turn gives a lower limit for Ur, being therefore the less favorable cases
for a limited cooling or a heating-up of the martian interior, and
making more robust my conclusions.

The used paleo-heat flows (Figure 1) are mostly based on the
upper limits obtained by Ruiz et al.?, although I have expanded the
calculations for Olympus Mons, Arsia Mons, and Elysium rise in
order to take into account an higher age range for the time of loading
of the lithosphere supporting these volcanic edifices. Previous work>?
considered the time of loading of Olympus Mons, and Tharsis
Montes to be generally Amazonian (i.e., younger than ~3 Ga), in
accordance with the ages of surface-covering lavas. However, crater
counts of volcano flanks suggest that the main edifice, or at least a
substantial portion, of those volcanoes was already emplaced around
3.5-3.6 (Ref. 17), and therefore, the time of loading could have been
mostly Hesperian'®. Similarly, flexure modeling and crater counts

suggest that most of Olympus Mons would have constructed
between 3.67 and 2.54 Ga (Ref. 19).

Figure 2 shows lower limit estimates of Urey ratio for Mars as a
function of time. Curve lengths indicate uncertainty related to fea-
ture age, not temporal evolution. For clarity, I have simplified the
representation to show only the lower Urey ratio value obtained for a
given region. Heat flows for post-Noachian volcanic regions would
be consistent with Ur < 1 if these regions were loaded in the
Amazonian, although volcanic areas are expected to be associated
with heat flows higher than planetary averages. However, as stated
above, refined crater counts suggest relatively early ages for the
emplacement of Elysium and Tharsis volcanoes'’, and therefore a
Hesperian age for the associated loading'®, and hence Ur > 1 values
are favored from these features for the Hesperian. Moreover, all post-
Noachian non-volcanic regions give Ur values higher than, or close
to, 1; similarly, the present-day upper limit heat flow derived for the
North Pole region is slightly above the present-day heat production,
consistent with an upper limit Ur close to 1 (Ref. 3; see also Figure 1).
The conclusion of a limited interior cooling seems therefore inescap-
able for post-Noachian times; moreover, the case for an interior
heating-up is robust, at least during the Hesperian.

For the Noachian the situation is unclear, because many heat flow
estimates for the Noachian southern highlands are lower limits>*
(and so they are not shown in Figure 1), based on upper limit effective
elastic thicknesses. Therefore a very high surface heat flow, and hence
avery low Urey ratio, cannot be ruled out for the time when the large-
scale topography of these regions was formed (for illustrating this, an
Urey ratio close to zero for the southern highlands has been repre-
sented in Figure 2). Thus, most of the heat flows derived for
Noachian terrains could be consistent with Ur < 1 and a substantial
interior cooling. Relatively low heat flows deduced from the depth of
large thrust faults at Amenthes Rupes and Warrego rise could suggest
a highly variable heat loss across the martian surface in the Noachian,
although the age of these thrust faults would be, respectively, between
3.6and 3.8 Gaand between 3.7 and 4.0 Ga (Refs. 20, 21), whereas the
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Figure 1| Surface heat flow upper limits for several regions and times of Mars, indicating the geological category of the respective features. Curve
lengths indicate uncertainty related to loading/deformation age (and hence to radioactive heating in the lithosphere), not temporal evolution. Most of
heat flows shown in this figure are from Ruiz et al.?, although the calculations have been expanded in order to account for an higher age range for the time
of loading of the lithosphere supporting Olympus Mons, Arsia Mons, and Elysium rise (see text for details).
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Figure 2 | Lower limits for the Urey ratio (Ur) calculated from Paleo-heat
flow values in Figure 1. Curve lengths indicate uncertainty related to
loading/deformation age (and hence to radioactive heating in the
lithosphere), not temporal evolution. For geographically close regions only
a composite curve including the Urey ratio lower limit for a given time is
shown; for example, the curve labelled Dichotomy includes values from
Amenthes Rupes and Isidis Planitia. An Urlower limit close to zero for the
Southern highlands (including Amenthes highlands, NE Arabia Terra,
Noachis Terra, Terra Cimmeria and Hellas Basin) has been also
represented, because there are available paleo-heat flows lower limits, but
not upper limits, for these regions>’.

southern highlands would be older than 3.8 Ga (see Table 1). The
heat flows lower limits derived for the southern highlands could
therefore correspond to times earlier than those represented by the
thrust faults, and so we cannot currently discard a transition from
high heat flows (and Ur < 1) to low heat flows (consistent with Ur
higher than, or close to, 1) occurred some time before the end of this
period, maybe around 3.8 Ga.

The evolution of lithospheric strength and thickness. The effective
elastic thickness, T,, is related to the strength of the lithosphere,
integrating contributions from brittle and ductile layers and from
elastic cores of the lithosphere (for a review see Ref. 22); when
considering curvature due to lithospheric flexure, T, can in fact be
used as a measure of the total strength of the lithosphere. Mantle
rocks are stronger than crustal rocks, but under higher temperatures,
which in turn reduces their strength. For a sufficiently high heat flow
the upper mantle does not contribute to T,, and the lithosphere is
thin and restricted to the crust. Conversely, if the heat flow is suffi-
ciently low, the upper mantle is cold and strong, and contributes to
the strength of the lithosphere, and hence to the effective elastic
thickness, which is therefore higher. Thus, the evolution of the
effective elastic thickness is very interesting as an indicator of the
evolution of the thermal state, strength and mechanical behaviour of
the lithosphere.

Table 1 shows a summary of effective elastic thickness values
derived for martian terrains loaded in different times, compiled from
several works (see Methods Section). Much of these T, estimates are
not adequate for performing well-constrained heat flow calculations
(and for that reason heat flow values for the respective regions are not
shown in Figure 1), because curvatures of the equivalent elastic layer
were not derived, but they are interesting as a way to constrain the
evolution of lithosphere strength, and hence the thermal history of
Mars. Figure 3 shows effective elastic thickness values derived for
martian terrains loaded (or that could have been loaded) in Noachian

or Hesperian times, as a function of the age derived from model-ages
based in crater counts; for representation clarity, Figure 3 shows only
the central value of the range of T, for each feature.

T, estimates proposed for Noachian times are lower than 25 km,
which are low relative to values obtained for post-Noachian terrains,
suggesting a comparatively high heat flow in that time. Regions
loaded (or that could have been loaded) in Late Noachian or Early
Hesperian times (corresponding to an age range between 3.8 and
3.6 Ga;Ref. 15), show a wide dispersion of T, values, generally higher
than for Noachian, and very high values appear. Otherwise, most of
T, values for Hesperian or Amazonian times are higher than ~40-
50 km, implying low heat flow and a significant contribution of the
upper mantle to the strength of the lithosphere. Indeed, as indicated
above, if the uppermost mantle is sufficiently cold then it contributes
to the strength and effective elastic thickness of the lithosphere, and
this results in an increased T, (e.g., Refs. 22,23). Moreover, if such a
strong mantle lithosphere is welded to the crust (which occurs if the
strength at the crust base is sufficiently high) then there is a drastic
increasing of T, with respect to the case with mechanically decoupled
crust and mantle lithosphere**.

Thus, the transition from low to high values of T, occurred around
the Noachian/Hesperian boundary, with a substantial increasing of
T, after 3.6-3.7 Ga. This transition is related to a substantial contri-
bution of the mantle to the strength of the lithosphere, and maybe to
crust-mantle lithosphere welding. Thermal evolution models***
have shown that a local substantial increasing in T, does not neces-
sarily require a change in heat flow decline; but the timing of T,
increasing can largely vary from a region to another as a consequence
of differences in the local lithospheric thermal regime* (including
variations in other local factors, such as curvature and crustal thick-
ness, should make more important this effect), but Figure 3 shows a
general increase in T, is a relatively narrow temporal window. The
timing for this dramatic lithospheric strength increasing is similar to
that for the inferred starting of Ur > 1 values. (Under appropriate
conditions a reduction of heat flow may simultaneously produce
interior heating of the convective mantle and cooling and thickening
of the lithosphere®.) In any case, this lithospheric strength increasing
was probably not simpler, since the dispersion of T, values for Late
Noachian or Early Hesperian times; this is not surprising, as litho-
sphere strength depends, among other factors, on crustal thickness
and curvature>*,

On the other hand, the frequently stated increasing of T, with age
through the martian history (e.g., Ref. 25) is not evident after Early
Hesperian, but uncertainty in loading time for most of T, estimates
for post-Noachian terrains preclude us of obtaining a definitive con-
clusion with respect to this point. The effective elastic lithosphere
loaded by the north polar cap, a nearly current structure, has been
inferred to be thicker than 300 km (Ref. 26), but the case for the
lithosphere under the south polar cap, whose present-day effective
elastic thickness could be as low as 110 km, is more poorly
constrained?.

Discussion

The time around the Noachian/Hesperian boundary was an epoch
when substantial changes in Mars occurred (Figure 4): there is
abundant evidence for a substantial decline in aqueous erosion/
degradation of landscape features**~*, indicating a reduction of the
amount or lifespan of liquid water on the surface; a change from
abundant phyllosilicate formation to abundant acidic and evaporitic
mineralogy occurred some time previously to the end of the
Noachian, indicating a transition from wetter to drier environmental
conditions*** a change from olivine-rich to olivine-pyroxene vol-
canism, indicating a modification in magma composition that could
be due to a reduction of mantle temperature®>** or to melts formed
under higher pressure, and therefore from a deeper magma source
below a thicker lithosphere*. Similarly, recent careful examinations
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Table 1 | Effective elastic thickness of the lithosphere derived for several martian terrains
Feature® Surface age (Periods)° Surface age (Ga)® T, (km)e
North Pole Current Current >300
South Pole Current Current >110
Valles Marineris (1) H-A 3.6-1.8 =60
Alba Patera (2) H-A <3.5 43-65
Arsia Mons (3) H (or A) ~3.5 (or lower) 20-35
Pavonis Mons (4) H (or A) ~3.6 (or lower) 50-100
Ascraeus Mons (5) H (or A) ~3.6 (or lower) 50-80
Olympus Mons (6) H-A 37125 >70
Elysium rise (7) H 3.7-3.0 36-45
Syrtis Maijor (8) H 3.7-3.0 10-15
Solis Planum (9) H 3.7-3.0 24-37
Isidis Planitia H 3.7-3.0 100-180
Amenthes, dichotomy (10) N-H 3.8-3.6 15-35
Aeolis region (11) N-H 3.8-3.6 10-15
Hellas S rim (12) N-H 3.8-3.6 20-120
Hellas W rim (13) N-H 3.8-3.6 <20
Amazonis Planitia (14) N-H 3.7-3.6 <45
Acidalia Planitia (15) N-H >3.6 13-30
Arcadia Planitia (16) N-H >3.6 <23
Thaumasia Highlands (17) N-H 3.8-3.6 19-23
Tyrrhena Patera (18) N-H 3.9-3.3 <28
Coracis Fossae (19) N-H 3.9-3.5 10-13
Acheron Fossae (20) N-H 3.9-3.6 9-11
Amenthes, highlands (21) N >3.8 <25
NE Arabia Terra (22) N >3.8 <16
Noachis Terra (23) N >3.8 <12
Terra Cimmeria (24) N >3.8 <12
Hellas Basin (25) N 4.1-3.9 <13
“The numbered features refer to those represented in Figure 3.
bAge relations based on Refs. 2, 17, 20, 49, 51, 56-60.
<For determination of T, ranges see Methods Sections.
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Figure 3 \ Effective elastic thickness of the lithosphere (T,) for martian terrains loaded (or that could have been loaded) in Noachian or Hesperian
times, as a function of age. Numbers referring to given geological features are as in Table 1. For clarity, for a given feature only the central T, value of the
range in Table 1 is shown. Line lengths indicate uncertainty related to loading age.
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Figure 4 | Time range for several important changes that occurred in
Mars around or close to the Noachian/Hesperian boundary.

of the age of isolated magnetic anomalies and of the size-age pattern
of magnetization of impact basins suggest a cessation of the martian
dynamo around 3.6-3.8 Ga (Refs. 35, 36); the usual vision of the
martian dynamo ceasing around 4.0-4.1 Ga, based on the demag-
netization (without posterior re-magnetization) caused by very large
impacts”, could be biased by the strong crustal thinning at large
impact places, that would eliminate the major part of magnetisable
crustal material and therefore would preclude a substantial re-mag-
netization at these places, even in presence of a magnetic field*.

I have shown here that Mars also experienced profound changes in
its internal dynamics in the same approximate time, including a
reduction of heat flow and a drastic increasing of lithosphere strength
and thickness. The reduction of heat flow, when compared with
global radioactive heat production, indicates a limited cooling (or
even a heating-up, consistent with the high temperature of formation
of shergottite meteorites) of the deep interior for post-Noachian
times. The drastic increasing of lithosphere strength indicates a cold
lithosphere (including a strong uppermost mantle and maybe crus-
tal-mantle lithosphere welding) above the inefficiently cooled (or
even heated) interior.

The, at least rough, time coincidence of the above mentioned
changes (Figure 4) seems unlikely to be accidental. Those changes
were most probably linked, suggesting profound interrelations
between interior dynamics and environmental evolution of this pla-
net. The reduction of the heat flow from the deep interior produced a
cooling and thickening of the lithosphere, evidenced by the drastic
increasing in effective elastic thickness deduced for the same approx-
imate time. This in turn would be consistent with a change in magma
mineralogy due to a magma source located below a thicker
lithosphere.

The rise of mantle temperature caused by an interior heating-up
would have reduced the thermal gradient between mantle and core,
weakening or even stopping core convection and dynamo®**. Even if
one accepts the earlier chronology for dynamo cessation, it could
have been the first sign of the big changes experienced by Mars
around the Noachian/Hesperian boundary. The ceasing of the
dynamo would eliminate the magnetic shielding of the atmosphere,
contributing to their severe erosion, and therefore heavily affecting
the climatic and hydrologic evolution of Mars®"*. As a consequence,
the erosion/degradation for liquid water would be greatly dimin-
ished, and a wetter environment permitting clay formation would
transition to more arid conditions favouring the formation of acidic
and evaporitic mineralogy.

Low post-Noachian heat flow values could be indicative of an
important reduction in mantle convection efficiency, which could
in turn be related to inefficient water recycling in a stagnant-lid
planet (e.g., Ref. 40). Thus, it is possible that internal water cycles
and environmental evolutions were profoundly interrelated
throughout the history of Mars. A more profound understanding
of these interrelations is necessary for our knowledge of the biological
potential of this planet, past, present, or even future.

Methods

Calculation of heat flows from effective elastic thickness. The effective elastic
thickness of the lithosphere can be converted to heat flow following the equivalent
strength envelope formalism. Here I use an implementation of this methodology
which takes into account the strength contributions from the crust and the
lithospheric mantle**!, in order to calculate upper limit heat flows for the Hesperian
for Olympus and Arsia Montes, and for the Early Hesperian for Elysium rise. For
calculating heat flows I use estimates of both the effective elastic thickness of the
lithosphere® and the curvature of the equivalent elastic layer’. I use values widely used
for Mars'~ for the Young’s modulus (100 GPa), Poisson’ ratio (0.25), crustal density
(2900 kg m~?) and mantle lithosphere density (3500 kg m~?). The admittance
modeling?®, from which derive the used effective elastic thicknesses, was performed for
a mean crustal thickness of 50 km, whereas the updated crustal thickness map of
Neumann et al.*> was constructed for a mean crustal thickness of 45 km. Thus, in my
calculations I assume local crustal thicknesses based on the regional trends of those
authors*’, but increased in 5 km, in order to be consistent with the values of the
effective elastic thicknesses: 55, 85 and 45 km for, respectively, Olympus Mons, Arsia
Mons, and Elysium rise. For calculating brittle strength I assume zero pore pressure,
which serves to put an upper limit to the obtained surface heat flow.

For creep parameters of the Martian crust I use the flow law of wet diabase*’, which
is consistent with extensive evidence of water-related geological activity in early Mars.
The ductile strength of the mantle lithosphere is calculated for dry olivine dislocation
creep rheology (a flow law obtained for artificially dried dunites**), which give an
upper limit to the surface heat flow, which is useful to obtain a lower limit for the Urey
ratio. A strain rate of 107'° s™* was used in the calculations, based on the faster strain
rates in the range usually considered for Mars**, which is again useful to obtain a heat
flow upper limit; to make a comparison, terrestrial strain rates are typically
~107'* s™" in Earth active continental interiors; using slowly strain rates would result
in lower heat flows and higher Urey ratios. The base of the mechanical lithosphere is
here defined as the depth at which the ductile strength reaches a low value of 10 MPa,
and below which there are no further significant increases in strength, although the
exact value selected does not produce significant changes in the calculations due to the
exponential dependence of ductile strength on temperature. The strength level at the
crust base determining if mantle lithosphere and crust are mechanically welded is
taken as 10 MPa; again, the exact value selected does not produce significant changes
in the obtained results.

For a complete description of this procedure see Ruiz et al.*".

Temperature profiles. I calculate temperature profiles following the procedure
described by Ruiz et al.’, and using crustal heat-producing elements (HPE)
abundances based on Mars Odyssey GRS measurements. The significant
homogeneity of elemental abundances measure by Mars Odyssey GRS suggests that
the Martian crust is much less geochemically varied than the Earth’s crust. Although it
is possible that crustal HPE abundances decrease with depth, a homogeneous
distribution gives higher surface heat flow and is therefore useful for my upper limit
calculations. For the mantle lithosphere I use HPE abundances 0.1 times, per unit
mass, the crustal average, consistent with a ratio between crustal and primitive mantle
HPE abundances higher than ~10 for Mars. Heat dissipation rates were calculated for
standard decay constants.

For the thermal conductivity I use a constant value of 2 W m™' K™ for the crust,
appropriate for intact (non-porous) basaltic rocks, and a temperature-dependent
thermal conductivity appropriate for olivine for the mantle lithosphere. The surface
temperature is assumed as 220 K, the present-day mean surface temperature on
Mars, which is consistent with the inference of low near-surface temperatures
deduced for most of the past 4 Ga from ALH84001 thermochronology*.

For a complete explanation and discussion of the values used in the calculations see
Ruiz et al.>.

Urey ratio calculations. I derive paleo-Urey ratios by calculating the ratio between
the total radioactive heat production, for a given time, obtained from the
compositional model of Mars of Wanke and Dreibus'” and standard decay constants,
and the surface heat flow derived from lithospheric strength. Thus, the paleo-Urey
ratio is given by H(age) M, 4,5/ (4TR ,4,sF), Where H(age) is the mean heat production
rate by mass unit, M,,,,s and R,,,,, are, respectively, the mass and the mean radius of
Mars, and F is the surface heat flows derived for a given feature and age. The so-
derived Ur values are in fact “equivalent” Ur values, since they are based on “local”
paleo-heat flows.

Ranges of effective elastic thickness of the lithosphere. Values of effective elastic
thickness have been compiled from literature>'®°¢?4¢-% In the case of features for
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which two or more different T, ranges have been proposed (as is the case for the
Tharsis volcanoes) I have consigned the range of elastic thicknesses consistent with all
the estimates, which are therefore considered equally valid.
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