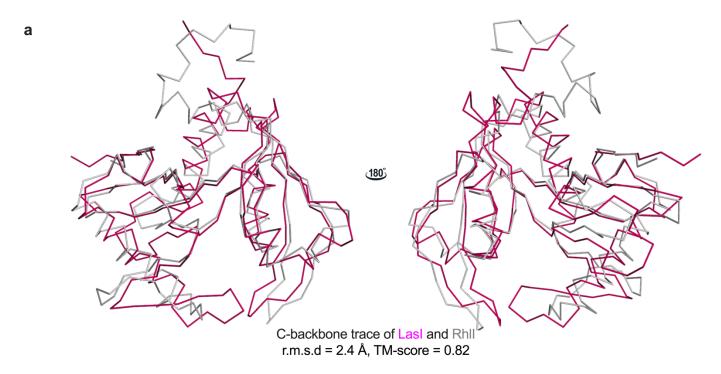
Supplementary Information

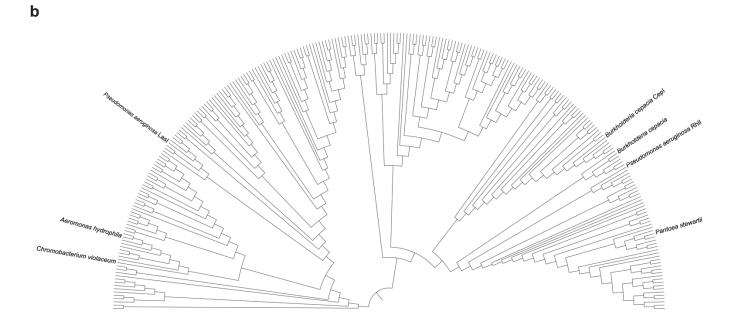
Quorum-sensing synthase mutations re-calibrate autoinducer concentrations in clinical isolates of *Pseudomonas aeruginosa* to enhance pathogenesis

Kayla A. Simanek¹, Megan L. Schumacher¹, Caleb P. Mallery¹, Stella Shen², Lingyun Li³, and Jon E. Paczkowski^{1,2}

¹Department of Biomedical Sciences, University at Albany, School of Public Health, Albany, New York, 12201, United States

²Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, 12208, United States


³Division of Environmental Health Sciences, Wadsworth Center, New York State Department of Health, Albany, New York, 12208, United States


Corresponding author: Jon Paczkowski; e-mail address: jon.paczkowski@health.ny.gov

Contents:

- I. Supplementary Figures
- II. Supplementary Tables
- III. Supplementary References

I. Supplementary Figures

Figure S1: Structural comparison of AHL-synthases. (a) Structural overlay of the C-backbone of Lasl (magenta) and Rhll (gray). The r.m.s.d. (root-mean-squared deviation) and TM-score were determined using the DockRMSD docking pose distance calculation¹. Protein pairs with a TM-score >0.5 are considered to be nearly the same fold. (b) Phylogenetic tree of Rhll orthologous sequences, highlighting the species *Chromobacterium violaceum*, *Aeromonas hydrophila*, *P. aeruginosa*, *Burkholderia cepacia*, and *Panotea stewartii*. The phylogenetic reconstruction was based on the alignment of 264 orthologous protein sequences obtained from OrthoDB v11².

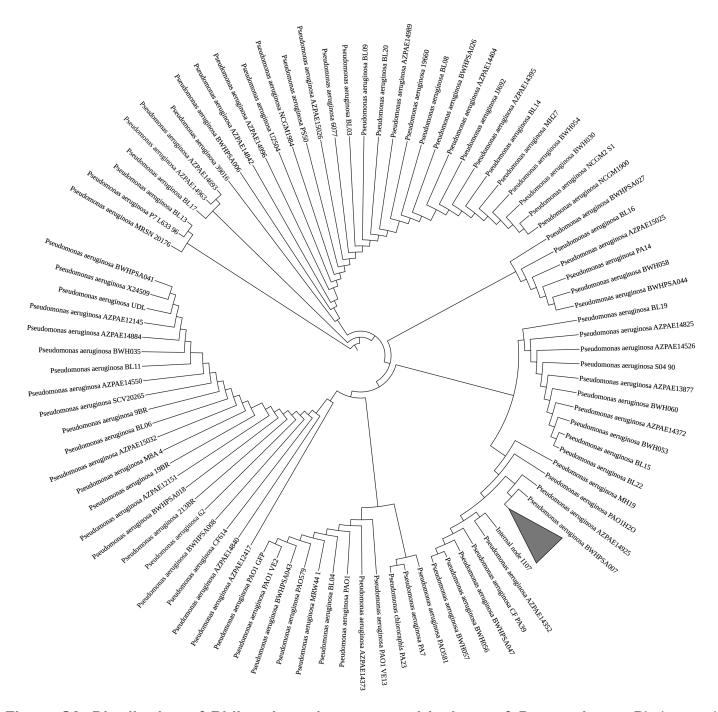


Figure S2. Distribution of RhII variants in sequenced isolates of P. aeruginosa. Phylogenetic reconstruction of RhII orthologues protein sequences among P. aeruginosa genomes (n = 295) publicly available in Pseudomonas Genome database³. Distribution of RhII variants in isolates: G62S 32/295 (10.8 %), D83E 245/295 (83.1 %), P159S 1/295 (0.01 %). Collapsed clade indicates 204 nodes with a branch length of zero.

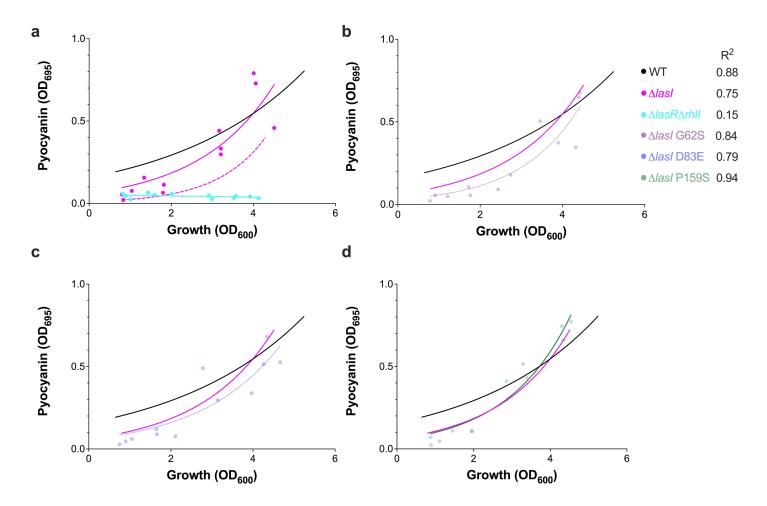


Figure S3: RhII variants do not alter pyocyanin production in a $\Delta lasI$ background. (a) Summary graph of pyocyanin time course experiment for $\Delta lasI$ (magenta dots) and $\Delta lasR\Delta rhII$ (cyan) strains. Measurements were taken at four time points over a 24-hour period (approximately 5, 10, 18 and 24 hours). The $\Delta lasR$ data (dotted magenta line) from Figure 2 is shown for reference. Time course data is plotted for b) $\Delta lasI$ RhII G62S (light purple); c) $\Delta lasI$ RhII D83E (light blue); d) $\Delta lasI$ RhII P159S (light green). One measurement was made per strain per time point. The experiment was performed in triplicate, resulting in the 12 total data points depicted per strain. Non-linear regression analyses were performed for every genotype and the best fits shown; best fit lines for WT (from Figure 2) (black) and $\Delta lasI$ (magenta) control strains were plotted and copied for reference in subsequent panels for the RhII variant strains.

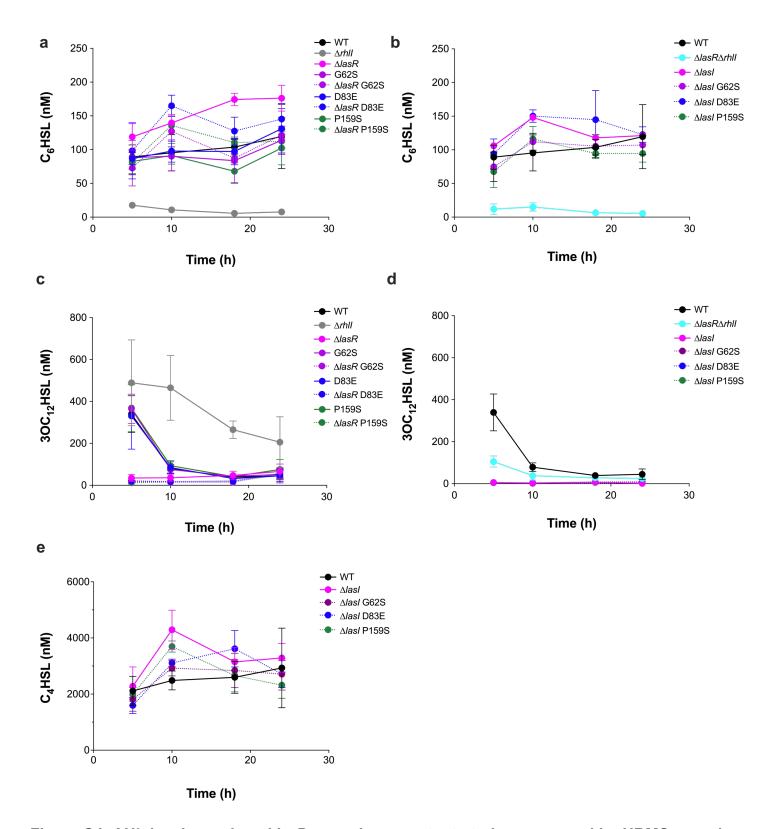


Figure S4: AHL levels produced in *P. aeruginosa* mutant strains measured by HRMS over time. Absolute concentrations of C_6HSL and $3OC_{12}HSL$ synthesized by RhII variants in a $\Delta lasR$ background (a,c) and a $\Delta lasI$ background (b,d), respectively. (e) C_4HSL concentrations synthesized by RhII variants in a $\Delta lasI$ background. Bars represent the mean of three biological replicates. Error bars represent standard deviations of the means of biological replicates.

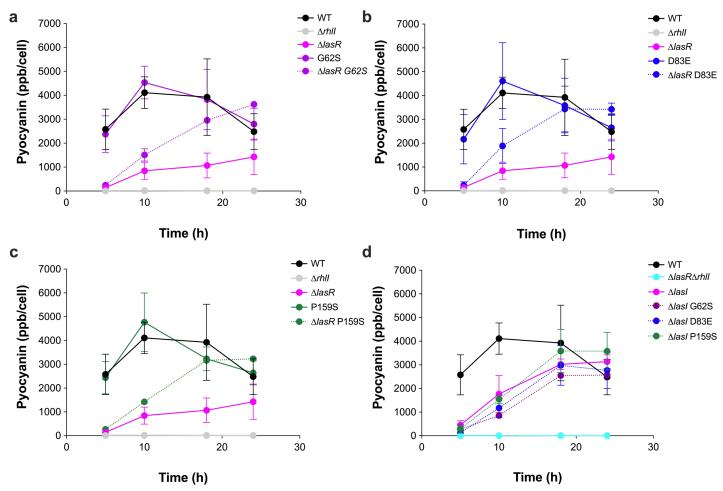


Figure S5: Pyocyanin production in *P. aeruginosa* mutant strains measured by HRMS over time. Absolute pyocyanin levels of PA14 control strains WT (black), $\Delta rhll$ (gray) and $\Delta lasR$ (magenta), as well as the (a) G62S variants, (b) D83E variants, (c) P159S variants in LasR+ (solid lines) and LasR-($\Delta lasR$, dashed lines) backgrounds. (d) Pyocyanin synthesized by Rhll variants in a $\Delta lasl$ background. All pyocyanin measurements are normalized to the OD₆₀₀ at each time point. Bars represent the mean of three biological replicates. Error bars represent standard deviations of the means of biological replicates.

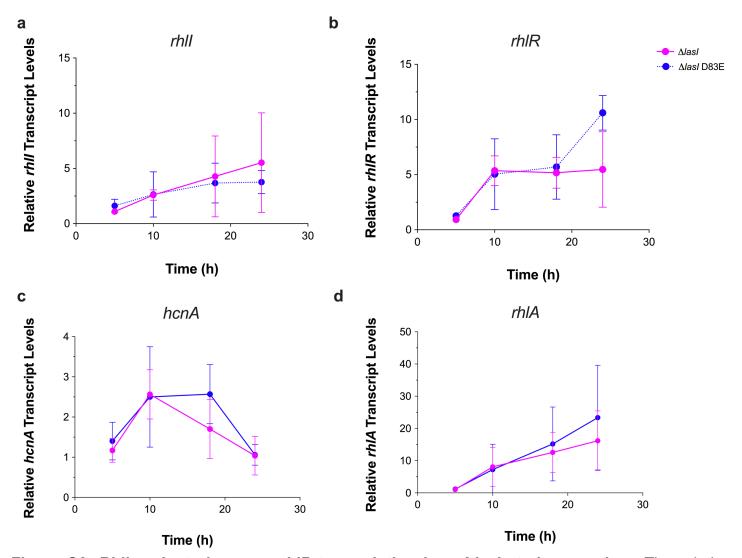


Figure S6: RhII variants increase *rhIR* transcription in a $\Delta lasI$ strain over time. The relative transcript levels of (a) *rhII* (b) *rhIR* (c) *hcnA*, and (d) *rhIA* in $\Delta lasI$ (magenta) and $\Delta lasI$ RhII D83E (blue) strains. Gene expression was normalized to *gyrA* in the $\Delta lasI$ strain at the 5-hour time point. Bars represent the mean of three biological replicates performed in technical duplicate. Error bars represent standard deviations of the means of biological replicates.

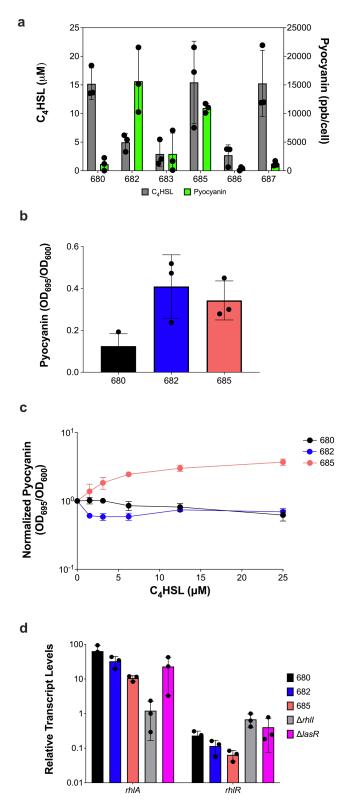


Figure S7: Virulence phenotype expression in clinical isolates is dependent on C₄HSL levels. (a) Pyocyanin and C₄HSL production of select clinical isolates with different *lasR* and *rhll* mutations measured by HRMS using cell-free supernatant of high-density cultures grown in phosphate-limiting media. (b) Absolute pyocyanin levels using absorbance measurements. (c) C₄HSL dose-response assay of clinical strains grown in phosphate-limiting media. (d) qRT-PCR of *rhlA* and *rhlR* in clinical strains and PA14 Δ *lasR* and Δ *rhlI*. Bars represent the mean of three biological replicates performed in technical duplicate. Error bars represent standard deviations of the means of biological replicates. Gene expression was normalized to *gyrA* for Δ *rhlI*. All experiments were performed in biological triplicate.

II. Supplementary Tables

Table S1. QS genotypes observed in the 56 clinical isolate cohort.

SRR number	Source	LasR truncations and deletions	LasR substitutions	RhII substitutions	Paczkowski lab strain ID
SRR13156973	urine isolate	1-239		D83E	
SRR13156785	wound isolate	1-239		WT	680
SRR13130527	urine clean catch isolate	1-239		D83E	
SRR13085620	urine isolate	1-239	R61S	D83E	
SRR13158623	urine isolate	1-239		D83E	
SRR13158585	knee isolate	1-239		WT	
SRR13156855	urine isolate	1-239		WT	
SRR13130543	tracheal aspirate isolate	1-239		WT	
SRR13130413	tracheal aspirate isolate	1-239		D83E	
SRR13156781	bronchoalveolar lavage isolate	1-172	V171R	D83E	
SRR13130516	blood isolate	1-239		D83E	
SRR13119849	urine isolate	1-239		D83E	
SRR13130514	sputum isolate	1-239		D83E	
SRR13088655	rectal swab	1-151, 153- 239		D83E	
SRR13156788	ulcer isolate	1-239		D83E	
SRR13158616	blood isolate	1-239		D83E	
SRR13158527	blood isolate	1-239		D83E, G62S	
SRR13158548	sputum tracheal aspirate isolate	1-87, 116- 239		D83E, G62S	
SRR13158481	urine isolate	1-239	L236P	D83E, G62S	683
SRR13158660	leg isolate	1-144, 153- 239		D83E, G62S	
SRR13156975	foot isolate	1-148		D83E, G62S	
SRR13158514	blood isolate	116-239		D83E, G62S	682
SRR13156968	urine isolate	1-239		D83E, G62S	
SRR13158501	tracheal aspirate isolate	1-59, 116- 239		D83E	
SRR13130517	sputum isolate	1-80, 116- 239		D83E	685
SRR13158622	sputum induced isolate	1-239		D83E	686
SRR13156878	sputum isolate	1-239		D83E	

SRR13158638	rectal swab	1-239	G162D	D83E	
SRR13158542	rectal swab	1-239	G162D	D83E	
SRR13158634	tracheal aspirate isolate	1-239	A231V	D83E, P159S	687
SRR13158656	urine isolate	1-239	G191D	D83E, P159S	
SRR13158546	rectal swab	1-239	G191D	D83E	
SRR13158537	abdomen isolate	1-239		D83E	
SRR13145343	urine isolate	1-239	1-4, 9-239	D83E	
SRR13156977	urine isolate	1-172		D83E	
SRR13156852	urine isolate	1-172		D83E	
SRR13158663	urine isolate	1-172		D83E	
SRR13156789	urine isolate	1-172		D83E	
SRR13158497	urine isolate	1-172		D83E	
SRR13156870	urine isolate	1-172		D83E	
SRR13156967	urine isolate	1-172		D83E	
SRR13145342	urine isolate	1-173	K173N	D83E	
SRR13158480	urine isolate	1-172		D83E	
SRR13158505	urine isolate	1-172		D83E	
SRR13156880	urine isolate	1-172		D83E	
SRR13158479	urine isolate	1-172		D83E	
SRR13156871	urine isolate	1-172		D83E	

 Table S2. Strains and plasmids used in this study.

Strain	Genotype	Plasmid	Resistance	Source
JPS0153	PA14 Δ <i>lasl</i>			Mukherjee et al. 2017 ⁴
JPS0154	PA14 Δ <i>rhll</i>			Mukherjee et al. 2017 ⁴
JPS0156	PA14 ΔlasR			Mukherjee et al. 2017 ⁴
JPS0222	WT PA14			Gift from George O'Toole
JPS0841	PA14 ΔlasR rhll (D83E)			this study
JPS0842	PA14 rhll (D83E)			this study
JPS0847	PA14 ΔlasR rhll (G62S)			this study
JPS0900	PA14 Δ <i>lasR</i> rhll (P159S)			this study
JPS0901	PA14 rhll (G62S)			this study
JPS0958	PA14 rhll (P159S)			this study
JPS0976	PA14 Δ <i>lasI</i> rhll (G62S)			this study
JPS1013	PA14 ΔlasR Δrhll			this study
JPS1014	PA14 Δlasl rhll (D83E)			this study
JPS1025	PA14 Δlasl rhll (P159S)			this study
JPS0737	E. coli DH5a	pEXG2-rhll	Gent	this study
JPS0806	E. coli DH5a	pEXG2-rhll (G62S)	Gent	this study
JPS0828	E. coli DH5a	pEXG2-rhll (P159S)	Gent	this study
JPS0830	E. coli DH5a	pEXG2-rhll (D83E)	Gent	this study

Table S3. Primers used in this study.

Name	Sequence	Purpose
oJP1320	ttatt aagctt TTCGAGCGCGAGGAAATCCG	rhll for pEXG2 (HindIII)
oJP1321	ttatt ggatcc AAATCGCGCATCAGGTTCGG	<i>rhll</i> for pEXG2 (<u>BamHI</u>)
oJP1326	CAACACGATATCCAGCCCCT	hcnA RT primer
oJP1327	CATTGAGCACGTTGAGCACG	hcnA RT primer
oJP1328	CCTGGCCGAACATTTCAACG	rhlA RT primer
oJP1329	TTTCCACCTCGTCGTCCTTG	rhlA RT primer
oJP1330	GAGGAACTGGAAGCGGTCAA	gyrA RT primer
oJP1331	CTTCCTCGGTGATCAGGTCG	gyrA RT primer
oJP1414	CATGGCACCTATCCCAAGGC	rhIR RT primer
oJP1415	GTCGCTCCAGACCACCATTT	rhIR RT primer
oJP1416	CCGAGCTGGGGATGAAGATA	rhll RT primer
oJP1417	CCGTTGCGAACGAAATAGCG	rhll RT primer
oJP1426	gccctggcggctcatggcgacga	rhll Gly62Ser g184a
oJP1427	tcgtcgccatgagccgccagggc	rhll Gly62Ser g184a
oJP1428	caggtaggcgaagacctccttgagcaggtag	rhll Asp83Glu <i>c249a</i>
oJP1429	ctacctgctcaaggaggtcttcgcctacctg	rhll Asp83Glu c249a
oJP1502	cttctgcggcgagccgaggcgct	rhll Pro159Ser c475t
oJP1503	agcgcctcggctcgccgcagaag	rhll Pro159Ser c475t

III. Supplementary References

- 1. Bell, E. W. & Zhang, Y. DockRMSD: An open-source tool for atom mapping and RMSD calculation of symmetric molecules through graph isomorphism. *J Cheminform* **11**, 1–9 (2019).
- 2. Kuznetsov, D. *et al.* OrthoDB v11: annotation of orthologs in the widest sampling of organismal diversity. *Nucleic Acids Res* **51**, D445–D451 (2023).
- 3. Winsor, G. L. *et al.* Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database. *Nucleic Acids Res* **44**, D646–D653 (2016).
- 4. Mukherjee, S., Moustafa, D., Smith, C. D., Goldberg, J. B. & Bassler, B. L. The RhIR quorum-sensing receptor controls Pseudomonas aeruginosa pathogenesis and biofilm development independently of its canonical homoserine lactone autoinducer. *PLoS Pathog* **13**, e1006504 (2017).