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ABSTRACT We report the draft genome sequence of the Firmicute strain Y002, a fac-
ultatively anaerobic, acidophilic bacterium that catalyzes the dissimilatory oxidation of
iron and sulfur and the reduction of ferric iron. Analysis of the genome (2.9 Mb; G1C
content, 46 mol%) provided insights into its ability to grow in extremely acidic geother-
mal environments.

We report the draft genome sequence of the Firmicute strain Y002, a moderately
thermophilic, extremely acidophilic, facultative anaerobe isolated from an acidic

(pH 3.3) geothermal (78°C) site within Yellowstone National Park (WY, USA) (1, 2).
Firmicute strain Y002 was grown in a liquid medium containing 20 mM ferrous

iron and 0.05% (wt/vol) yeast extract (pH 1.7) at 45°C; the biomass was harvested
by centrifugation and the DNA extracted using the FastDNA Spin kit for soil (2).
Following the manufacturer’s recommendations, whole-genome sequencing was
carried out using the Illumina MiSeq platform. Two paired-end libraries were pro-
duced using the Nextera DNA sample preparation kit, generating 1,627,254 paired-
end reads with coverages of 159� and 93� for the libraries. The reads were
trimmed and filtered using FastX-Toolkit v0.0.13 (http://hannonlab.cshl.edu/fastx
_toolkit/) (Phred score, 20; minimum read length, 20; minimum percentage of high-
quality bases, 80%) (3), generating 1,585,528 high-quality paired-end reads. De
novo assembly was carried out using SPAdes v3.7 (4), resulting in 135 contigs com-
prising a single chromosome of 2.9 Mb, with a G1C content of 46% and an assem-
bly coverage of 223�. The final assemblies were annotated using the Prokaryotic
Genome Annotation Pipeline v3.3, with the best-placed reference protein set and
GeneMarkS1 as the annotation methods (5). The draft genome comprises
2,873,735 bp with an N50 value of 95,731 bp. Using CheckM v1.1.2 (6), a complete-
ness of 98.08% was predicted, with 1.79% contamination. The genome potentially
encodes 2,864 protein-coding genes (of which 1,291 have predicted functions), 46
tRNA genes, and 6 rRNA genes, consisting of 2 each 16S rRNA, 23S rRNA, and 5S
rRNA genes. Unless otherwise specified, default parameters were used for the soft-
ware analysis.

The Firmicute strain Y002 has an absolute requirement for an organic carbon source
and cannot fix carbon dioxide, even in CO2-enriched atmospheres (2). Interestingly, the
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genome was found to include three gene clusters predicted to encode proteins
involved in carbon assimilation via the Calvin-Benson-Bassham (CBB) cycle, including
ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) and the LysR-type tran-
scriptional regulator CbbR (7). However, the genome lacks genes encoding carboxy-
somes, which are typically associated with CBB genes (8).

The genome was predicted to encode sor, supporting the previous report (2) that
this bacterium can catalyze the dissimilatory oxidation of S0. The uptake of sulfate and
oxidation of sulfide appear to be mediated via sqr (sat and cysCP) (9). Its diversified me-
tabolism of sulfur compounds could help it to exploit high-temperature biomining
environments, in addition to geothermal sites.

Genome interrogation suggests that iron acquisition and homeostasis are mediated
through the production of siderophores, transcriptional regulators, several Fe-S bind-
ing proteins, and hemN, nifU, efeU, and yfeB (10, 11). The genome is also predicted to
have a copy of feoE, which is important for survival during anaerobic iron respiration
(12), and an Nramp family of proteins that are involved in cellular responses to fluctuat-
ing environmental supplies of metal ions (13). Experimental data are required to con-
firm these predictions.

In summary, analysis of the Firmicute strain Y002 genome has provided preli-
minary insight into the distinctive characteristics that facilitate its growth in
low-pH thermal environments, suggesting possible uses in commercial bioleaching
operations.

Data availability. The whole-genome shotgun project was deposited at DDBJ/
EMBL/GenBank under accession number MPDK01000000; the assembly and raw data
can be found under SRA accession numbers SRR18070407 and SRR18070406. The ver-
sion described here is version MPDK00000000.1.
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