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Abstract: Natural plants from plateaus have been the richest source of secondary metabolites exten-
sively used in traditional and modern health care systems. They were submitted to years of natural
selection, co-evolved within that habitat, and show significant anti-fatigue-related pharmacological
effects. However, currently, no review on high-altitude plants with anti-fatigue related properties
has been published yet. This study summarized several Chinese traditional high-altitude plants,
including Rhodiola rosea L., Crocus sativus L., Lepidium meyenii W., Hippophaerhamnoides L., which are
widely used in the Qinghai–Tibet Plateau and surrounding mountains, as well as herbal markets in
the plains. Based on phytopharmacology studies, deeper questions can be further revealed regarding
how these plants regulate fatigue and related mental or physical disease conditions. Many active
derivatives in high-altitude medical plants show therapeutic potential for the management of fatigue
and related disorders. Therefore, high-altitude plants significantly relieve central or peripheral fatigue
by acting as neuroprotective agents, energy supplements, metabolism regulators, antioxidant, and
inflammatory response inhibitors. Their applications on the highland or flatland and prospects in
natural medicine are further forecast, which may open treatments to reduce or prevent fatigue-related
disorders in populations with sub-optimal health.

Keywords: high-altitude plants; natural medicine; anti-fatigue; plateau; disorder; sub-health

1. Introduction

In recent years, the challenges of sub-health, aging of the rising population, as well as
the prevalence of chronic diseases need perfect healthcare systems to support human fitness.
Meanwhile, major life stressors are among the strongest proximal risk factors for fatigue in
the pathological or sub-healthy state. Actually, numerous traditional Chinese medicines
(TCM) have been shown to exert significant anti-fatigue actions, mainly through regulating
the central nervous system, supplementing vital energy, and boosting muscle contractility,
which could provide additional natural compounds for management of fatigue [1]. As
for regulating physical fatigue, the multiple pharmacological activities of alpine plants
(especially Tibetan medicines) have been demonstrated, such as for Rhodiola rosea L. [2],
Crocus sativus L. [3], Lepidium meyenii (Walp.) [4], Hippophaerhamnoides L. [5], etc. Notably,
these plants have also been widely used in the prevention and treatment of fatigue-related
symptoms (i.e., weakness, bradykinesia, depressed mood) for a long time. The mechanism
underlying their effects remains largely unclear, but the provision of these supplements
has yielded improvement in aerobic performance and not only in high-altitude hypoxia
environments [6].

There is much evidence suggesting that the growth and development of plants in-
fluence the production of secondary metabolites [7], and the highlighted medicinal value
in a multitude of alpine plants might be related to thousands of years of adaptation and
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evolution in the high-altitude mountain ecosystem. Pharmacological studies have proved
that various active ingredients (i.e., polysaccharide, flavonoids, triterpenes, and alkaloids)
in Chinese medicinal plants might improve physical resistance to fatigue [8]: polysac-
charides could promote energy supply (glycogen synthesis and metabolism); flavonoids
could enhance antioxidant capacity; triterpenes and alkaloids could increase the reserva-
tion of glycogen substances and reduce the accumulation of metabolites. Notably, some
special functional ingredients are involved in managing the crucial process of fatigue,
such as salidroside [9], macaenes and macamides [10], sulforaphane [11], cordycepin [12],
crocin [13], etc. (Figure 1). Thus, high-altitude medicinal plants and fruits are receiving
increasing interest for their versatile pharmacological and biological activities [7].
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Figure 1. Structures of some special functional ingredients from high-altitude plants with anti-fatigue
effect. (a) Salidroside from Rhodiola rosea L., (b) macaenes and macamides from Lepidium meyenii W.,
(c) sulforaphane from cruciferous family (Brassica rapa L.), (d) cordycepin from Cordyceps sinensis
Sacc., (e) crocin from Crocus sativus L.

Much has been said recently about the use of Chinese traditional medicinal plants
in anti-fatigue, especially about those cultivated at high altitude. In this review, we in-
vestigated Zhonghua Bencao, Flora of China, Standard of Tibetan Medicines in Sichuan
Province (2020) and scientific databases, and then summarized 15 representative Chinese
traditional high-altitude plants with corroborating anti-fatigue efficacy (Figure 2). Most
of them are distributed among the Tibetan Plateau and surrounding mountains, as well
as other regions such as Yungui Plateau and Junín plateau (Peru). The detailed Latin
name, family, elevation, distributions, and main active ingredients were supplemented in
Table 1. Based on plant physiology and pharmacology, a biologically plausible, multi-level
theory was proposed that describes plant pharmacology mechanisms that link medical
plant adaptation to harsh environmental stress with human internal biological processes to
alleviate physical fatigue. Central to this intersectional adaptation theory is the hypothesis
that some functional components in high-altitude plants share similar routes of delivery
and modes of action in the management of physical fatigue. Based on plant pharmacology,
deeper questions can be revealed regarding how alpine plants regulate symptoms of fatigue
and relationships to mental or physical disease conditions. This work may also suggest
new opportunities for preventing and managing fatigue with high-altitude plants via multi-
targets (i.e., neuroprotection, metabolism regulation, anti-oxidation, or anti-inflammation)
and new directions.
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Figure 2. Distribution of high-altitude plants with anti-fatigue effect. Here, 15 representative high-
altitude plants with anti-fatigue effect are summarized, which are distributed among the Tibetan
Plateau and surrounding mountains (mainly across six provinces). The boundary of the Qinghai–
Tibet Plateau in the map is circled in blue (solid line). Color represents average elevation; the darker
the color, the higher the area.

Table 1. The anti-fatigue effects and main active ingredients from high-altitude plants.

No. Latin Name Family Elevation/m Distributions Used Part Main Active
Ingredients

1 Rhodiola rosea L. Crassulaceae 2800– Tibet, Xinjiang Root, rhizome Flavonoids, salidroside

2 Brassica rapa L. Brassica 3500- Tibet, Xinjiang,
Qinghai Root Polysaccharide,

isothiocyanates
3 Crocus sativus L. Iridaceae 5000- Tibet Filament Flavonoids, crocin

4 Lepidium meyenii W. Brassicaceae 3800- Tibet Root Polysaccharide,
alkaloids (macamides)

5 Hippophaerhamnoides L. Elaeagnaceae 800– Qinghai, Gansu Fruit Flavonoids
6 Saussurea involucrata Sch.-Bip. Compositae 4300- Tibet Flower Flavonoids

7 Cordyceps sinensis Sacc. Clavicipitaceae 5000- Tibet Complex Polysaccharide,
cordycepin

8 Ajuga ciliata Bunge Labiatae 2500– Xinjiang Whole grass Flavonoids, triterpenes
9 Arnebia euchroma Johnst. Boraginaceae 2500– Xinjiang Root Polysaccharide
10 Anthriscus sylvestris Hoffm. Gen Umbelliferae 4500- Liaoning, Sichuan Root Lactones

11 Polygonatum kingianum Liliaceae 700– Yunnan Root Polysaccharide,
flavonoids, triterpenes

12 Cimicifuga foetida L. Ranunculaceae 1700– Tibet, Liaoning,
Sichuan Root Triterpenes

13
Stachyurus himalaicus var.

himalaicus Hook. f. et Thoms. ex
Benth

Stachyuraceae 1500– Tibet, Yunnan,
Sichuan Stem pith Polyphenols, triterpenes

14 Camellia reticulata Lindl. Theaceae 2200– Yunnan Flower, leaves Polyphenols

15 Pedicularis longiflora var. tubiformis Pedicularis 2700– Tibet Whole grass Flavonoids,
boschnaloside

2. Habitat and Adaptation

Exposure to various natural environmental factors leads to subject stress in medical
plants, which may in turn affect multiple biological processes [14]. Plateau environmental
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stress on medical plants during their evolution has attracted considerable attention. Along
with increase in altitude, the environment becomes harsher, which results in nutritional
deficiencies, frost, ultraviolet radiation, and oxidative stress. Plant-related metabolites
are highly abundant “background” metabolites that are involved with plant physiology
changes, showing differential abundance under various stress conditions. There is much
evidence suggesting that growth and development of plants influence the production of
secondary metabolites [7], and the highlighted medicinal values in a multitude of alpine
plants might benefit from thousands of years of adaptation and evolution in high-altitude
mountain ecosystems. Shi et al. [15] observed that immune genes in Maca root were up-
regulated during daytime and stress tolerance genes were up-regulated from October to
December in the Yungui Plateau (3300 m above sea level). Alternative splicing (AS), coupled
to nonsense-mediated decay (NMD), might act as an essential mechanism for Maca in its
adaptation to a high-altitude ecosystem. These plants have to coordinate remobilization and
relocation of metabolites in an extreme climate with low oxygen concentration and strong
ultraviolet radiation in the Junín plateau (4138 m above sea level) [16]. Supplements of high-
altitude medicines or natural products containing characteristic ingredients are associated
with several other nutrients, so they seem to present ergogenic effects. Generally, soluble
sugars, fatty acids, and alkaloids in alpine plants are highly sensitive to environmental
stress. Nonetheless, it is not possible to attribute anti-fatigue properties to these ingredients
only. Recent technological developments have revealed adaptive mechanisms of medical
plants along the altitude gradient at the level of proteomics [17] and metabolomics [18].
Thus, high-altitude medicinal plants and fruits have attracted increasing interest for their
versatile pharmacological and biological activities [7].

3. Environmental Stresses of Natural Plants at High Altitude
3.1. Low Oxygen Concentration

Medicinal plants have been the richest source of secondary metabolites extensively
used in traditional and modern healthcare systems. The extreme environmental conditions
of high-altitude region (i.e., low oxygen concentration, high ultraviolet (UV) radiation,
extreme temperature, salinity, etc.) might affect plant growth and distribution [19]. Yet,
how medicinal plants in response to high-altitude environmental stresses is not sufficiently
studied [17]. In total, about 90 species of Crassulaceae family are native to the arctic regions
of Eurasia and North America, which are cold-tolerant and characterized by hypoxia and
strong UV radiation [20]. Compared with lowland cultivation, higher-altitude colonized
plants are exposed to rougher conditions. Their vegetation periods are shorter and produce
more rhizome than root biomass, with higher content of bio-active compositions such as
salidroside, tyrosol, rosarin, rosavin, and cinnamyl alcohol (trans-cinnamic alcohol) [21].

3.2. Ultraviolet Radiation

High-altitude plants might remobilize and relocate some metabolites between source
and sink organs [16]. In below-ground organs, the more bio-active ingredient of carbo-
hydrate, glucosinolates, phenolics compounds, etc. were synthesized by some possible
signaling pathways, which were reactive oxygen species (ROS)-related and/or UV-specific
photoreceptors. Docking and enzyme kinetic studies indicated that enzymes of flavonoid
biosynthesis pathway might confer plants with tolerance to UV-B and dehydration in
planta [22]. Therefore, plants activated UV-B-induced compounds, such as flavonoids,
antioxidants, etc., to protect the photosynthetic apparatus from permanent damage [23].

3.3. Extreme Climates

The extreme climate of high-altitude regions, defined by stressors such as low tem-
perature, limits plant growth and distribution, which affects the life cycle of plants [17].
Saussurea involucrata (Kar. et Kir.), a rare traditional medicinal plant, grows in high moun-
tains covered by snow in the Tibet and Tianshan Mountains areas of China [24]. It takes
more than 8 years to mature before harvest, under rather harsh climatic conditions. Differ-
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ent from the alpine plants above, Saussurea involucrata might be more involved in chilling
and freezing tolerance via the cold-response signaling pathways and molecular metabolic
reactions [25].

3.4. Other Factors

The plateau ecosystem is recognized as the most vulnerable to various factors, such
as natural ecological elements (symbiotic microbial community, herbivores) and anthro-
pogenic activities (metal toxicity, air pollution). An analysis [26] of days to flowering (DTF)
on Brassica species (Qinghai–Tibet Plateau) showed that the external environment affected
herbivore pressure, vegetative growth, and its genetic self-regulation. In addition, the
genome size (GS) of turnip from plateau environments (Qinghai–Tibetan Plateau) was
always smaller than that from lower latitudes (Yunnan Plateau), where 15.5% variation was
observed [27]. Thus, turnip was conventionally named with regional characteristics for
distinguishment (e.g., ‘Tibetan turnip’) and became a main source of food for inhabitants.
Compared with plain areas, higher regions with arid and stressful environments (e.g.,
Qinghai–Tibet Plateau and Xinjiang areas) have proven profitable for the accumulation of
the total glucosinolate in Brassica rapa L. [28,29].

4. Pharmacological Effects on Treatment of Fatigue-Related Disorders

High-altitude plants contain flavonoids, polysaccharides, phenols, triterpenes, alkaloids,
glycosides, and other main active ingredients (Table 1), and their pharmacological effects of anti-
fatigue are mainly concentrated in scavenging free radicals, antioxidants, anti-inflammatory,
and other effects such as neuromodulation and immune stimulation (Table S1).

4.1. Neuroprotective Agent: Adjustment of the Level of the Central Neurotransmitters

It is generally believed that central serotonergic and dopaminergic systems are fully
engaged in central fatigue and onset of exercise-induced fatigue [30]. Neurotransmitter
receptors, along with their transporters, are thought to be very important markers in
the fatigue process. The enhancement of brain dopamine (DA), noradrenaline (NA),
neural activity, and inhibition of the synthesis and metabolism of 5-HT could postpone
the occurrence of fatigue [31]. The positive effects of alpine plants on exercise capacity
declination via neuroprotection/stimulation during long-time exercise has been observed.
Macamides demonstrated similar medicinal properties to cannabinoids via CB1 receptor
activation in the central nervous system [32]. Rhodiola and salidroside are also well-known
for their neuroprotective and antidepressant activity [33]. Of course, alpine plants with
compatibility and multiple targets acted on not only the autonomic nervous system (ANS)
but also the hypothalamic pituitary–adrenal axis (HPA) to protect the central nervous
system and resist fatigue [34]. The HPA axis is an important regulator of neurotransmitters,
metabolites, and inflammatory cytokines. Sea buckthorn suppressed cortisol, adreno-
cortico-tropic-hormone (ACTH) levels, and increased DA and norepinephrine levels [35].

4.2. Energy Supply and Metabolism: Maintainance of Energy Homeostasis

Physiological fatigue can also be defined as a reduction in the force output and energy-
generating capacity of a body after chronic exposure to work or usual activities at the
same intensity. When exercise leads to exhaustion, peripheral fatigue and activation of
muscle afferents probably contribute to limiting exercise performance [36]. Therefore,
energy homeostasis maintains exercise capacity of the body, preventing exhaustion of
physical energy reserves such as adenosine triphosphate (ATP), glycogen, and fat. Most
traditional medicinal plants, especially those with polysaccharides such as are found in
Tibetan medicines, generally possess the capacity to improve glycogen stores by increasing
glycogen storage or delaying glycogen consumption, or both [5,8]. For example, ethanol
extract of Maca increased glycogen uptake in an adipocyte cell line by mediating phos-
phorylation of insulin receptor (IR) and phosphatidylinositol-3-kinase/protein kinase B
(PI3K/AKT) pathways [37]. Generally, anti-fatigue natural plants improve exercise mainly
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by increasing glycogen storage, but also by regulating related metabolism. Various studies
have demonstrated that supplements of high-altitude plants or active ingredients promote
the recovery of fatigue in mice by regulating glucose metabolism [38], lipid metabolism [39],
and energy metabolism [40]. The activation of amp-dependent protein kinase (AMPK)
is the axis of energy homeostasis, highly involved in the regulation of biological energy
metabolism. Some alpine plants [41] triggered AMPK catabolic pathways that produced
ATP, while inhibiting energy-consuming anabolic activities mediated by mTOR, such as
Chikusetsu saponin Iva (1400–4000 m) [42]. PPARγ and its coactivator-1α (PGC-1α), down-
stream genes of AMPK, were shown to have effects on glucose metabolism and energy
metabolism-related genes [43], which were stimulated by Rhodiola sacra [41], Maca [44],
or Saussurea involucrata (rutin) [45]. Recently, increasing evidence suggests that mitochon-
dria are essential for maintaining energy homeostasis. Extract of Maca (macamides) [37],
Rhodiola sacra (salidroside) [46], possessed marked anti-fatigue effects, which might en-
hance mitochondrial quality control, including mitophagy, mitochondrial dynamics, and
biogenesis in mice.

4.3. Removal of Accumulated Metabolites: Enhancement of Muscle and Organ Adaptation

Metabolic stress, a physiological process during exercise, accelerates the declination of
exercise capacity in muscle [47]. Blood lactate (BLA), blood urea nitrogen (BUN), and lactic
dehydrogenase (LDH) activity are important indicators of body fatigue. They interfere with
non-oxidative ATP production and glycogenolysis, protein and amino acid metabolism,
ATP generation capacity, and removal of lactic acid in skeletal muscle. High-altitude
plants have functions of resisting fatigue, where they reduce metabolites accumulation
and thus slow down exhaustion time and improve exercise endurance. The extract of
Rhodiola rosea [40], Maca [4], sea buckthorn [48], and other anti-fatigue alpine plants [49]
could clear the accumulation of BLA and BUN. Zhang et al. [10] found that macamides
could increase LDH and creatine kinase (CK) levels, effectively eliminating BLA and BUN
to attenuate skeletal muscle and myocardium damage. During high-intensity exercises,
other metabolites such as malondialdehyde (MDA), lactate, phosphate inorganic (Pi), and
ions of hydrogen (H+) are also produced to damage the muscle, causing the dissolution
of muscle cells. Supplementation of polysaccharides [50], and some flavonoids [45] and
alkaloids [51], significantly reduced CK levels and enhanced exercise endurance in mice.
Additionally, elevation of alanine aminotransferase (ALT) and aspartate aminotransferase
(AST), glutamic oxaloacetic transaminase (GOT), and glutamic pyruvic transaminase (GPT)
are predictors of heart and hepatocyte injury induced by intense physical activity. These
increasing cytosolic enzyme level indicate that dysfunction of organs has occurred or is
occurring. Chronic Rhodiola rosea extract supplementation significantly enhanced content
of liver glycogen, and reduced GOT and GPT levels in a dose-dependent manner [40].
Thus, exercise-induced metabolic stress is alleviated by anti-fatigue plants via multiple
metabolic networks that remove metabolite accumulation in a series of metabolic pathways,
consistent with “catastrophe” models of fatigue [52].

4.4. Free Radical Scavenger: Antioxidant Activity

Free radicals, such as hydroxyl radicals and superoxide anion radicals, are some
by-products produced in the process of metabolism of organisms. The generation and
removal are in a dynamic equilibrium under normal circumstance. However, when exer-
cising too vigorously, the acutely generated ROS are out of balance. Thus, free radicals
accumulate and lead to oxidative stress, which is partly regarded as a causal factor for
muscle damage and body tiredness [53]. Thus, exogenous sources of antioxidants are
vital to cope with oxidative stress-induced fatigue in organisms, apart from endogenous
antioxidant defense mechanisms [54]. Supplements of exogenous sources of antioxidants
from high-altitude plants have a positive significance in the repair of oxidative injuries. In
this way, physiological fatigue is eliminated via moving ROS, relieving oxidative stress, and
keeping the balance between ROS and antioxidant system. A large number of high-altitude
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medicines [46,55,56] prolonged mice exercise endurance via enzymatic antioxidant system,
including superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase
(CAT). Extracts of Maca could activate the phosphorylation of AMPK, which was an impor-
tant target for energy metabolism and treatment of fatigue [37]. In addition, Nrf2 is a new
cell antioxidant regulator, while sulforaphane can induce expression [38,57]. Salidroside
inhibited oxidative stress and inflammation by inducing Nox2 and Nox4 and reducing
Nrf2 and NQO1 in denervated muscles [58].

4.5. Inflammatory Response Inhibitor: Anti-Inflammatory Activity

Exhaustive exercise leads to excessive ROS production and accumulation and causes
rapid release of pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α),
interleukin-1β (IL-1β), and interleukin-6 (IL-6), damaging biomembranes, proteins, and
DNA. It is generally believed to be a convincing contributor to bodily dysfunctions, such
as inflammatory diseases, vascular disorder, cognitive impairment, aging, and chronic
fatigue [59]. High-altitude plants with anti-inflammatory activities, such as ethanoic extract
from Maca [60], significantly inhibited the activities of TNF-α, IL-6, and IL-1β, and allevi-
ated exercise-induced fatigue. In addition, macamides could also interacted the expression
of analog of exogenous anandamide (AEA) and receptor (CB1) [32], so that it might reduce
exercise-induced inflammatory nociception mediated by endocannabinoid [61,62]. IL-10 is
an anti-inflammatory cytokine that can reduce antigen presentation, negatively regulating
the activity of pro-inflammatory cytokines. For example, Rhodiola rosea [63] significantly po-
tentiated serum levels of IL-10, thus preventing attenuation of pro-inflammatory cytokines
as well as chemcytokines release. Furthermore, herbal supplements like sea buckthorn [64]
downregulated the master immune transcription factor nuclear factor kappa B (NF-κB).
Hou et al. [35] also found that sea buckthorn significantly inhibited the increase of serum
corticosterone and adrenaline levels through the HPA axis under chronic stress (exhausted
swimming, 10 min/day, 21 days). Meanwhile, mitogen-activated protein kinases (MAPK)
are another important factor in regulation of inflammation. Anti-inflammatory activity
of salidroside was partly linked to the blocking of the both NF-κB and MAPK signaling
pathways [65].

5. Conclusions and Prospects

Plateau environmental stress on natural plants during their evolution has attracted
considerable attention [66]. Along with an increase in altitude, the environment becomes
harsher, which results in nutritional deficiencies, frost, ultraviolet radiation, and oxidative
stress. Plant-related metabolites are highly abundant “background” metabolites that are
involved with plant physiology changes, showing differential abundance under various
stress conditions. Generally, soluble sugars, fatty acids, and alkaloids in alpine plants
are highly sensitive to environmental stress. Nonetheless, it is not possible to attribute
anti-fatigue properties to these ingredients only. Alpine plants tend to be potential ther-
apeutic strategies for greater tolerance to fatigue in traditional usage. The traditional
medicinal high-altitude plants are also known as “Daodi herb” in TCM, which refers to
geo-authentic/authentic/genuine or superior medicinal herbal material. There is grow-
ing evidence that these plants may be also an advantageous strategy for the treatment
of fatigue or sub-health, mainly through the aspects of neuroprotection and regulation
of neurotransmitter disorder, regulation of energy supply and metabolism, delaying the
accumulation of metabolites and promotion of mitochondrial function, antioxidant stress,
and inflammatory response inhibition. Thus, the anti-fatigue ability of these plants and
nutraceuticals might be highly correlated with stress acclimation.

In recent years, there are several TCM plant databases, such as TCM Systems Phar-
macology Database (TCMSP), and TCM Integrated Database (TCMID), that enhance and
expand the medicinal applications of plants in many ways. However, they are not specif-
ically designed for alpine plants and may lead to the absence of alpine plants. Thus,
a regional database with alpine plants is needed in the future, and all of them for any
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pharmacological activity potentially useful against fatigue and related disorders. How-
ever, much still remains to be done since an alpine plant database would be made up
of hundreds of unexploited medicinal plants. We expect that this review will provide a
scientific basis for understanding medicinal plants with anti-fatigue effects at high altitude.
These natural plants, products, or prescriptions deserve to be further clarified for market
positioning, which is critical for relieving the stress of fatigue and improving quality of life
and well-being in specific sub-health groups living on either plain or plateau.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
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