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Theories of visual confidence have largely been
grounded in the gaussian signal detection framework.
This framework is so dominant that idiosyncratic
consequences from this distributional assumption have
remained unappreciated. This article reports systematic
comparisons of the gaussian signal detection framework
to its logistic counterpart in the measurement of
metacognitive accuracy. Because of the difference in
their distribution kurtosis, these frameworks are found
to provide different perspectives regarding the efficiency
of confidence rating relative to objective decision (the
logistic model intrinsically gives greater meta-dʹ/dʹ ratio
than the gaussian model). These frameworks can also
provide opposing conclusions regarding the
metacognitive inefficiency along the internal evidence
continuum (whether meta-dʹ is larger or smaller for
higher levels of confidence). Previous theories
developed on these lines of analysis may need to be
revisited as the gaussian and logistic metacognitive
models received somewhat equivalent support in our
quantitative model comparisons. Despite these
discrepancies, however, we found that across-condition
or across-participant comparisons of metacognitive
measures are relatively robust against the distributional
assumptions, which provides much assurance to
conventional research practice. We hope this article
promotes the awareness for the significance of hidden
modeling assumptions, contributing to the cumulative
development of the relevant field.

Introduction

Confidence rating has long been in use since the
foundation of psychophysics (e.g., Egan & Clarke,
1956; Swets, Tanner, & Birdsall, 1955), and a currently
predominant view is that confidence represents

a metacognitive estimate of one’s own decision
correctness (e.g., Clarke, Birdsall, & Tanner, 1959;
Galvin, Podd, Drga, & Whitmore, 2003). Since the
advent of this research perspective, much interest
has been paid to the matter of decision confidence
in various research domains, including perception,
memory, learning, consciousness, social interaction,
and clinical applications (e.g., Guggenmos, Wilbertz,
Hebart, & Sterzer, 2016; Peters, 2021; Rollwage &
Fleming, 2021; Rouy, Saliou, Nalborczyk, Pereira,
Roux, & Faivre, 2021; Toscani, Mamassian, &
Valsecchi, 2021; Wixted & Wells, 2017).

Studies on decision confidence have been grounded
in a variety of mathematical models. These models
prescribe theoretically principled explanations of
confidence rating behavior, helping researchers infer
underlying operations for confidence construction (e.g.,
Denison, Adler, Carrasco, & Ma, 2018; Kiani, Corthell,
& Shadlen, 2014; Ratcliff & Starns, 2013). One of the
most fundamental frameworks for modeling confidence
rating behavior is signal detection theory (SDT) (e.g.,
Green & Swets, 1966; Macmillan & Creelman, 2005).
SDT posits that a certain degree of internal evidence
occurs in response to perceptual input, which is collated
to internal decision criteria to give rise to behavioral
outputs (i.e., perceptual decision and confidence rating).
Importantly, because of the existence of internal noise,
even repeated presentations of the same stimulus are
assumed to yield a variable degree of internal evidence
from time to time, which follows certain forms of
probability distribution (e.g., gaussian, logistic, Poisson,
etc.). Here, the modeling choice of distributional forms
involves some arbitrariness, and models of different
distributional assumptions predict different shapes of
receiver operating characteristics (ROCs). Thus one
is advised to be careful that conclusions of certain
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model-based analyses are robust against different
distributional assumptions (e.g., Falmagne, 1985;
Kellen, Winiger, Dunn, & Singmann, 2021).

Recent developments of SDT prescribe theoretically
principled methods for evaluating the observer’s
metacognitive accuracy, which reflects the degree to
which confidence ratings are diagnostic for decision
correctness (Fleming & Lau, 2014; Maniscalco &
Lau, 2012; Maniscalco & Lau, 2014). Metacognitive
accuracy is estimated based on a so-called type 2 hit rate
(type 2 HR, proportion of high confidence responses
on correct decisions) and a type 2 false alarm rate (type
2 FAR, proportion of high confidence responses on
incorrect decisions). Hereafter, we use the term type 2
decision referring to metacognitive decision on one’s
own decision correctness (e.g., confidence rating, point
wagering, opt-out decision, etc.), and type 1 decision to
mention the objective decision regarding external world
states (e.g., Yes/No decision, multiple-alternative forced
choice, etc.).

The cumulative type 2 HRs and FARs can be
summarized in type 2 ROC space. The type 2 ROC
demonstrates how well confidence rating discriminates
between correct and incorrect type 1 responses,
representing the observer’s metacognitive accuracy.
Furthermore, under some standard SDT assumptions,
model fitting to type 2 ROC data can provide an
estimate of metacognitive accuracy in terms of the
normalized distance of two internal distributions that
would have led to the observed type 2 ROC. This is
a model-based measure of metacognitive accuracy,
known as meta-dʹ (Maniscalco & Lau, 2012, 2014).
As well known, SDT also gives a parametric measure
of type 1 accuracy termed dʹ. These two measures are
known to be directly comparable, and thus studies have
often used performance indices such as meta-dʹ − dʹ
and meta-dʹ/dʹ (hereafter called “m-ratio”) to contrast
observer’s type 1 versus type 2 information processing
efficiency. For example, the pattern of meta-dʹ = dʹ
would be observed if both type 1 and type 2 decisions
are made based on the same decision variable prescribed
by a classic SDT model.

Metacognitive inefficiency is a default
operation?

Contemporary theoretical understandings of visual
metacognition have largely been shaped through the
comparisons of meta-dʹ against dʹ. Since the advent
of the meta-dʹ measure, studies have formed a rough
consensus that empirically observed meta-dʹ tends
to be smaller than dʹ, a pattern of what we can call
hypo-metacognitive sensitivity (Fleming & Daw, 2017;
Maniscalco & Lau, 2012; Shekhar & Rahnev, 2020).
Based on this observation, researchers have reached a
theoretical view that internal evidence used for type 1

decision is further disrupted in type 2 calculation, or
that the type 2 decision system does not have full access
to the information used in type 1 decision. Either of
the scenarios signifies the information loss at the type
2 processing level, and the multitude of components
leading to this metacognitive inefficiency is theorized
into a psychological construct known as metacognitive
noise (e.g., Shekhar & Rahnev, 2020). Until now,
metacognitive inefficiency relative to type 1 processing
(m-ratio < 1) has often been supposed as a default
hypothesis, whereas the pattern of m-ratio > 1 (known
as hyper-metacognitive sensitivity) is considered an
exceptional scenario that requires special considerations
(e.g., Fleming & Daw, 2017; Shekhar & Rahnev, 2021).

Here, however, we would like to emphasize that
this theoretical view has been built upon a particular
distributional assumption; a predominant proportion
of past studies have employed the gaussian SDT
framework. One justification for the gaussian
assumption comes from the central limit theorem. The
gaussian assumption can be introduced, if not precisely,
by thinking of internal sensory events composed of a
multitude of independent subevents (Green & Swets,
1966, chapter 3). The gaussian distribution can also
be introduced in relation to the maximum entropy
principle (e.g., Norwich, 1993, chapter 8). Although
these provide some credit to this framework, it is
known that many forms of ROCs that are consistent
with the gaussian distribution are also well captured by
other probability distributions, and thus the gaussian
assumption is ultimately unprovable (see Rouder,
Pratte, & Morey, 2010). Therefore studies have advised
against excessive dependence on particular modeling
assumptions (Falmagne, 1985; Kellen & Klauer, 2014;
Kellen & Klauer, 2015; Kellen et al., 2021).

These backgrounds have motivated us to
systematically evaluate the behavior of the gaussian
SDT in comparison to another influential decision-
making framework, the logistic SDT. The logistic
distribution has a firm theoretical basis in decision
science as it is derived from the famous Luce’s choice
axiom (Luce, 1959, pp. 38–42; Macmillan & Creelman,
2005, pp. 94–104).1 The logistic SDT has been actively
in use for psychophysics (e.g., DeCarlo, 1998; Kornbrot,
2006; Pleskac, 2015), and there has been an emerging
interest in its application to type 2 ROC analyses
(Kristensen, Sandberg, & Bibby, 2020). Earlier literature
stated that behaviors of the gaussian and logistic SDTs
are practically indistinguishable (Luce, 1959), and
they are unlikely to support discrepant conclusions
in empirical analyses (Macmillan & Creelman, 2005).
However, as we shall demonstrate later, the difference
in their distributional forms has a considerable impact
on the relative magnitude of meta-dʹ against dʹ. In
an extreme case scenario, the gaussian and logistic
SDTs even provide qualitatively opposite conclusions
regarding the observer’s metacognitive efficiency (i.e.,
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m-ratio > 1 or < 1), which would have significant
implications for the theories of metacognition.

ZROC curvilinearity and criterion-dependency
of metacognitive accuracy

Cumulative reports of gaussian m-ratio < 1 have led
to the wide acceptance of the concept of metacognitive
noise contamination. Then, studies have attempted to
better characterize the underlying processes that cause
metacognitive inefficiency (Samaha, Iemi, & Postle,
2017; Shekhar & Rahnev, 2020; Shekhar & Rahnev,
2021; Spence, Mattingley, & Dux, 2018; Zylberberg,
Roelfsema, & Sigman, 2014). Shekhar and Rahnev
(2021) have shown that empirical z-transformed type 1
ROCs consistently exhibited downward curvilinearity, a
trend that cannot be captured by the standard gaussian
SDT model (for zROC analysis in general, see Kellen
& Klauer, 2018). They considered this trend as an
indication of greater metacognitive inefficiency (lower
metacognitive accuracy) toward higher confidence levels
and proposed a mechanistic model that incorporates
log-normally distributed metacognitive noise.

Here, again, we emphasize that their theoretical
perspective postulates the gaussian SDT framework
(z-transformation already implies gaussian underlying
distributions). Downward curvature in zROC could
appear without the incorporation of metacognitive
noise if non-gaussian distributions are assumed at the
type 1 level. In fact, this gave us a major motivation for
considering the logistic distribution, as it has greater
kurtosis (i.e., sharper peak and heavier tails) than the
gaussian distribution, which, as we shall demonstrate
later, naturally gives downward curvilinearity to zROC.
This means that gaussian and logistic SDT analyses on
the same dataset could reveal qualitatively discrepant
conclusions on the operation of metacognitive
inefficiency.2

These things considered, the present study compared
the gaussian and logistic SDTs in their relevance
to: (1) prevailing observations of m-ratio < 1
(i.e., metacognitive inefficiency relative to type 1
decision) and (2) zROC downward curvilinearity (i.e.,
metacognitive inefficiency along the internal evidence
continuum). First, through computer simulations,
we would systematically characterize the gaussian
and logistic SDTs regarding their ROC predictions
and parameter estimations. Then, we would compare
these models in light of a large dataset (Rahnev,
Desender, Lee, Adler, Aguilar-Lleyda, Akdoğan,
Arbuzova, Atlas, Balcı, Bang, 2020) and evaluate the
consequences resulting from the different distributional
assumptions. Last, we would discuss how one could
pursue constructive research practice based on the
present findings.

Simulations with gaussian and
logistic SDTs
In what follows, we use the term type 1 SDT models

to refer to the traditional signal detection models
that do not have a meta-dʹ parameter (i.e., meta-dʹ is
constrained to be equal to dʹ). On the other hand, we
refer to the models that have a meta-dʹ parameter as
meta-SDT models. Type-1 SDT models serve a baseline
for comparison, showing default model behaviors
without additional type 2 processes.

Figure 1 illustrates an example of the gaussian and
logistic type 1 SDT models. The red and blue functions
represent the distribution of internal evidence under
two different external world states, S1 and S2. Upon an
observation of an evidence sample, an observer makes
a “S1” response if it falls left of the type 1 decision
criterion (tick line in the middle) and responds “S2”
otherwise.

We have simulated the gaussian and logistic
type 1 SDT models, setting low, middle, and high
performance conditions. Specifically, for the type 1
gaussian model, the difference of the means of S1
and S2 distributions was set at 1.00, 1.50, and 2.50
for the low, middle, and high performance conditions,
whereas the standard deviation was set constant at 1
for all the conditions. For the type 1 logistic model, the
difference of the means was set at 1.60, 2.44, and 4.28
for the three performance conditions, whereas the scale
parameter was set constant at 1, which approximately
corresponds to 1.81 in the unit of standard deviation.
An unbiased type 1 decision criterion was set at
the intersection of the two distributions for all the
conditions. These parametrizations were determined so
that the proportion of correct type 1 responses would
be equated between the gaussian and logistic models
at 0.69, 0.77, and 0.89 respectively for the low, middle,
and high performance conditions; this ensured that
the midpoint of the type 1 ROC (10th point from the
left in Figure 2) for these models would be completely
overlapped in each condition.

In each of the simulation conditions, we first
simulated 400,000 type 1 decisions under the gaussian
and logistic type 1 models. Then, we obtained 10 levels
of confidence rating for each of those trials given S1
or S2 responses. In doing so, we used 10 quantiles of
evidence samples as confidence criteria respectively
for S1 and S2 responses. This procedure gives 19
cumulative data points in type 1 ROC space under each
performance level.

Figure 2A shows the type 1 ROCs predicted by
the type 1 SDT models. Colored dots demonstrate
predictions of the type 1 logistic SDT and dashed lines
show predictions of the type 1 gaussian SDT. Here,
these ROCs can be interpreted as the observers’ default
performance characteristics under meta-dʹ= dʹ. Distinct
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Figure 1. Type-1 gaussian SDT model (A) and type 1 logistic SDT model (B) under the middle performance condition (proportion of
correct type 1 responses is matched between the models at 0.77). The models are depicted in their default scaling (standard
deviation = 1 for the gaussian SDT and scale parameter = 1 for the logistic SDT).

Figure 2. Type-1 ROCs derived from the type 1 gaussian SDT (dashed lines) and the type 1 logistic SDT (dots). The proportion of correct
type 1 responses was matched between the models at each of the three performance levels. These curves demonstrate the models’
default performance characteristics at m-ratio = 1.

ROCs can be seen between the models, reflecting
the different shapes of the underlying distributions
(logistic distribution has larger kurtosis). On a closer
look, the gaussian type 1 ROCs are more protruded
outward than those of the logistic type 1 SDT, even
though we made the point 10th from the left, which is
solely determined by the type 1 accuracy, completely
overlapped between the models. Importantly, from the
meta-SDT perspective, greater protruding curvature is
indicative of greater metacognitive accuracy, whereas
the middle data point is a pure representation of type
1 accuracy (e.g., type 1 ROC becomes a polygonal line
concatenating the middle type 1 data point with [0, 0]
and [1, 1] under zero metacognitive sensitivity). This
means that compared to the logistic meta-SDT, the
gaussian meta-SDT requires higher type 2 HR or lower
type 2 FAR to yield the parametric pattern of meta-dʹ
= dʹ under a certain type 1 accuracy. Accordingly, the

pattern of m-ratio = 1 cannot be seen as the absolute
benchmark for declaring metacognitive inefficiency as it
is dependent on the auxiliary distributional assumption;
the currently prevailing view that metacognition is
not as informative as standard SDT prescribes could
be underpinned by the somewhat arbitrary use of the
gaussian modeling perspective.

The difference of the two models becomes more
pronounced in zROC space (Figure 2B). By its
definition, the gaussian type 1 SDT always gives linear
zROC (e.g., Kellen & Klauer, 2018). Reflecting its
distributional shape (sharp peak and heavy tails), the
logistic type 1 SDT demonstrates distinctive downward
curvilinearity, which becomes more salient as a function
of the performance level. Again, the middle type 1 data
point (10 from the left) was completely overlapped
between the models. Yet, the other data points, which
reflect the observers’ metacognitive accuracy, fell lower
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Figure 3. Meta-dʹ estimated at different confidence criteria under the logistic meta-SDT (A) and the gaussian meta-SDT (B). The
horizontal axis shows confidence criteria ordered from lowest to highest. Logistic estimates are shown at approximately 1.81 times
the scale than gaussian estimates.

dʹ Meta-dʹ m-ratio

Low condition
Gaussian meta-SDT 0.993 0.754 0.759
Logistic meta-SDT 1.602 1.590 0.992

Middle condition
Gaussian meta-SDT 1.486 1.160 0.780
Logistic meta-SDT 2.431 2.431 1.00

High condition
Gaussian meta-SDT 2.505 2.103 0.839
Logistic meta-SDT 4.282 4.316 1.008

Table 1. Estimates of the meta-SDT models based on the logistic
simulation data. Logistic estimates are shown at approximately
1.81 times the scale than gaussian estimates.

for the logistic than gaussian models (i.e., the logistic
SDT framework allows lower type 2 HR and/or greater
type 2 FAR than the gaussian SDT to demonstrate the
parametric pattern of m-ratio = 1).

Shekhar and Rahnev (2021) found downward
curvature in empirical zROCs, and, under the gaussian
SDT perspective, proposed the view that greater
metacognitive noise occurs toward the ends of the
internal evidence continuum. However, the current
simulation demonstrates that modeling perspectives
other than the gaussian SDT could naturally explain
the zROC curvilinearity without incorporating extra
metacognitive noise components. Furthermore, it is
even possible that analyses based on non-gaussian
perspectives could reveal qualitatively different
criterion-dependency of metacognitive accuracy than
the one proposed in the previous literature.

To ascertain these insights, we have fitted the gaussian
and logistic meta-SDT models to the aforementioned
simulation data sampled from the type 1 logistic SDT
(Table 1). As expected, the logistic meta-SDT showed a
larger m-ratio than the gaussian meta-SDT, retrieving
the original constraint of the type 1 logistic SDT
(meta-dʹ = dʹ). The gaussian meta-SDT estimated
meta-dʹ to be smaller than dʹ even though no type 2
disruption was implemented in the logistic simulation
data. Furthermore, we have evaluated metacognitive
accuracy at each location of the nine confidence criteria
(see later sections for methodological details). Estimates
of the logistic meta-SDT were invariant against the
location of confidence criteria, constantly showing
m-ratio around 1 (Figure 3A). However, the gaussian
meta-SDT estimated metacognitive accuracy to become
poorer for higher confidence levels (Figure 3B),
suggesting as if there is growing contamination of
metacognitive noise towards the ends of the evidence
continuum. These simulation results demonstrate that
there is much room for reconsidering the hitherto
established understanding of visual metacognition
from alternative perspectives than the gaussian SDT,
motivating the following large-scale analyses.

Analyses on the confidence
database

We have fitted the gaussian and logistic SDT models
to large datasets from the confidence database (Rahnev
et al., 2020), whereby we aimed to evaluate the generality
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Figure 4. Empirical type 1 ROCs in original space (A) and z-transformed space (B). Data from individual participants were aggregated
for each of the 105 cases. The color indicates the cognitive domain to which each case belongs.

of the knowledge that empirical m-ratio tends to be
less than 1 and that metacognition becomes worse at
higher confidence criteria. We have also been interested
in quantitative model comparisons. The SDT models
considered here are supposed to be measurement tools
rather than precise process models of metacognition.
Thus, our model comparisons did not aim to determine
whether the true underlying distribution is gaussian or
logistic. Rather, the model comparisons were made to
ascertain the validity of the model-based measurements
(i.e., measurements made on a poorly fitting model are
considered to be invalid) (Myung & Pitt, 2018).

Following methodological considerations from past
studies (Lee, Ruby, Giles, & Lau, 2018; Maniscalco
& Lau, 2014), we have only included genuine two-
alternative forced-choice (2AFC) data in the present
analyses.3 Here, the genuine 2AFC refers to the task
design which offers two explicit stimulus intervals on
every trial and requires participants to identify which
of the two includes the target stimulus (Macmillan
& Creelman, 2005, chap. 7). In order to evaluate
metacognitive accuracy’s criterion-dependency, we have
only targeted experiments that employed four or more
levels of confidence rating. The following analyses were
conducted on the free statistical language R (Version
4.0.5).

For those studies that used a continuous confidence
scale, we have used a round() function on R to obtain
ordinal confidence rating data; this function transforms
continuous values to the nearest integer according to
the IEC 60559 standard. For example, continuous
values distributed between 0 and 10 were converted into
11-step integer values, which we have counted as an
ordinal confidence scale of 11 levels. When necessary,
an original continuous scale was divided or multiplied

by a multiple of 10 before the round() function was
applied (e.g., continuous values ranging from 50 to
100 were first divided by 10 and rounded into six-step
integer values [5, 6, 7, 8, 9, 10], which was deemed an
ordinal confidence scale of six levels [see Supplementary
Material 1]).

For the datasets that include categorical experimental
manipulations (e.g., low vs. high difficulty), we
have counted each condition as a separate case and
independently fit the SDT models. In the cases of
trial-by-trial continuous manipulations (e.g., jittered
contrast across trials), we have fitted the models with
aggregating the trials over different stimulus intensities
(see Supplementary Materials 1 and 2 for further
details).

Based on the data selection procedure, we have
identified 105 relevant cases of 2AFC experimental
conditions (70 from perception, 19 from memory, and
16 from other cognitive domains), which include 5160
cases at the individual participant level (Supplementary
Material 1). Figure 4 shows empirical type 1 ROCs
for the 105 cases, where responses from individual
participants are aggregated in each case. As is usual in
2AFC data, these type 1 ROCs are highly symmetrical
about the major diagonal, demonstrating suitability for
the meta-SDT analysis. Importantly, many of the ROCs
indicate downward curvature in the z-transformed
space, replicating the key observation from Shekhar
and Rahnev (2021); quadratic regressions revealed
73 cases of significant downward curvature, 11 cases
of significant upward curvature, and 21 cases of
insignificance.

In what follows, we fit four different SDT models to
individual participants’ data. These models differ in the
distributional assumption (gaussian vs. logistic), as well
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as the presence/absence of the meta-dʹ parameter (type
1 SDT vs. meta-SDT). Before numerical model fittings,
we first calculated type 1 criterion (θ ) and sensitivity
(dʹ) according to the following equations (Kristensen
et al., 2020), where HR1 and FAR1 are empirical
type 1 hit and false alarm rates, and z() represents a
transformation with the inverse gaussian cumulative
distribution function.

θgaussian = − z (FAR1)

d ′
gaussian = z (HR1) − z (FAR1)

θlogistic = − log
(

FAR1
1 − FAR1

)

d ′
logistic = log

(
HR1

1 − HR1

)
− log

(
FAR1

1 − FAR1

)

Then, we fit these models to type 2 ROC data by
the maximum likelihood method while constraining
the relative type 1 criterion (�) as follows (see Barrett,
Dienes, & Seth, 2013; Maniscalco & Lau, 2014):

�gaussian = θgaussian

d ′gaussian

�logistic = θlogistic

d ′logistic

Meta-dʹ and confidence criteria were estimated in
the meta-SDT model fitting. On the contrary, the
type 1 SDT model fitting only estimated confidence
criteria under the constraint of meta-dʹ = dʹ, which
corresponds to assuming that type 1 and type 2
decisions are made on the same decision variable (i.e.,
no contamination of metacognitive noise or acquisition
of additional metacognitive evidence). Thus the type 1
SDT models serve as null models to determine whether
one needs the extra meta-dʹ parameter to sufficiently
explain participants’ metacognitive behavior. Namely,
by comparing the type 1 and meta-SDT models, one
can test the presence of metacognitive inefficiency
without specifying the exact mechanism underlying
its occurrence. Because the type 1 parameters were
analytically calculated through the above equations,
goodness-of-fit indexes reported below are only
pertaining to type 2 ROC fittings.

In the fitting of type 2 data, one needs to consider
two sets of equations: one for type 2 performances for
S1 responses and the other for S2 responses. Under
the gaussian SDT models, the S1-response-specific
type 2 hit rate (hr2S1) and the S1-response-specific
type 2 false alarm rate (far2S1) were defined by the
following equations, where τ gaussian_S1 is the confidence

criterion on the S1 response side, meta-dʹgaussian is
the gaussian meta-dʹ, �0 is the cumulative standard
gaussian distribution function, and �meta-dʹ_gaussian is
the cumulative gaussian distribution function with the
standard deviation of 1 and the mean value that is equal
to the gaussian meta-dʹ. In the fitting of multilevel
confidence rating data, τ gaussian_S1 becomes a vector
containing a series of confidence criteria, and hr2S1 and
far2S1 are defined at each location of those.

hr2S1 = �0
(
τgaussian_S1

)
�0

(
meta − d ′gaussian × �gaussian

)

f ar2S1 = �meta−d ′_gaussian
(
τgaussian_S1

)
�meta−d ′_gaussian

(
meta − d ′gaussian × �gaussian

)

The S2-response-specific type 2 hit rate (hr2S2)
and the S2-response-specific type 2 false alarm rate
(far2S2) were defined as follows, where τ gaussian_S2 is the
confidence criterion (or criteria) on the S2 response
side.

hr2S2 = 1 − �meta−d ′_gaussian
(
τgaussian_S2

)
1−�meta−d ′_gaussian

(
meta− d ′gaussian × �gaussian

)

f ar2S2 = 1 − �0
(
τgaussian_S2

)
1 − �0

(
meta − d ′gaussian × �gaussian

)

These four equations collectively provide the
estimated probability for all the response categories;
2AFC data with n levels of confidence are classified
into 2 (S1 or S2 responses) × 2 (type 2 hit or type 2 false
alarm) × n (confidence levels) response categories (e.g.,
S1-response-specific type 2 hit rate with the confidence
level of 3). We have estimated the parameters by
maximizing the log-likelihood over all the response
categories, which is defined in the following equation.
Here, n, r, and t refer to the possible values of confidence
level, response class (S1 or S2), and outcome type (hit
or false alarm). Consequently, this equation represents
the sum of the products between the logarithm of the
estimated probability of each response category and
the observed response frequency for the corresponding
category (for further technical details, see Barrett et al.,
2013; Maniscalco & Lau, 2014).

LL =
∏
n, r, t

log (p (Con fn |Respr,Typet ))

× Freq (Con fn |Respr,Typet )
Under the logistic models, the response-specific type

2 hit and type 2 false alarm rates were defined as follows,
where meta-dʹlogistic is the logistic meta-dʹ, �0 is the
cumulative logistic distribution function with the scale
parameter of 1 and the location parameter of 0, while
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dʹ Meta-dʹ m-matio Case converged Case above-chance

Gaussian meta-SDT 1.390 1.219 0.948 4056/5160 3818/4056
Logistic meta-SDT 2.346 2.269 1.052 4355/5160 4127/4355
Gaussian type 1 SDT 1.370 1.370 1 4208/5160 4146/4208
Logistic type 1 SDT 2.313 2.313 1 4442/5160 4376/4442

Table 2. Model fits to individual data. Performance measures were averaged across the cases where each model converged and
showed above-chance type 1 and type 2 performances. Logistic estimates are shown at approximately 1.81 times the scale than
gaussian estimates.

�meta-dʹ_logistic is the cumulative logistic distribution
function with the scale parameter of 1 and the location
parameter that is equal to the logistic meta-dʹ. Also,
τ logistic_S1 and τ logistic_S2 are the confidence criterion
(or criteria) on each response side. As in the case of
the gaussian fitting, the parameters were estimated by
the maximization of the log-likelihood, which is again
given by the sum of the products of the log-estimated
probability of each response category and the observed
response frequency for the corresponding category.

hr2S1 = �0
(
τlogistic_S1

)
�0

(
meta − d ′logistic × �logistic

)

f ar2S1 = �meta−d ′_logistic
(
τlogistic_S1

)
�meta−d ′_logistic

(
meta − d ′logistic × �logistic

)

hr2S2 = 1 − �meta−d ′_logistic
(
τlogistic_S2

)
1 − �meta−d ′_logistic

(
meta − d ′logistic × �logistic

)

f ar2S2 = 1 − �0
(
τlogistic_S2

)
1 − �0

(
meta − d ′logistic × �logistic

)

For model comparisons, we have used Akaike
information criterion (AIC) and Bayesian information
criterion (BIC) defined as follows, where log-likelihood
denotes the log-likelihood of the model, K is the
number of free parameters, and N is the total number
of trials across all response categories. Note that the
type 1 SDT models, whose meta-dʹ was fixed to be equal
to dʹ, have one less free parameter than the meta-SDT
models.

AIC = −2LL + 2K

BIC = −2LL + log (N )K

Model fits to individual data

Table 2 summarizes the fittings to individual
participants’ data (Supplementary Material 2 also
reports fittings to aggregated data). As is usual in

Best AIC fits Best BIC fits

Gaussian meta-SDT 871 438
Logistic meta-SDT 826 438
Gaussian type 1 SDT 1409 1770
Logistic type 1 SDT 1672 2132

Table 3. Number of the cases for which each of the models
showed best fit in terms of AIC and BIC.

individual fittings, there were quite a few cases where
the estimation did not converge. The logistic models
showed some advantage over the gaussian models in
terms of the number of converged cases. Because the
number of converged cases differed across the models,
we could not simply calculate summed information
criteria over individual cases for model comparisons.
Thus, across the total of 5160 individual cases, we
examined the number of cases for which each model
declared the best AIC/BIC fit. Models that failed to
converge were disqualified for each case, and no winner
was declared in those cases where all four models did
not converge.

The analysis adjudicated the type 1 logistic model as
a clear victor, presumably because it naturally captures
curvilinearity in zROCs without incorporating the
extra meta-dʹ parameter (Table 3). The type 1 SDT
models were generally favored over the meta-SDT
models, suggesting that the occurrence of metacognitive
inefficiency may not be taken as much for granted
as previously considered. This means that some of
those previous reports from the gaussian perspective,
originally constituting supporting evidence for
metacognitive inefficiency, could be better explained
by the type 1 logistic model postulating flawless
metacognition (m-ratio = 1). However, it should be
noted that the inclusion of extra parameters is difficult
to be justified in individual analyses due to the matter
of statistical power. There was no clear-cut winner in
the comparison of the gaussian and logistic meta-SDT
models, indicating that the logistic meta-SDT is no less
viable than the gaussian meta-SDT as a measurement
model of metacognitive accuracy.

Next, we would evaluate parameter estimates on
those cases in which each of the models converged and
revealed above-chance type 1 and type 2 performances
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Figure 5. Parameter estimates of the gaussian and logistic meta-SDTs. Cases failed to reach chance performances were excluded here,
which left 3818 cases for the gaussian meta-SDT (A) and 4127 cases for the logistic meta-SDT (B). Panel C only includes 3552 cases for
which both models showed above-chance performances. Logistic estimates are shown at approximately 1.81 times the scale than
gaussian estimates.

(Table 2). Paired t-tests showed that mean meta-dʹ was
significantly smaller than mean dʹ under the gaussian
meta-SDT (t (3817) = −16.99, p < 0.001, Figure 5A)
and the logistic meta-SDT (t (4126) = −4.03, p <
0.001, Figure 5B), indicating metacognitive inefficiency
on average basis. However, caution would be advised
because the logistic meta-SDT indicated greater mean
m-ratio than the gaussian meta-SDT (t = 28.09, p <
0.001, Figure 5C), and there are even cases where the
gaussian meta-SDT showed m-ratio < 1 whereas the
logistic meta-SDT demonstrated m-ratio > 1 (399
of 3552 cases in Figure 5C). These results exemplify
the important consequences from the distributional
assumptions. In an extreme scenario, it is even
possible that the models advocate for the qualitatively

opposite theoretical operations (i.e., contamination of
metacognitive noise vs. acquisition of metacognitive
evidence).

We found rather frequent occurrences of hyper-
metacognitive sensitivity (m-ratio > 1) in Figure 5.
A Fisher’s exact test showed that this observation
was more frequent under the logistic than gaussian
meta-SDTs (1873 of 4127 vs. 1412 of 3818 cases, p
< 0.001). Despite these differences, however, m-ratios
estimated by these models were highly consistent across
the individual cases (Pearson’s r = 0.942), ensuring the
models’ reliability in the assessment of metacognitive
accuracy (Figure 5C).

Lastly, we have examined criterion-dependency
of metacognitive accuracy by estimating meta-dʹ
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parameters at different confidence criteria. For this
purpose, we have converted multilevel confidence rating
data into binary formats (i.e., high vs. low confidence)
by making dichotomous cutoffs at different confidence
criteria (Rahnev, 2021; Shekhar & Rahnev, 2021). To
illustrate this, let us consider a response frequency
dataset of (2, 3, 5, 7, 11, 13), which is comprised of two
type 1 response classes and three levels of confidence
rating (i.e., ten S1 responses [sum of the first three]
and thirty-one S2 responses [sum of the last three]
are bounded by lower and higher confidence criteria,
constituting a sequence of response frequencies from
highest confidence S1 to highest confidence S2). This
dataset will be (5, 5, 7, 24) by making a binary cutoff at
the lower confidence criterion while cutting off at the
higher confidence criterion gives (2, 8, 18, 13). Thus
a dataset of n levels confidence rating allows for n-1

different binary cutoffs, and we have estimated meta-dʹ
for each of the reformatted datasets; speaking of the
current example, meta-dʹ estimated on the dataset
(5, 5, 7, 24) represents metacognitive accuracy at the
lower confidence criterion, whereas that on (2, 8, 18,
13) indicates metacognitive accuracy at the higher
confidence criterion.

The binary reformatting yielded a total of 34975
datasets, and both the gaussian and logistic meta-SDTs
converged in 30512 cases. Among those, we have
included 26927 cases in the present analysis for which
both the models exhibited above-chance type 1 and type
2 performances. Because different levels of confidence
rating were employed across studies, we have normalized
confidence criteria for the subsequent analysis. For
example, regarding confidence data of 6 levels, we have
estimated meta-dʹ for 5 different binary reformatted

Figure 6. Metacognitive performances evaluated at different confidence criteria. The criteria are normalized and ordered from lowest
to highest (lowest/highest criteria are coded as −1/1). Cases across different individuals and studies are shown all together. Logistic
estimates are shown at approximately 1.81 times the scale than gaussian estimates.
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data, and then confidence criteria associated with these
meta-dʹ values are numbered as [1, 2, 3, 4, 5] from lowest
to highest. Next, we have normalized these ordinal
numbers so that the lowest (and highest) criterion
would be coded as −1 (and 1) with intermediate criteria
evenly spaced between them (i.e., confidence criteria
coded as [1, 2, 3, 4, 5] were normalized into [−1,
−0.5, 0, 0.5, 1]). Last, metacognitive performances
were regressed by the normalized ordinal criteria,
which captures rather qualitative trends of criterion-
dependency; the estimated slope is scaled to indicate the
performance difference for middle and extreme levels of
confidence.4

We conducted linear regression to explain
metacognitive performances from the normalized
ordinal criteria and tested if the slope is significantly
different from 0 (26927 data points are aggregated in
each panel of Figure 6). The results showed negative
criterion-dependency for gaussian meta-dʹ (t =
−3921.54, p < 0.001) and gaussian m-ratio (t = −16.52,
p < 0.001), which is consistent with the previous
report of greater metacognitive inefficiency at higher
confidence criteria (Rahnev, 2021; Shekhar & Rahnev,
2021). Importantly, however, the logistic meta-SDT
showed positive criterion-dependency for meta-dʹ (t =
11.27, p < 0.001) and m-ratio (t = 38.20, p < 0.001),
indicating that metacognition is more efficient at
higher confidence criteria. The reversal of the criterion
dependency again showcases the serious consequence
of the auxiliary modeling assumptions.

Discussion

We have demonstrated important discrepancies
between the gaussian and logistic SDT frameworks in
the assessment of metacognitive accuracy. There has
been a widespread view that the human metacognitive
system is unable to make full use of the information
employed by the type 1 decision system (e.g.,
Maniscalco & Lau, 2012; Shekhar & Rahnev, 2020,
2021). Our analyses on the large-scale individual
datasets partly confirmed this view since, on average,
meta-dʹ was estimated to be smaller than dʹ under
both the gaussian and logistic meta-SDTs. However,
our results are somewhat mixed here as the model
comparisons best favored the type 1 logistic SDT, which
does not incorporate any metacognitive inefficiency.
Of practical importance is that the logistic meta-SDT
intrinsically gives greater m-ratio than the gaussian
meta-SDT because of the difference in their distribution
kurtosis. Therefore, in extreme cases, these models can
advocate for opposing interpretations on the same
dataset (gaussian m-ratio < 1 vs. logistic m-ratio > 1).

The present findings suggest that the observation of
m-ratio ≥ 1 is not as unnatural as previously considered,

alleviating the need to presuppose the existence of
metacognitive inefficiency as a default hypothesis. In
fact, there is no intrinsic reason within the realm of
SDT that restricts m-ratio less than 1, and our previous
studies have indeed demonstrated that the pattern of
m-ratio ≥ 1 naturally emerges as a consequence of
our metacognitive system being adapted to statistical
structures of the world (see Miyoshi & Lau, 2020;
Webb, Miyoshi, So, Rajananda, & Lau, 2021).

Notice, however, that we are not arguing that
metacognitive inefficiency does not really exist or that
the type 1 SDT is sufficient on its own to explain
both type 1 and type 2 decisions. Rather, we see type
1 versus type 2 dissociation evidenced in those cases
where both gaussian and logistic m-ratios are fairly
smaller (or larger) than 1 (see Figure 5). The objective
versus subjective dissociation is further supported by
intervention studies demonstrating rather selective
impairments of type 2 accuracy with transcranial
magnetic stimulation (Rounis, Maniscalco, Rothwell,
Passingham, & Lau, 2010), muscimol injection
(Miyamoto, Osada, Setsuie, Takeda, Tamura, Adachi,
& Miyashita, 2017), and secondary task demand
(Maniscalco & Lau, 2015). Therefore our claim here is
that it is not compulsory to put asymmetric preference
on metacognitive inefficiency (m-ratio < 1) over
efficiency (m-ratio > 1), and researchers can search for
underlying causes of these observations from a neutral
point of view.

Past studies have suggested several factors that may
influence metacognitive efficiency. One thing is that if
there is a time lag between type 1 and type 2 decisions
(i.e., participants indicate their type 1 decision first and
then rate their confidence), additional metacognitive
evidence could be collected to boost the accuracy of
metacognition (e.g., Fleming & Daw, 2017; Pleskac &
Busemeyer, 2010). However, this effect was difficult to
be examined in the present study because such two-stage
response design was employed in 98 of the 105 targeted
datasets. For another thing, greater metacognitive
efficiency has been observed when trials of varying
difficulties are intermixed in a single experimental block
(Rahnev & Fleming, 2019), although we could not find
favorable evidence for this effect at least in the present
datasets (see Table S2 in Supplementary Material 2).
In any case, the current datasets include a variety of
uncontrolled features, making it difficult to identify
factors that contribute to efficient metacognition.
Numerous factors, including the above two, remain of
interest for future controlled studies.

The criterion-dependency of metacognitive accuracy
is another topic on which the gaussian and logistic
SDT frameworks have shown disagreement. In
an attempt to better characterize the nature of
metacognitive efficiency, recent studies have reported
that gaussian meta-dʹ became smaller at higher
confidence criteria (Rahnev, 2021; Shekhar & Rahnev,
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2021). They developed a model that incorporates
log-normally distributed metacognitive noise on top
of gaussian type 1 distributions to describe growing
metacognitive inefficiency towards the ends of the
evidence continuum. However, we have shown that
the criterion-dependency was reversed (i.e., greater
metacognitive efficiency toward the ends of the
continuum) if the underlying distribution is assumed
to be logistic, instead of gaussian. This is mainly
because the logistic distribution has greater kurtosis
and predicts different operating characteristics than the
gaussian distribution (Figure 2), which suggests that
the criterion-dependency of metacognitive accuracy is
rather difficult to be determined by means of behavioral
modeling.

These findings showcase the fact that theories of
metacognitive operations have been formed through
certain forms of mathematical models standing
upon auxiliary distributional assumptions. Thus, the
reliability of a certain research conclusion should be
assessed in regard to its robustness against underlying
modeling assumptions (for model comparisons on
minimal assumptions, see Kellen &Klauer, 2014; Kellen
& Klauer, 2015; Miyoshi, Kuwahara, & Kawaguchi,
2018). There is no one-to-one relationship between a
certain theoretical construct (e.g., internal evidence) and
its possible implementations in mathematical models
(e.g., sample from gaussian or logistic distributions).
Accordingly, the same data could be equally well
explained by different models that even provide
qualitatively opposite theoretical interpretations.

One countermeasure we can take against this
problem is to see agreement across different model
variants, a method called “multiverse” analysis (e.g.,
Oberauer & Lewandowsky, 2019; Steegen, Tuerlinckx,
Gelman, & Vanpaemel, 2016). One should be assured
to insist on a certain research conclusion (e.g.,
metacognition is inefficient than objective type 1
decision) if different models provide consistent support
for it. The comparison of multiple model variants may
further provide some valuable insights into the cognitive
process in question. For example, in the present
case, meta-dʹ estimated by the gaussian and logistic
meta-SDTs exhibited the reversed criterion-dependency.
This suggests that a distribution with a kurtosis
intermediate of theirs may be an appropriate candidate
for the underlying function of internal evidence (see
Supplementary Figure S4 in Supplementary Material 2
for further details).

When evaluating the agreement of different models,
one can weight them according to the extent that
these models are supported by the data in question.
We originally hoped that the current large-scale
model comparisons would adjudicate between the
gaussian and logistic meta-SDT models, but the
results were rather equivocal in this regard. Perhaps,
the curvilinearity in zROC, the qualitative trend that

cannot be explained by the type 1 gaussian SDT model,
is appreciably captured by introducing the meta-dʹ
parameter, which makes it difficult to decide a clear
victor between the gaussian and logistic meta-SDT
models. Of course, the validity of cognitive models is
not solely determined by the goodness of fit to empirical
data but is also evaluated by other standards such as
consistency to existing domain knowledge (Myung &
Pitt, 2018). Yet, the gaussian and logistic SDTs seem
not to be easily distinguishable in this regard as they
both have been of successful use in various domains of
decision science (e.g., Macmillan & Creelman, 2005).
Because no clear winner was found in the present
model comparisons, it is difficult to prescribe a general
recommendation regarding which model’s estimates
should be more prioritized in practical use. For the time
being, it might be safer to avoid overreliance on either
of the models.

Nevertheless, it is worth emphasizing that the
m-ratio measures of the gaussian and logistic
meta-SDTs exhibited high degrees of consistency when
estimations were made on the full range of confidence
levels (Figure 5C). This means that condition-wise
comparisons (i.e., whether condition A or B leads to
higher metacognitive efficiency) or across-participant
correlation analyses (i.e., if participants who achieve
great metacognitive efficiency in task A also tend to
perform well in task B) are rather invariable against
the choice between the measurement models. On
the contrary, one needs to be cautious when directly
comparing meta-dʹ against dʹ to see if m-ratio would be
larger/smaller than 1, or when evaluating metacognitive
accuracy at each location of confidence criteria. The
outcomes of these analyses are quite sensitive to
auxiliary distributional assumptions.

One thing to note is that the present study only
selected genuine 2AFC data for use. This is mainly
because data from Yes/No experiments usually
demonstrate asymmetric type 1 ROC, which is not
compatible with the meta-SDT analysis (from the
SDT perspective, this asymmetry indicates unequal
variance between target and nontarget distributions in
unidimensional decision space). On the contrary, due
to the symmetric treatment of S1 and S2 responses in
bidimensional decision space, 2AFC experiments are
supposed to provide symmetric type 1 ROC, regardless
of the variance-covariance structure of target and
nontarget distributions (for graphical intuitions, see
Miyoshi & Lau, 2020). Also, importantly, Miyoshi
and Lau (2020) has shown that certain metacognitive
heuristics can lead to better metacognition under
appropriate variance-covariance structure in 2AFC
experiments, which we deem as an intrinsic property
of our metacognitive system. Thus the measurements
made for the present 2AFC datasets may reflect
the mixture of different components (e.g., internal
metacognitive noise, response noise of confidence
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rating, appropriate use of metacognitive heuristics,
etc.), the relative contributions of which should
determine the observer’s metacognitive efficiency (also
see Supplementary Table S8 for supplementary analyses
on non-2AFC data).

Although it may sound daunting, we believe it is an
important step for us to acknowledge that there can
be one-to-many correspondence between a theoretical
operation of interest and its modeling implementations.
We shall strive for establishing essential theories of
visual metacognition that are not predicated on strong
auxiliary assumptions. Through such practices, one
can be more certain about her research conclusions
and make solid contributions to the field’s sustainable
development.

Keywords: confidence, metacognition, metacognitive
inefficiency, signal detection theory, theory development

Acknowledgments

The authors thank Hakwan Lau and Dobromir
Rahnev for valuable input on this research.

Supported by JSPS in the form of Overseas Research
Fellowship and KAKENHI Grant Number 22K13870
awarded to Kiyofumi Miyoshi.

Commercial relationships: none.
Corresponding author: Kiyofumi Miyoshi.
Email: miyoshi80@gmail.com.
Address: Graduate School of Informatics, Kyoto
University, Sakyo, Kyoto 6068501, Japan.

Footnotes
1The way the logistic framework is grounded in the Luce axiom is different
from the way the gaussian framework is supported by the central limit
theorem. The central limit theorem provides a direct basis for assuming
the gaussian distribution, whereas the Luce axiom is a set of assumptions
that provide a starting point for interpreting the estimates of the logistic
SDT. Thus some may think that the gaussian distribution has a stronger
basis than the logistic distribution in psychophysics. However, the central
limit theorem is predicated on an assumption that internal sensory events
follow an independent and identical distribution, which is not considered
to be satisfied in a net sense in psychophysical measurements (Green &
Swets, 1966, p. 58). Therefore this article did not venture to question the
a priori plausibility of the frameworks, which seems not to lend itself to
quantitative evaluation.
2It is the kurtosis parameter that matters in the present findings (see
Supplementary Figures S2-S4 in Supplementary Material 2). Thus
it is rather important to systematically understand the continuous
contributions of kurtosis through the illustrations of these two influential
frameworks. This is important as the internal distributional form can
change from situation to situation (Green & Swets, 1966, p. 58), and it
may not exactly be gaussian nor logistic in empirical experiments.
3For example, type 1 ROCs from Yes/No experiments typically exhibit
asymmetric shapes, which invite difficulties in meta-SDT model fittings
(see Maniscalco & Lau, 2014).
4The reported results were replicated by regression with raw estimated
criteria (see Supplementary Material 2).
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