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This study reported on development and evaluation of a learning program that integrated

a multidimensional diagnostic assessment with two different learning interventions

with the aim to diagnose and improve three-dimensional mental rotation skills. The

multidimensional assessment was built upon the Diagnostic Classification Model (DCM)

framework that can report the binary mastery on each specific rotation skill. The two

learning interventions were designed to train students to use a holistic rotation strategy

and a combined analytic and holistic strategy, respectively. The program was evaluated

through an experiment paired with multiple exploratory and confirmatory statistical

analysis. Particularly, the recently proposed joint models for response times and response

accuracy within dynamic DCM framework is applied to assess the effectiveness of

the learning interventions. Compared with the traditional assessment on spatial skills,

where the tests are timed and number correct is reported as a measure for test-takers’

performances, the developed dynamic diagnostic assessment can provide an informative

estimate of the learning trajectory for each participant in terms of the strengths and

weaknesses in four fine-grained spatial rotation skills over time. Compared with an earlier

study that provided initial evidence of the effectiveness of building a multidimensional

diagnostic assessment with training tools, the present study improved the assessment

and learning intervention design. Using both response times and response accuracy,

thus current study additionally evaluated the newly developed program by investigating

the effectiveness of two interventions across gender, country and rotation strategy.

Keywords: mental rotation skills, learning program, diagnostic assessment, rotation strategy, longitudinal

diagnostic model

1. INTRODUCTION

Spatial ability has long been considered as an important dimension of human intelligence through
the studies in various populations and settings (e.g., Carroll, 1993; Eliot, 2012). It is an emerging
area of interest to educators as spatial ability has been linked to better performance in mathematics
and science achievement (Brownlow and Miderski, 2001; Thompson et al., 2013). The notion of
spatial ability varies across studies. Different types of spatial skills have been measured including
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spatial perception, visualization and mental rotation (e.g., Perry,
2013; Weckbacher and Okamoto, 2014). Among these various
spatial factors, mental rotation ability involves a cognitive
visualization process to mentally rotate two-dimensional (2-D)
or three-dimensional (3-D) objects. These two forms of mental
rotation, particularly 3-D mental rotation, have been commonly
associated with mathematics and science achievement (Voyer
et al., 1995). Virtually, all 2-D and 3-D mental rotation tests
involve presenting a target item and several solutions and the
test taker has to mentally rotate the target to select the correct
solution. One problem in this area is that little is known about
the psychometric qualities of spatial skills tests or how or why
students’ performance differs as a function of test items. There
are several possible causes of these problems. It may be the
degree of rotation or manipulation needed, the complexity of
the items, or the strategies used to solve items. Two strategies
have been identified in literature: analytic/verbal and holistic
(Glück et al., 2002). Holistic strategies involve rotating the entire
object whereas analytic strategies involve matching parts of
rotated objects to determine the correct answer. Both these two
strategies can produce good outcomes but the holistic strategies
are typically considered better examples of spatial processing and
they seem to be more efficient and effective for more cognitive
demanding spatial items; specifically items that require multiple,
simultaneous rotations or that are complex (Wang and Carr,
2014). Some research studies also found that the combined
analytic and holistic strategy might be more efficient than the
sole holistic or analytic strategy, and it can decrease the gender
difference (Stieff et al., 2014). Existing literature about mental
rotation strategy also concluded that male and female students,
Chinese Speakers and English Speakersmay use different rotation
strategies when solving spatial rotation questions (Weiss et al.,
2003; Geiser et al., 2008; Li andO’Boyle, 2013; Li et al., 2014; Stieff
et al., 2014).

While most studies in the literature focused on measuring the
spatial ability or on investigating how the spatial ability is related
to test-takers’ characteristics, there has been a lack of research on
investigating the factors that are related to the improvement of
spatial skills. There are emerging evidence indicating that spatial
ability can be improved (Uttal et al., 2013) and evidence that
improving spatial skills results in improved mathematics (e.g.,
Cheng and Mix, 2014). Efforts to improve spatial skills have
involved having participants practice on existing spatial skills
tests or have involved extensive training in several aspects of
spatial skills (e.g., isometric drawing). However, these instruction
are time consuming and are not responsive to individual
students’ strengths and weaknesses.

This present study reported the development of a learning
program that aims to improve mental rotation skills from a new
perspective. This computer-based learning program integrates
multiple multidimensional assessments with different learning
interventions. Particularly, the embedded multidimensional
assessments were built upon the Diagnostic Classification Model
(DCM) framework. This is a family of restricted latent class
models that can provide information concerning whether or not
students have mastered each of a group of specific skills. These
psychometric models have been used to design assessments that

measure fine-grained skills or latent attributes across various
domains, such as math skills (Bradshaw et al., 2014) and
depression (Wang et al., 2019a). In addition to these applications
of cross-sectional cognitive diagnostic assessment, the recently
development of dynamic DCMs (e.g., Kaya and Leite, 2016; Li
et al., 2016;Wang et al., 2017, 2018; Chen et al., 2018b; Zhan et al.,
2019) enable the possibility of developing longitudinal cognitive
diagnostic assessments to track skill learning and skill acquisition
over time. This current study serve as the first attempt to develop
the learning programwithin the longitudinal cognitive diagnostic
assessment framework. Another important objective of this study
is to evaluate the effectiveness of the developed learning program.
Multiple exploratory and confirmatory analysis were conducted
to evaluate the cognitive diagnostic assessment and learning
interventions. Particularly, students’ demographic information,
such as gender, country and the rotation strategy, were collected
and integrated with one of the recently developed dynamic
DCMs, the joint model of response times and response accuracy
(Wang et al., 2018, 2019b), to evaluate the learning interventions.

The rest of the paper is organized as follows. We first provide
background on the test questions for measuring mental rotation
skills, the Purdue Spatial Visualization Test: Visualization of
Rotations (PSVT: R) and the revised PSVT:R. Second, we
introduce the joint model of response times and response
accuracy within dynamic DCM framework. This is followed by
the description of the development of a new spatial rotation
learning program. An experiment study is then presented
to evaluate the learning program and understand students’
learning behavior. We report the results from this experiment
in the following section. Finally, the discussion section addresses
implications for psychometrics and training mental rotation
skills, limitations of the current study and future research study.

2. PSVT: R AND REVISED PSVT:R

The Purdue Spatial Visualization Test: Visualization of Rotations
(PSVT: R), developed by Guay (1976), is one of the most popular
tests that targets on measuring spatial visualization ability in 3-
D mental rotation of individuals aged 13 years or older. This
test has been frequently used in STEM education (Maeda and
Yoon, 2013), and has shown in general good internal consistency
reliability through several studies (Guay, 1976; Branoff, 2000;
Alkhateeb, 2004). The PSVT: R consists of 30 items including
13 symmetrical and 17 non-symmetrical 3-D objects that are
drawn in 2-D isometric format. Each item featured a reference
object that had undergone a rotation. Test-takers then considered
a new object and attempted to determine which of five options
corresponded to the same rotation as the reference object. This
test was revised by Yoon (2011) to correct the 10 figural errors
identified by Yue (2006) and the format of the instrument was
modified to avoid possible measurement errors. The revised test
is named as revised PSVT:R. Since then, the revised PSVT:R
has been used in several studies to investigate the psychometric
properties of the test questions through Item Response Theory
(IRT)Models (Maeda et al., 2013). They were also used to explore
the association of the spatial ability of undergraduate students
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with gender, STEM majors and gifted program membership
(Yoon and Mann, 2017).

3. DCMS AND DYNAMIC DCMS FOR
RESPONSE TIMES AND RESPONSE
ACCURACY

Diagnostic Classification Model (DCM), or Cognitive Diagnosis
Models (CDM), has emerged as an important statistical tool to
help with diagnosing students’ learning outcomes, such as skills
and abilities that students have at the completion of a course
or a learning program. These models assume that there are a
number of pre-specified attributesmeasured by the assessment. A
student’s latent attribute profile is denoted by a multidimensional
binary random vector with element 1 to indicate one possess
a specific attribute and 0 to denote the lack of that particular
attribute. In this way, DCMs can provide feedback regarding
the measured skills. This allows for changes to be made in
instruction, which can hopefully enhance students’ learning.
Research continues to document the benefits of DCMs as a
framework for classifying students into educationally relevant
skill profiles, and they have been used to study English-language
proficiency (Templin and Hoffman, 2013; Chiu and Köhn, 2015),
fraction subtraction (de la Torre andDouglas, 2004), pathological
gambling (Templin andHenson, 2006), skills found in large-scale
testing programs (Bradshaw et al., 2014; Li et al., 2015; Ravand,
2016), and Mental Rotation Skills (Culpepper, 2015).

The traditional DCMs are useful to classify attribute profiles
at a given point in time. Recently research has begun to consider
the role of DCMs to track learning and skill acquisition in a
longitudinal fashion (Kaya and Leite, 2016; Li et al., 2016; Wang
et al., 2017, 2018; Chen et al., 2018b; Zhan et al., 2019). In
this type of research, the multidimensional binary latent skills
for each student are assumed to be time-dependent and the
purpose is to track the change of these binary skills overtime.
Furthermore, in addition to the traditional product data, that
is the response accuracy, the process data, such as the response
times, are utilized to assess students’ skill change over time. The
joint model of response times and response accuracy (Wang
et al., 2019b) used in this study is such an example. This joint
model consists of a dynamic response model and a dynamic
response time model. The dynamic response model includes a
DCM as the measurement model to describe how test-takers
respond to the assessment items with their attribute profiles at
a given point of time, and a higher-order hidden Markov model
that describes how the latent attribute profile changes from one
time point to another, depending on the individual covariates
(Wang et al., 2017). Like the traditional DCM, the dynamic DCM
produces the output of the parameter estimation that quantify the
psychometric properties for each item. It in addition can provide
an estimate of students’ learning trajectories in terms of the
change of fine-grained skills over time. The estimated coefficients
of the transition model from which can be used to identify
the factors that are related to the transition probability and to
evaluate the intervention. The dynamic response time model
assumes students’ latent speed on answering an item changes

with the change of the latent attribute profile. It is thus directly
connected with the dynamic response model through the latent
attribute profile to provide additional information. The original
work by Wang et al. (2019b) only considers the latent individual
covariate in the dynamic response time model. In our study
we will include students’ demographic variables and problem-
solving strategies to further investigate the between and within
latent classes transitions. The details of this model are described
in the Method section.

4. THE DEVELOPMENT OF A NEW SPATIAL
ROTATION LEARNING PROGRAM

The new spatial rotation learning program reported in this study
was developed on the basis of the findings from a previous
research study (Wang et al., 2017). That old learning programwas
developed with the revised PSVT:R (Yoon, 2011) and consisted
of five testing modules and four learning modules. Each of these
modules contained 10 test questions. Four fine-grained mental
rotation skills measuring the degree and direction of rotation
were measured by test questions. That is (1) x90: 90◦ x-axis,
(2) y90: 90◦ y-axis, (3)x180: 180◦ x-axis, and (4) y180: 180◦

y-axis. These four distinct yet related skills were identified to
be measured by the revised PSVT:R through several previous
studies (e.g., Maeda et al., 2013; Culpepper, 2015; Wang et al.,
2017). To use this program, students first answered 10 questions
in a testing module without any feedback to their answers
then proceeded to a learning module in which they received
feedback about their answers to the previous 10 questions and
used a learning intervention to practice rotations. With such a
design, test-takers need to finish 50 testing questions without
feedback and to practice 40 additional questions with feedback
and intervention. Positive findings of benefits of practice, an
enhanced intervention, and the value of knowing some of
the attributes, on the probability of making a transition to a
master of a spatial skill, were demonstrated through a previous
analysis (Wang et al., 2017). However, it was also found that
a number of items had low psychometric qualities. This means
that the students with low ability on spatial skills can easily
guess the correct answer or the students with high spatial ability
might easily miss the correct answer. These items provided less
diagnostic information on measuring the spatial skills. Another
finding was that students’ performance in the 5th testing module
is relatively lower than the 4th testing module, indicating there
might be a fatigue factor due to the long testing and learning (it
took about roughly 1 h and 15 min on average for students to
finish this learning program). The following subsections provide
details on the development of a new learning program based
upon this old version of learning software.

4.1. The Learning Program Structure
Compared with the old version, the whole structure of the
learning program was redesigned to have two testing modules
and two learning modules. The structure of the learning program
is summarized by the flow chart in Figure 1. Specifically,
this program starts with a testing module, followed by two

Frontiers in Psychology | www.frontiersin.org 3 February 2020 | Volume 11 | Article 305

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Wang et al. Longitudinal Diagnostic Program for Learning

FIGURE 1 | Spatial rotation learning program structure.

consecutive learning modules, and finally ends with a testing
module. The main purpose of module 1 and 4 is to accurately
measure the four binary spatial skills at a given point in time.
The two learning modules, model 2 and 3, aim to improve
test-takers’ mental rotation skills. The orders of these four
modules are carefully designed thus are not exchangeable. The
rationale of the design of these modules are summarized in
section 4.2. Interventions are only provided in the learning
modules. Each module contains 10 different questions, and they
are selected based on various of item characteristics to reflect
their functioning of assessing or improving the skills. A survey
is provided at the end of the program to collect the test-takers’
demographic information, the rotation strategy used by them
during the test and their opinions about this learning program.

4.2. The Design of Module Blueprint
As described in the introduction, the learning program used
the revised PSVT:R questions to measure four rotation skills. In
fact, the original revised PSVT: R has 30 questions, and Wang
et al. (2017) developed another 20 new items following the
same item format so that a total of 50 questions are available
to use in our study. Based on the learning program structure,
40 questions were selected from the existing 50 questions to
assemble the four modules. These questions were selected based
on different item characteristics, which can be measured from
both a qualitative and quantitative point of view. The qualitative
properties include the skill(s) measured by each item and the
shape of the item. A very important component in the DCM
based assessment, is a Q matrix (Tatsuoka, 1985), that specifies
the rotation skill(s) measured by each item. The Q matrix is
usually pre-determined by panels of subject-matter experts or
estimated and validated based on the response data (e.g., Xu
and Shang, 2017). In this study, we used the Q matrix in
Wang et al. (2017), which was built based on the findings from
Guay (1980) and Culpepper (2015). According to this Q matrix,
each of the available 50 questions measures 1 or 2 skills. The
shape of an item reveals the complexity in visualizing the 3-D
object. The current 50 questions include symmetrical and non-
symmetrical 3-D objects that are drawn in 2-D isometric format.
The quantitative properties of the questions can be described
by the difficulty and discrimination of the item. The difficulty
of the PSVT: R items has been analyzed based on classical test
theory and item response theory (Yoon, 2011;Maeda et al., 2013).

The discrimination of the items describes how one item can
discriminate/differentiate the students with low spatial ability
from those with high spatial ability. Previous studies used the
two parameter and three parameter logistic models (Maeda et al.,
2013) and the deterministic input, noisy, “and” gate model
(DINA; Junker and Sijtsma, 2001) to get item discrimination
parameter estimation (Culpepper, 2015). In order to accurately
measure students’ mental rotation skills and to detect the possible
learning effect, we design the two testing modules to have
balanced and similar item quality. For the two learning modules,
the main purpose is to help students improve their spatial skills
and keep their motivation of using the learning intervention.
Thus, the first learning module contains the relative easy items
with simple shapes, with the purpose to minimize the side effect
of lack of interest in learning due to frustration of providing too
many wrong answers (as they are informed their answer is right
or wrong in the learning module). The second learning module
contains relatively harder and moderate to complex shape of
items. In addition, the analysis on the learning data (Wang et al.,
2017) revealed that the four attributes might have a hierarchical
structure that implies that students who have mastery of 180
rotations should also be skilled at 90◦ rotation. In other words,
the 90◦ rotation is the prerequisite for the 180◦ rotation. Thus,
it’s reasonable to guide students to learn the prerequisite skill first.
Based on all above analysis, the finalized targeted properties of the
items in the four modules are presented in Tables 1, 2. The next
section summarizes the details of the selection of 40 questions
based on both quantitative and qualitative analysis.

4.3. Item Pre-analysis and Validation
4.3.1. Quantitative and Qualitative Analysis
We conducted both qualitative and quantitative analysis to the 50
available questions from Wang et al. (2017) in order to select 40
from them to assemble the four modules based on the blueprint.
For the quantitative aspect, using the data from a previous
research study (Culpepper, 2015), a Rasch model was fitted to
the 50 questions to produce the item difficulty parameters. Six
raters with high spatial abilities were invited to rate the difficulty
of each item, and their scores were highly positively correlated
with the estimated difficulty parameters from the Rasch model,
ranging from 0.89 to 0.94. The item discrimination, 1 − sj − gj,
is defined based on the Deterministic Input, Noisy “And” gate
(DINA; Junker and Sijtsma, 2001) model, which describes how
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TABLE 1 | The targeted properties of the items in four modules.

Index Module 1 Module 2 Module 3 Module 4

Difficulty Balanced Easy Moderate-high Balanced

Discrimination Balanced Low-moderate Moderate-high Balanced

Shape Balanced Simple-moderate Complex-moderate Balanced

TABLE 2 | The skill(s) measured by the number of questions across four modules.

Attribute Module 1 Module 2 Module 3 Module 4 Total

x90 1 2 1 1 5

x180 1 2 1 1 5

y90 1 2 1 1 5

y180 1 3 2 1 7

x90, y90 2 1 2 2 7

x90, y180 2 0 1 2 5

x180, y90 2 0 2 2 6

well an item can discriminate subjects whomaster all the required
attributes for the item from subjects who do not master any of the
required attributes. The larger the discrimination index, themore
diagnostic information the item can provide. For the qualitative
aspect, a spatial skill domain expert examined the shape of object
in each question, and rated the complexity of the shape to the
scale of 1–5. The higher the score, themore difficult for this object
to be visualized as a 3-D object. Based on the characteristic of
the 50 available questions, a heuristic automatic test assembly
algorithm was developed to select 40 questions to assemble the
four modules. This test assembly algorithm was developed by
authors based on Armstrong’s et al. (1992) Phase II algorithm
to guarantee the four modules match the program blueprint
(Tables 1, 2). The item positions in each module are in ascending
order of item difficulty (from easy to hard).

4.3.2. 3-D Model Building
The original PSVT: R presented the 3-D object in a 2-D
isometric format. In the current study, in order to accurately
measure the four fine-grained mental rotation skills that target
on degree and direction of rotation only, all the objects in the
50 questions were reconstructed based on 3-D model building
in computer and an example is presented in Figure 2. The
3-D models were constructed using 3ds Max 2016 developed
by Autodesk. The questions in the testing modules and the
learning modules are all like the one presented in Figure 2,
which include a reference item that is rotated. Test-takers are
presented a new object and they must select one answer from
the five options that corresponds to the ending position of the
new object, rotated the same way as the reference item. In
the testing module, test-takers are not informed about whether
their questions are correct or wrong. And in the learning
module, they are informed immediately about the correct answer
correct or not after each question. In addition, in the learning
module, test-takers have the chance to interact with a learning
intervention to practice rotation. The next subsection describes
the intervention design.

FIGURE 2 | The 3D model for the objects/figures in an item.

4.4. Learning Intervention Design
4.4.1. Two Learning Interventions
We developed two types of learning interventions by using
C++ with Visual Studio 2012. One version is animation plus
interaction as shown in Figure 3. The left panel of Figure 3 shows
the testing items, the top panel on the right shows animation
of rotating the reference object from the initial position to the
final position and the bottom panel on the right allows users
to rotate the testing object from the initial position to the
final correct position by following the rotation path from the
reference one. This type of intervention intends to train test-
takers with the holistic strategy. The other intervention has the
same functions as the first one and with an additional coloring
feature (Figure 4). One of the facets of both reference and testing
objects in three panels was draw with pink color. This is designed
to help test-takers figure out the final position of the testing
object by mapping the pink facet in the initial position to its
final position. This coloring is more like training the test-takers
using an analytic strategy. Combined with the rotation functions
from the right panels, the second intervention intends to train
test-takers with a combined analytic and holistic strategy.

4.4.2. Learning Routine
In both versions of intervention, test-takers follow the same
learning routine of three steps: (a) solve the displayed testing
question on the left panel with the top and the bottom right
panels invisible, and hit the check answer button to receive the
feedback; (b) the two panels on the right are then displayed and
test-takers can press the rotate button on the top right panel to
watch the rotation animation of the reference object; (c) test-
takers need to further rotate the testing object in the bottom right
panel to the correct position. During this process, test-takers are
allowed to repeat step (b) and (c).

5. METHOD

5.1. Experiment Study
5.1.1. Sample
The participants in this experiment were undergraduate students,
18 years or older, enrolled in three Universities, one in
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FIGURE 3 | Non-colored intervention.

United States and two in China. Recruiting participants in
two countries can help us investigate whether there is cultural
difference in terms of learning spatial skills. In order to
get enough sample size, participants in both countries were
recruited by two ways. The first was to recruit participants
through the Educational Psychology or Psychology Research
Participant Pool. Participants from this source were rewarded
1 course credit after completing this study. The second was
to recruit participants through flyers and email announcement.
For those participants, they were paid with a base amount of
money and can earn additional amount of payment for each
question answered correctly. From Spring 2017 to Summer
2017, recruitment through the above two approaches yielded
585 participants. Because of the various sources of recruiting
participants, we fitted a mixture learning model (Zhang and
Wang, 2018) to exclude some participants who were identified
to be not engaged in the experiment. These participants’
response data did not reflect the measured latent attributes
and cannot be used to evaluate the learning program. Through
this procedure, a total of 548 students were included for final
data analysis.

5.1.2. Procedures and Variables
The experiment was conducted in the computer lab in each
University. The two types of learning interventions (colored
and non-colored) that corresponding to the combined and
holistic rotation training strategy were randomly assigned among
the participants. Before starting the learning program, the

participants first watched the instruction about how to use
the learning program. Researchers in the computer lab also
gave directions on how to use the program and they were
available to answer questions during the experiment. Participants
were informed that they had as much time as they wanted to
complete this assessment. They were told that this study was
conducted to understand how people solve and learn spatial
rotation tasks. The participants who received the payment
instead of the course credit were informed that the payment
were based on the number of questions answered correctly.
On average, it took 30 min for the participants to finish
the experiment.

The participants’ binary responses and their response
time to each of the 40 test questions were recorded by
the software directly. In addition to these response data,
a survey after each participant completed the experiment
collected participants’ demographic information, such as
gender (female and male), the country (China and US),
and the strategy participants used to solve the questions
(Analytic, Holistic and Hybrid). The information about the
rotation strategy used by each participant was collected based
on a self-report question in the survey. These covariates
will help us further evaluate the developed diagnostic
assessment and learning interventions across different
populations. In the survey, participants also provided their
opinions about whether the learning module can help them
learn rotation skills on the Likert scale [1 (not helpful)–5
(very helpful)].
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FIGURE 4 | Colored intervention.

5.2. Exploratory Statistical Analysis
5.2.1. Descriptive Statistic
Descriptive statistics, such as the number of participants (N),
the means and standard deviations of the module scores in the
learning program and themodule completion time, are presented
in Tables 3, 4 by participants’ characteristics, such as gender,
country, strategy used to solve the problem and the intervention.
A slightly increase of the mean score in module 4 compared with
module 1 can be observed. The module 3 contains the items
that are most difficult while module 2 consists of the items that
are easiest among the four modules. Thus, the average score in
module 3 is the lowest and the average score in module 2 is the
highest among the four modules across different groups. Note
that, we can hardly eyeball the “growth” based on the descriptive
statistics in different modules, as each module has different item
difficulty. In addition, the evaluation of the learning program
should target on the population who have relatively low spatial
rotation skills. However, in order to recruit participants as many
as possible in a short time, we did not conduct a separate pretest
to exclude the participants who already had a high spatial rotation
ability. Thus, the final 548 sample may mix a proportion of
participants who do not need to improve their spatial skills.
Fortunately, the joint learning models presented in the later
section can consider the item difficulty and help us identify the
participants who already mastered the four skills in the very
beginning. In terms of the completion time, participants spent
least time on completing module 2, which is consistent with

that module 2 is the easiest one. Though module 3 contains the
most difficult items, participants on average spent less time on
it compared with the module 1, which is relatively easier. This
might be due to the warm-up effect for module 1, in which
participants were still not very familiar with the questions or due
to the improvement of their spatial rotation skills so that they can
apply those skills more quickly in module 3. The distribution of
participants over country and intervention are roughly balanced,
while for gender and rotation strategy, the distributions are
unbalanced. The large proportion of the female participants and
combined rotation strategy used by participants are mainly due
to our convenience sampling procedure and self-report of the
strategy in the survey.

5.2.2. Clustering Analysis on Items
A very important component used in the joint model of response
times and response accuracy is the Q matrix, which gives the
information on which attributes are measured by each item. The
previous research studies on Q matrix estimation or validation
are in general conducted in through a confirmatory way that
assumes students’ responses follow a specific DCM (e.g., Xu and
Shang, 2017). In this study, we conduct exploratory clustering
analysis on items, using not only responses but also response
times. The item group results from the cluster analysis can
be used to compare with the existing Q and further valid it
in the future. One clustering algorithm that accounts for both
continuous and categorical data is K-prototype (Huang, 1997).
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TABLE 3 | Descriptive statistics for 548 participants (response scores).

Variable Module score

N 1 2 3 4

Gender Female 401 7.00 (1.87) 8.76 (1.30) 6.34 (2.02) 7.15 (1.85)

Male 147 7.76 (1.80) 9.16 (1.05) 6.71 (1.95) 7.70 (1.85)

Country US 223 6.94 (1.85) 8.63 (1.37) 5.74 (1.92) 7.27 (1.82)

China 325 7.38 (1.89) 9.03 (1.13) 6.91 (1.92) 7.31 (1.89)

Strategy Analytic 62 7.37 (2.03) 8.84 (1.16) 6.56 (2.09) 7.52 (1.80)

Holistic 63 6.71 (2.02) 8.79 (1.05) 6.11 (1.89) 7.14 (1.88)

Combined 423 7.25 (1.83) 8.88 (1.29) 6.46 (2.01) 7.29 (1.87)

Intervention Color 264 7.07 (2.00) 9.06 (1.14) 6.58 (1.87) 7.13 (1.91)

Non-color 284 7.32 (2.00) 8.68 (1.32) 6.30 (2.11) 7.44 (1.81)

The numbers in the brackets are the standard deviation. The total score for each module

is 10.

TABLE 4 | Descriptive statistics for 548 participants (response time).

Module completion time (minute)

N 1 2 3 4

Gender Female 401 8.76 (4.30) 4.71 (2.12) 7.23 (3.49) 6.84 (3.30)

Male 147 8.13 (3.84) 4.06 (1.94) 6.52 (3.21) 5.98 (2.53)

Country US 223 7.17 (3.88) 3.84 (1.76) 6.15 (3.28) 6.15 (3.27)

China 325 9.56 (4.12) 5.01 (2.17) 7.64 (3.40) 6.92 (2.99)

Strategy Analytic 62 9.55 (4.80) 4.96 (2.45) 7.99 (4.33) 6.67 (3.24)

Holistic 63 7.27 (3.10) 3.74 (1.28) 5.78 (2.62) 5.48 (2.45)

Combined 423 8.64 (4.19) 4.59 (2.11) 7.08 (3.33) 6.77 (3.18)

Intervention Color 264 8.37 (4.07) 3.99 (1.75) 6.21 (3.15) 6.68 (3.29)

Non-color 284 8.80 (4.29) 5.05 (2.25) 7.81 (3.49) 6.55 (2.98)

The numbers in the brackets are the standard deviation.

We apply this method to group items in each module based
on the categorical responses and continuous response times in
which. The number of clusters,M, is determined by the Silhouette
index (Rousseeuw, 1987), which is commonly used in clustering
analysis (e.g., Rendón et al., 2011; Hämäläinen et al., 2017). This
index measures the similarity of an item to its cluster compared
to other clusters and its value ranges from−1 to 1. A value of 1 is
ideal as it suggests that data point is far away from other clusters.
On the contrary, value of−1 is not preferred because it indicates
that the data point is closer to other clusters than to its own. In
our study, we use the Global Silhouette value, which is the average
of the total silhouette values for all items of each cluster, to
determine the number of clusters (Bolshakova and Azuaje, 2003).
For all four modules, the average Silhouette values were highest
when M = 2. Based on this, we group items into two clusters
for each module. Note that the items can be in general classified
as two types based on the Q matrix. One are simple items which

measure only one attribute, the other are complex items which
measure more than one attributes. The clustering results from K-
prototype indicated that for each module, all simple items were
grouped together and most complex items were grouped into
another cluster. We note that four complex items, item 6 and
7 in module 1, item 23 in module 3, and item 35 in module 4,
were grouped with simple items instead. Based on the current
Q matrix, these four items all measure attributes x90 and y90.
To explore the reason of mismatching of these four items, we
compared them with item 20, 29, and 36, which also measure
attributes x90 and y90. It was found that the 3D objects in item 6,
7, 23, and 35 are in relative simple shapes compared with those
for item 20, 29, and 36, as shown in Figure 5. Moreover, the
response accuracy and response times on item 6, 7, 23, and 35
were closer to simple items than the complex itemsmeasuring the
same attributes. For example, the mean response time for item
35, simple and complex items in module 4 are 36.96, 27.04, and
50.33 s, respectively, and the mean correct response proportion
for these three groups are 0.7, 0.76, and 0.54, respectively.

5.3. Confirmatory Statistical Analysis
5.3.1. The Joint Model of Response Time and

Response Accuracy
In a longitudinal set up, such as the one in our study, the
multidimensional binary latent skills for an individual i at time

t are denoted as αi(t) = (αi1(t), ...,αiK(t))
′
, with t indexes time

and k = 1, ...,K indexes attributes and αik(t) = 0 indicating non-
mastery and 1 meaning mastery. Test-takers’ responses are also
time dependent, and the ith test-taker’s responses to J questions at
time t can be denoted asYi(t) = (Yi1(t), ...,YiJ(t)), with Yij(t) = 1
if the test-taker responded correctly to item j at time t, and 0
otherwise. In addition, the computer records the response time
on completing each test question for each test taker, denoted by
Li(t) = (Li1(t), ..., LiJ(t)). Both Yi and Li are used to provide an
estimate of each test-taker’s learning trajectory in terms of the
change of fine-grained skills over time based on responses and
also an estimate of their initial latent speed and the change of the
speed due to the latent attribute profile and other covariates.

Specifically, the joint model proposed by Wang et al.
(2019b) consists of a dynamic response model and a dynamic
response time model. The dynamic response model includes two
components. For each time t, a measurement model is used to
model P(Yij(t)|αi(t)). An example is

P
(

Yij(t) = 1|αi(t), sj(t), gj(t)
)

=

{

1− sj(t) if αi(t) � qj,

gj(t) otherwise,
(1)

where qj denotes the skills measured by item j. The notation �

indicates the test-taker i with latent attribute profile αi(t) has
mastered all the required skills for item j at time t. The model
describes by Equation (1) is the DINA model, which uses two
parameters to describe the correct response probability to each
item given the test-takers’ latent profile and the required skills
for that item. For example, if the test-taker’s latent profile at
this time is (1, 1, 0, 0)

′
, meaning he mastered the 90◦ rotations

along the x and y axes. If item j only requires 90◦ rotation along
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FIGURE 5 | Items measuring x90 and y90. Items 6,7,23, and 35 are clustered with simple items. Items 20, 29, and 36 are clustered with other complex items.

x axis, then this test-taker has probability 1 − sj(t) to answer
this item correctly. The term sj(t) is the slipping probability that
refers to the probability that the test-taker misses item j at time
t that his level of mastery suggests he would be expected to
answer correctly to it. In the other case, if this item j requires the
180◦ rotation along x axis, and this test-taker does not master
this required skill, then he has the probability gj(t) to answer

this item correctly. This probability, gj(t), is called the guessing
probability that describes the chance that the test-taker correctly
answers a question that his level of mastery would suggest he
should not. The DINA model is a very simple DCM model with
a conjunctive structure. It assumes only two correct response
probabilities for each item. Many popular CDMs, such as the
models assumes a compensatory structure or in more general
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forms can also be a candidate for this measurement portion.
In the subsequent section, we will conduct a measurement
model selection procedure to determine the most appropriate
measurement model for our data.

The second component in the dynamic response model is
a transition model, which describes how the latent attribute
profile changes from one time point to another. This transition
model assumes non-decreasing skill trajectories and conditional
independence of attribute-wise transitions given the previous
attribute pattern, and hence, it focuses onmodeling the transition
of each skill from non-mastery (0) to mastery (1), depending on
several latent and observed covariates. To model the transition
probability, we first assume the transition of an unlearned skill
from 0 to 1, depends on a general learning ability. This general
ability is denoted as a latent continuous variable for each test-
taker i as θi and the number of learned skills. In addition, as one
of the primary objectives of this study is to compare the two types
of interventions on improvement of the rotation skills across
gender, country and problem solving strategy, the variables reflect
this information are also included in this model. In summary,
the covariates we considered in the transition model are the
main effects of general learning ability θ , the mastered skill(s),
the gender, country, intervention, rotation strategy, as well
as the two-way interactions between intervention and gender,
intervention and country and intervention and rotation strategy.
It can be written as,

logit(P(αik(t + 1) = 1|αik(t) = 0))

= λ0 + λθ θi + λα

∑

l 6=k

αil(t)+ λg ∗ genderi (2)

+ λc ∗ countryi + λI ∗ IVi + λst1 ∗ Strategy1i + λst2 ∗ Strategy2i

+ λgI ∗ genderi ∗ IVi + λcI ∗ countryi ∗ IVi

+ λIst1 ∗ IVi ∗ Strategy1i + λIst2 ∗ IVi ∗ Strategy2i.

Here
∑

l 6=k αil(t) quantifies the number of mastered skills
at time t. IVi, genderi and countryi are dummy variables
representing the two levels of each categorical variable. The
Strategy1 and Strategy2 are the two dummy variables denoting
the three levels of the rotation strategies used by the test-
takers. Each of the component in the coefficient vector λ =

(λθ , λα , λg , λc, λI , λst1, λst2, λgI , λcI , λIst1, λIst2)
′
describes how the

corresponding covariate influences the odds of skill transition
from 0 to 1. These estimated values can help us evaluate the
designed learning program.

Finally, the dynamic response time model is built based on
a log-normal distribution. That is, the model assume the log of
response time on each question follows a normal distribution,
where the mean depends on a time intensity parameter(γj), the
test taker’s initial latent speed (τi), and the covariates that may
influence the speed during the learning process. The variance
of the distribution is characterized by a time discrimination
parameter (aj). The log-normal response time model is chosen
based on the analysis from a previous research study that used
the same experiment data set (Zhang and Wang, 2018). The key
part of the dynamic response time model is on defining a latent
covariate that connects the latent attribute profile and identifying
several observed covariates that may impact the speed. In our

case, we use a fixed effect model as the following specific form.

log(Lij(t)) ∼ N(γj − (τi +
∑

h=1

φhCovh),
1

aj
). (3)

The quantity
∑

h=1 φhCovh) in Equation (3) describes the
different covariates that may impact the speed. Specifically,

∑

h=1

φhCovh = φαG(αi, qj)+ φg ∗ genderi (4)

+ φc ∗ countryi + φI ∗ IVi + φst1 ∗ Strategy1i

+ φst2 ∗ Strategy2i

+ φgI ∗ genderi ∗ IVi + φcI ∗ countryi ∗ IVi

+ φIst1 ∗ IVi ∗ Strategy1i + φIst2 ∗ IVi ∗ Strategy2i.

The G(αi, qj) is the latent covariate that connects the learning
trajectory αi with the response time model. We defineG(αi, qj) =
1 is αi(t) � qj and 0 otherwise. In this way, this covariate
classify the change of speed into 2 classes on each item. The
other observed covariates in (4) are the same as those in the
transition model (2), and we are interested in investigating
whether those covariates can give us additional information on
the respond speed after controlling the latent learning trajectory.
Such information are useful to evaluate the developed learning
interventions.

In summary, the confirmatory joint model of response times
and response accuracy can produce a learning trajectory for each
test taker. In our case, if the latent profile is described based
on the order of x90, y90, x180, and y180, and for a participant

with the initial latent profile as (0, 1, 0, 0)
′
, indicating one masters

only the 90◦ rotation along y axis, then joint model can provide
an estimate of the latent profile after each stage of the learning
program. The improvement of a specific rotation skill can be
observed as the change from non-mastery (0) to mastery (1). In
addition, the estimated coefficients in the transition model (λs)
and dynamic response model (φs) can be used to evaluate the
effectiveness of the learning program cross different populations
defined by various latent and observed covariates.

5.3.1.1. Selection of the response measurement model
Before fitting the joint model, we first need to select the
appropriate measurement model for responses. The models
we consider are DINA, the deterministic-input, nopisy-or-
gate model (DINO; Templin and Henson, 2006), the reduced
reparameterized unified model (RRUM; Hartz, 2002), linear
logistic model (LLM; Maris, 1999), the additive CDM (ACDM;
de la Torre, 2011), and generalized DINA (G-DINA; de la
Torre, 2011). These models are the representatives of DCMs that
either have conjunctive/compensatory assumptions or belong
to a family of models that have more general assumptions. To
select the most appropriate model, we performed both test-
level and item-level model selection procedures, treating each
module as a mini test. These procedures were conducted using
packageGDINA (Ma et al., 2019) with Expectation-Maximization
algorithm in R version 3.5.1 (R Core Team, 2018). For the test-
level model selection, the Akaike information criterion (AIC)
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TABLE 5 | Model-data fit indices.

Module 1 Module 2 Module 3 Module 4

Model AIC BIC AIC BIC AIC BIC AIC BIC

DINA 5996.65 6147.37 3629.94 3780.66 6452.84 6603.56 5485.19 5635.91

DINO 5993.90 6144.62 3632.55 3783.27 6469.02 6619.74 5498.81 5649.53

GDINA 5979.02 6181.41 3633.79 3793.12 6464.39 6658.17 5498.36 5700.76

RRUM 5985.95 6162.51 3631.89 3786.91 6458.71 6630.96 5496.97 5673.53

LLM 5982.26 6158.81 3631.75 3786.78 6459.18 6631.43 5498.22 5674.77

ACDM 5982.03 6158.59 3631.84 3786.87 6458.79 6631.04 5499.01 5675.57

and Bayesian information criterion (BIC) were used. Table 5
represents the values of AIC and BIC for multiple models at
module level. For module 2–4, both AIC and BIC suggest that
the best measurement model is DINA. However, for module 1,
AIC suggests the GDINA and BIC suggests the DINO. The BIC
value from the DINA model is very close to the DINO. For the
item-level model selection, we apply the Wald test (de la Torre
and Ma, 2016; Ma and de la Torre, 2016) to determine the most
appropriate model for each item. The reduced models with p-
values less than the pre-specified α level were rejected. If all
reduced models were rejected for an item, the GDINAmodel was
used as the best model; if more than one reduced models were
retained, the reducedmodel with the largest p-values is selected as
the most appropriate model with prioritizing DINA and DINO.
Before doing that, we note that there are in fact 21 items that
measure only one attribute. For these items, all types of DCMs
are equivalent to the DINA model. The For the rest 19 items,
the Wald test suggests that DINA model fits best for 12 of them.
Other reduced models, such as RRUM, ACDM, and DINO, fit
best for the rest 7 items. The details of the Wald test rest are
summarized in Table 1A in Appendix. Both the test-level and
item-level results suggest the DINA model fits most of the test
questions, and also given its simple format, we choose to use the
DINA model as the measurement model in the joint model.

5.3.1.2. Model convergence result
The joint model was calibrated through a Metropolis-Hastings
within Gibbs Sampler (Wang et al., 2019b) through R (R Core
Team, 2018). The MCMC chain convergence was evaluated by
the Gelman-Rubin proportional scale reduction factor (PSRF)
(Gelman and Rubin, 1992), commonly known as R̂. Based on
this criterion, this fitted model converged quickly as that shown
in Figure 6. We can observe that after about 15,000 iterations,
the maximumGelman-Rubin proportional scale reduction factor
among all parameters fell below 1.2, indicating that parameter
estimates have stabilized.

5.3.2. Item Analysis for Testing and Learning Modules

5.3.2.1. Item parameters
The joint model of response accuracy and response times is
able to estimate two types of item parameters for each item:
the slipping and guessing parameters from the DINA model
and the item discrimination and item intensity parameters from
the log-normal response time model. The distribution of the

TABLE 6 | The mean item parameters for each module.

Function Modules s g 1 − s− g a γ

Testing Module 1 0.182 0.560 0.259 1.657 3.288

Module 4 0.193 0.514 0.293 1.560 2.970

Learning Module 2 0.065 0.757 0.178 1.978 2.680

Module 3 0.272 0.418 0.310 1.757 3.093

estimated guessing and slipping parameters for the 40 rotation
questions are summarized in terms of boxplots in Figure 7. The
items in the testing modules and learning modules are presented
separately to better compare their characteristics. In each of the
boxplot, the x axis denotes the item type in terms of the attributes
measured by that item and the y axis denotes the estimated
parameter value for an item with certain measured skills. The
distribution of the slipping and guessing parameters had the
similar pattern for the items in the testing modules (module 1
and 4) and learning modules (module 2 and 3). Specifically, the
items require only one simple skill, such as x90 or y90, tend to
have large guessing parameters and small slipping parameters.
The items require one complex skill, such as y180, or two skills,
have small guessing parameters and large slipping parameters.
The variation of the same type of item parameters is larger for
the items in the learning module than that in the testing modules.
Similarly, the distribution of the estimated time intensity and
time discrimination parameters of the 40 items are documented
in Figure 8. Again, the distribution of these parameters had the
similar pattern in the testing and learning modules. That is, the
items require one simple skill tend to have small time intensity
parameters and large time discrimination parameters. The items
require one complex skill or two skills tend to have large time
intensity parameters and small time discrimination parameters.
The average values of DINAmodel parameters and response time
model parameters for each module are presented in Table 6. The
distribution of these parameters are relatively consistent with the
test assembly requirement presented in Table 1. That is, the two
testing modules (module 1 and 4) were assembled with items
that had balanced item quality, while the two learning modules
(module 2 and 3) were designed based on their corresponding
learning functions.

Next, we focus on the analysis with some items that were
identified to have extreme item parameters. The item with the
largest guessing parameter, which is a new item created based on
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FIGURE 6 | The maximum univariate Gelman-Rubin proportional scale reduction factor from the joint model as a function of number of iterations, when uniform initial

attribute patterns were used. Dotted line represents the cutoff of 1.2.

FIGURE 7 | The estimated DINA model item parameters. The white whisker diagram represents the slipping parameters s and the gray ones represent the guessing

parameters g.

FIGURE 8 | The estimated response time model item parameters. The white whisker diagram represents the time discrimination parameter a and the gray ones

represent the time intensity parameters γ .
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FIGURE 9 | The item (ID: N10) with largest guessing parameter g.

FIGURE 10 | The item (ID:30) with the largest slipping parameter s.

the revised PSVT: R, is presented in Figure 9. This item is also
the one that has the largest item discrimination parameter. The
reference object in this item measures the 180◦ rotation along x
axis. If the participants can recognize the rotation is along the
x axis, they can easily exclude the four distractors and select
the correct option (the 4th one). It may be due to this reason,
this item has the largest guessing probability. The distractors
of this new item need to be further refined in the future to

better diagnose the test-takers’ rotation skills. For the current
learning program, this item is the second question of the first
learning module, thus the main function is to help test-takers
learn the rotation. The item with the largest slipping parameter
is presented in Figure 10. It has a relatively large time intensity
parameter as well. It measures 180◦ rotation along the x axis,
and 90◦ rotation along the y axis, and the object in this item has
the most complex shape. Again, this item may not have a good
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TABLE 7 | The estimated coefficients from the transition model.

95% credible interval

Variable Notation Mean SD Lower bound Upper bound

θ λθ 2.821∗ 0.703 1.443 4.199

Learned skills λα 0.471∗ 0.217 0.046 0.896

Gender λg −0.350 0.346 −1.028 0.328

Country λc −0.225 0.296 −0.805 0.355

IV λIV 0.165 0.355 −0.531 0.861

Strategy 1 λst1 −0.101 0.255 −0.601 0.399

Strategy 2 λst2 0.101 0.443 −0.767 0.969

Gender*IV λgI 0.226 0.312 −0.386 0.838

Country*IV λcI −0.004 0.285 −0.563 0.555

IV*Strategy 1 λIst1 0.216 0.233 −0.241 0.673

IV*Strategy 2 λIst2 0.280 0.468 −0.637 1.197

IV, Intervention; Dummy coding of the categorical variables: gender (female 1, male −1),

Country (US 1, China −1), IV: colored (1), non-colored(-1), Strategy 1: (Compare Analytic

Strategy and Holistic Strategy with Hybrid Strategy), Strategy 2: (Compare Analytic with

Holistic Strategy); *p < 0.05.

diagnostic function. However, in the current learning program, it
is the last question in the second learning module, and the main
purpose is to improve test-taker’s rotation skills.

5.3.2.2. Reliability analysis for two testing modules
A reliability analysis was conducted to evaluate the two
testing modules (module 1 and 4). In our study, classification
consistency index (CCI; Cui et al., 2012) was chosen to estimate
the test reliability. The CCI is the probability of classifying
a randomly selected examinee consistently according to two
administrations of a test. The range of CCI is between 0 and
1, and a higher values indicate a larger reliability. The CCI for
module 1 and module 4 are 0.729 and 0.931.

5.4. Evaluation the Effectiveness of the
Learning Program
The learning program is evaluated using the joint model results.
The rest of this section reports the results from the dynamic
response model and dynamic response time model portion of the
joint model.

5.4.1. Dynamic Response Model Result
The estimated coefficients from the transition model are
documented in Table 7. Based on the 95% creditable interval,
only the general learning ability θ and the learned skills were
statistically related to odds of the transition probability. This
indicates that after controlling the latent variables and based
on the response accuracy across different time points, the
two learning interventions (colored and non-colored) have the
same effectiveness in improving the spatial rotation skills across
gender, country, and the rotation strategy.

Next, we evaluate the learning program by investigating the
overall growth of spatial skills. The output from the dynamic
response model indicates that at the initial time point, that
is when the participants finished the first testing module and
before they received the first learning module, 59.5% participants

FIGURE 11 | The distribution of the number of mastered skills for non-master

group at four time point.

were estimated as mastery of four rotation skills. Because those
participants had already mastered the four skills before receiving
the learning modules, we excluded them from the following
analysis to better evaluate the learning program. We refer the
rest 222 participants who at least missed one rotation skill in
the beginning as the non-masters. The overall effectiveness of the
learning program is evaluated on summarizing the growth of the
non-masters.

5.4.1.1. The overall growth of non-masters
We first report a paired t test result that compares the test score
from module 1 and module 4, as the items in these two modules
have similar psychometric properties and can be treated as a
pretest and a post-test. On average, for the non-masters, the
module 4 test score (M = 6.032, SD = 1.780) is significantly
higher than themodule 1 test score (M = 5.716, SD = 1.638) and
with a small to median effect size, t(221) = 2.060, p = 0.04, r =
0.137. Then the results from the dynamic response model using
the item score in the four modules are explored. The overall
learning trajectory, denoted as the distribution of the number of
mastered skills at each time point, is documented in Figure 11.
From there we can observe a “growth” of the rotation skill as the
number of non-masters who mastered none of the skills reduced
from 17.6% in the beginning of the experiment to 8.5% at the
end of the experiment. There are also about 25.2% non-masters
mastered four skills in the end. Table 8 further documents the
proportion of people who mastered each skill after test module
1 and 4. The results from a χ2 test that compares the paired
proportion indicates a significant increase of mastery for each
skill with medium effect size (Cohen’s h). This demonstrates the
newly developed learning program can significantly improve the
non-masters’ four spatial rotation skills.

Next, we further investigate how the learning trajectory is
influenced by the general learning ability θ . Based on the
results from the transition model (Table 7), we can conclude
that for a specific rotation skill, the odds of transition from
non-mastery to mastery is significantly positively related to the
general learning ability θ , (λ̂θ = 2.821, p < 0.05) and the
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TABLE 8 | The Skill Mastery Rate (proportion of participants that master each

skill).

Skill Time 1 Time 4 Difference p-value Cohen’s h

x90 0.812 0.876 0.064 < 0.01 0.290

x180 0.648 0.761 0.113 < 0.01 0.374

y90 0.761 0.836 0.075 < 0.01 0.301

y180 0.628 0.730 0.102 < 0.01 0.322

Module 1 and Module 4 represent time 1 and time 2.

FIGURE 12 | The average number of mastered skills at each time point for

four learning ability groups. −0.528, −0.343, and 0.151 are the 1st, 2nd, and

3rd quartile of θ values.

number of mastered skills (λ̂α = 0.471, p < 0.05). To further
explore these two variables, the non-masters were divided into
four groups based on their estimated general learning ability θ .
For each group, the number of mastered skills at each stage of
the experiment was investigated. The three cut off points were
selected as the 1st (−0.528), 2nd (−0.343), and 3rd quantile
(0.151) of the estimated general learning ability so that group
1 consists of participants with the lowest learning ability and
group 4 consists of participants with the highest learning ability.
Figure 12 presents the average number of mastered skills at each
time point for each of the four groups. From there we can see
that, for the participants with low learning ability (group 1), their
learning rate was the lowest. While for the high learning ability
participants (group 4), the learning rate is the highest (starts
with around 1.5 skills and can master more 3–4 skills). This
figure also illustrates how the learned skills can help learn the un-
mastered skills. For the participants starting with more than one
skills (group 3 and group 4), they learned much faster than the
participants starting with 1 or <1 skill (group 1 and group 2).

5.4.2. Dynamic Response Time Model Result
The estimated coefficients for covariates (φ) in the dynamic
response time model are presented in Table 9. First, on average,
the participants who mastered the required skills for an item
spent 1.38 s more on completing this question, compared with

TABLE 9 | The estimated φs from the response time model.

95% credible interval

Variable Notation Mean SD Lower bound Upper bound

G(αi (t), qj) φα −0.327∗ 0.028 −0.382 −0.272

Gender φg −0.081∗ 0.017 −0.114 −0.048

Country φc 0.084∗ 0.016 0.053 0.115

IV φIV 0.072∗ 0.023 0.027 0.117

Strategy1 φst1 0.034∗ 0.012 0.010 0.058

Strategy2 φst2 −0.093∗ 0.033 −0.158 −0.028

Gender*IV φgI 0.017 0.018 −0.018 0.052

Country*IV φcI 0.017 0.016 −0.014 0.048

IV*Strategy1 φIst1 0.011 0.013 −0.014 0.036

IV*Strategy2 φIst2 0.038 0.032 −0.025 0.101

IV, Intervention; Dummy coding of the categorical variables: gender (female 1, male −1),

Country (US 1, China −1), IV: colored (1), non-colored(-1), Strategy 1: (Compare Analytic

Strategy and Holistic Strategy with Hybrid Strategy), Strategy 2: (Compare Analytic with

Holistic Strategy); ∗p < 0.05.

those who did not master all the required skills (φ̂α = 0.327, p <

0.05). Given the participants who had the same learning
trajectory, the male participants completed a question faster than
female participants (φ̂g = −0.081, p < 0.05); the participants
in US completed a question faster than participants from China
(φ̂c = 0.084, p < 0.05); the participants using colored
intervention completed a question faster than participants using
non-colored intervention (φ̂IV = 0.072, p < 0.05); and finally,
the average response time of participants who used analytic
strategy and who used holistic strategy were shorter than the one
who used a combined strategy (φ̂st1 = 0.034, p < 0.05), and
the participants using a holistic strategy completed a question
faster than participants using an analytic strategy (φ̂st2 = −0.093,
p < 0.05).

5.4.3. Survey Questions for Validation
According to the survey collected at the end of experiment, 68%
participants rated greater or equal to 3 regarding the questions,
“Do you think the learning program is helpful or not.” This
question used the 5 points Likert scale with 1 indicates “not very
helpful” and 5 denotes “very helpful.”

6. DISCUSSION

This study investigated the possibility of developing a learning
program that integrates a multidimensional diagnostic
assessment with two different learning interventions with
the purpose to diagnose and improve the 3-D mental rotation
skills. The program was evaluated through an experiment paired
with the statistical analysis from a joint model of response
accuracy and response times. Compared with the traditional
assessment on spatial skills, where the tests are timed and number
correct is reported as a measure for test-takers’ performances,
the proposed diagnostic assessment through the analysis from
the joint model can provide an informative estimate of the
learning trajectory for each participant in terms of the strengths
and weaknesses in four fine-grained mental rotation skills over
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time. The response times are also utilized to discover additional
information about learning across different covariates. While
the earlier study (Wang et al., 2017) provided initial evidence
of the effectiveness of building a multidimensional diagnostic
assessment with training tools, the present study improved the
assessment and learning intervention design and evaluated the
newly developed program by investigating the effectiveness of
two interventions across gender, country and rotation strategy.

The results from the joint learning model demonstrated
that learning of a specific rotation skill is significantly related
to a general learning ability and the mastered skills. Figure 7
illustrates that it is difficult for test-takers who mastered none of
four rotation skills to improve over a short time training. Table 8
indicates the learning of the four rotation skills may follow a
hierarchical structure, as the x90◦ rotation might be the easiest
one to learn and y180◦ is the most difficult to learn. Thus, to
train the test-takers with extremely low spatial ability, it’s better
to start with a relatively simple and single rotation then transfer
to more complex task. This in fact supports the current learning
program that first provides an easy learning module then a more
challenging one.

However, the current learning program is not adaptive,
meaning all the participants received the same learning modules.
The results from this study can guide a future design of the
adaptive intervention that targets at the weakness of the specific
spatial skill and provide the appropriate learning materials. In
addition, the output from the dynamic response model portion
of the joint model indicates the learning programs with the two
designed interventions had the same effectiveness to improve
the response accuracy across gender, country and rotation
strategy. However, the dynamic response time model reveals
the speed difference between the female and male participants,
participants using colored and non-colored intervention and
participants using three different rotation strategies. Such
additional information from the dynamic response time are also
helpful in designing an adaptive learning system in the future.

The output of the item parameter estimations from the joint
learning model provides new insights into the revised PSVT:
R test questions as well. As reviewed in the beginning of this
paper, the PSVT:R and revised PSVT: R test questions have been
used in many research studies and in generally were reported to
have high reliability. The item parameters estimation from the
joint learning model indicates that some test questions, especially
the ones measure a simple rotation skill can have large guessing
parameter, and the ones with complex object and combination
of multiple difficult rotation skills may not have good diagnostic
information to differentiate the participates with low spatial
ability from those with high spatial ability. Carefully examining

the distractors may improve their diagnostic functioning. Lastly,
another important component in the joint model, is the Qmatrix
which links the items and the measured attributes. The correct
inference from the joint model and the diagnostic assessment
relies on how accurate the Q matrix is. The current study used
the Q matrix from a previous study, which was mainly specified
based on subject experts’ opinions. An exploratory clustering
method was used to validate the Q matrix, using both response
times and response accuracy. It was found that attributes defined
in the Q matrix did not contain the information about the degree
of complexity of the objects. In the future, we will further validate
this Q matrix using many recent techniques in psychometrics
(e.g., Chen et al., 2018a).
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APPENDIX

TABLE 1A | The Wald test results for selecting response measurement model.

Item Model p-value Adjusted p-value

Item 1 GDINA NA NA

Item 2 GDINA NA NA

Item 3 GDINA NA NA

Item 4 DINA 0.3407 1

Item 5 GDINA NA NA

Item 6 DINO 0.1682 1

Item 7 DINO 0.3288 1

Item 8 RRUM 0.5466 1

Item 9 RRUM 0.3861 1

Item 10 DINA 0.3447 1

Item 11 GDINA NA NA

Item 12 GDINA NA NA

Item 13 GDINA NA NA

Item 14 GDINA NA NA

Item 15 GDINA NA NA

Item 16 GDINA NA NA

Item 17 GDINA NA NA

Item 18 GDINA NA NA

Item 19 GDINA NA NA

Item 20 DINA 0.3018 1

Item 21 GDINA NA NA

Item 22 GDINA NA NA

Item 23 DINA 0.2031 1

Item 24 GDINA NA NA

Item 25 GDINA NA NA

Item 26 GDINA NA NA

Item 27 ACDM 0.9331 1

Item 28 DINA 0.6384 1

Item 29 RRUM 0.088 0.792

Item 30 RRUM 0.0579 0.6374

Item 31 GDINA NA NA

Item 32 GDINA NA NA

Item 33 GDINA NA NA

Item 34 GDINA NA NA

Item 35 DINO 0.7287 1

Item 36 DINA 0.8787 1

Item 37 DINA 0.0974 1

Item 38 DINA 0.7211 1

Item 39 DINA 0.0881 1

Item 40 DINA 0.1309 1

The p-value and adjusted p-value are from the Wald test between the selected reduced

DCM model and GDINA model. Thus, those values are NA for the items are best fitted

with GDINA model.
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