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Gestures in music are of paramount importance partly because they are directly

linked to musicians’ sound and expressiveness. At the same time, current motion

capture technologies are capable of detecting body motion/gestures details very

accurately. We present a machine learning approach to automatic violin bow gesture

classification based onHierarchical HiddenMarkovModels (HHMM) andmotion data.We

recorded motion and audio data corresponding to seven representative bow techniques

(Détaché, Martelé, Spiccato, Ricochet, Sautillé, Staccato, and Bariolage) performed by

a professional violin player. We used the commercial Myo device for recording inertial

motion information from the right forearm and synchronized it with audio recordings.

Data was uploaded into an online public repository. After extracting features from both the

motion and audio data, we trained an HHMM to identify the different bowing techniques

automatically. Our model can determine the studied bowing techniques with over 94%

accuracy. The results make feasible the application of this work in a practical learning

scenario, where violin students can benefit from the real-time feedback provided by the

system.

Keywords: machine learning, technology enhanced learning, Hidden Markov Model, IMU, bracelet, audio

descriptors, bow strokes, sensors

1. INTRODUCTION

A gesture is usually defined as a form of non-verbal communication action associated with an
intention or an articulation of an emotional state. It constitutes an intrinsic part of the human
language as a natural body-language execution. Armstrong et al. (1995) defined gestures as an
underlying brain mechanism common in both language and motor functions. Gestures have been
studied in the context of dance performance, sports, rehabilitation and music education, where the
term is not only related to speech but is interpreted as the broader concept of a “learned technique of
the body” (Carrie, 2009). For instance, in highly competitive sports, as well as in music education,
gestures are assumed to be automatic-motor abilities, learned by repetition, to execute an action
optimally. Therefore, those gestures are intended to be part of the performer’s repertoire. Gestures
in music are of paramount importance because fine postural and gestural body movements are
directly linked to musicians’ expressive capabilities, and they can be understood as well as correct
“energy-consumption” habit development to avoid injuries.
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Current motion capture technologies are capable of detecting
body motion details very accurately, and they have been used
in a variety of sports industries to enhance athletes throughput,
or in rehabilitation applications (Chi et al., 2005). For instance,
tracking systems have been built into professional golf clubs as a
computer assistant to strengthen swing analysis. Bilodeau et al.
(1959) argue that real-time feedback has a more positive effect
on learning newmotor skills. Furthermore, in musical education,
implementing similar computer-assistedmethodologies, tracking
systems and inertial measurement units (IMU) are recently
being developed with the aim to improve music education,
instruction and performance. 3D body reconstructions based
on camera motion tracking rooms or electromagnetic positional
tracking systems can be quite expensive. Hence, new models
using wearable devices based on magnetometers, gyroscopes
and accelerometers, in conjunction with machine learning
algorithms are being reported as efficient and low-cost solutions
for analyzing body motion and gestural information (Mitra
and Acharya, 2007). From this perspective, the Internet of
Musical Things (IoMusT) is an emerging field as an extension
of the Internet of Things principle. It refers to the design
and implementation of embedded technology in smart music-
instruments to expand its possibilities, recollect data from the
users and enhance the learning process in particular of those cases
of self-practice learners who do not have direct feedback from
the tutor. Also, it fosters the design of new collaborative learning
environments connected to an online application. The field of
IoMusT embrace topics such as human-computer interaction,
artificial intelligence, new interfaces for musical expression and
performative arts (Turchet et al., 2017, 2018).

1.1. Motivation
TELMI (Technology Enhanced Learning of Musical Instrument
Performance), is the framework where this study is being
developed (TELMI, 2018). Its purpose is to investigate how
technology regarding multimodal recordings, computer systems,
sensors and software, can enhance music students practices,
helping them to focus on the precise development of good
habits, especially at the moment to incorporate better musical
skills. With the focus on violin performance, as a test case,
one of the primary goals of the project is to provide real-time
feedback to students about their performance in comparison to
good-practice models which are based on recordings of experts.
Our findings would be implemented in other instruments in
music education environments. Academically, the project is
a collaboration between the Universitat Pompeu Fabra, the
University of Genova and the Royal College of Music, London.

2. RELATED WORK

2.1. Automatic Gesture Recognition
Among many existing machine learning algorithms, Hidden
Markov models (HMMs) have been widely applied to motion
and gesture recognition. HMMs describe motion-temporal
signature events with internal discrete probabilistic states defined
by Gaussian progressions (Brand et al., 1997; Wilson and
Bobick, 1999; Bevilacqua et al., 2010; Caramiaux and Tanaka,

2013). They have been applied to music education, interactive
installations, live performances, and studies in non-verbal
motion communication. Yamato et al. (1992) is probably the
first reference of applying HMMs to describe temporal events
in consecutive-image sequences. The resulting model identified
with high accuracy (around 90%) six different tennis stroke
gestures. Brand et al. (1997) presented a method based on two
coupled HMMs as a suitable strategy for highly accurate action
recognition and description over discrete temporal events. In
their study, they defined T’ai Chi gestures tracked by a set of
two cameras, in which a blob is extracted forming a 3D model of
the hand’s centroids. Authors argued that simple HMMswere not
accurate enough where coupled HMMs succeed in classification
and regression. Wilson and Bobick (1999) introduced an on-
line algorithm for learning and classifying gestural postures
in the context of interactive interfaces design. The authors
applied computer vision techniques to extract body and hands
positions from camera information and defined an HMM with
a structure based on Markov Chains to identify when a gesture
is being performed without previous training. In another study
conducted by Yoon et al. (2001), an HMM is used to develop a
hand tracking, hand location and gesture identification system
based on computer vision techniques. Based on a database
consisting of hand positions, velocity and angles, it employs k-
means clustering together with an HMM, to accurately classify
2,400 hand gestures. The resulting system can control a graphical
editor consisting of twelve 2D primitives shapes (lines, rectangles,
triangles, etc.) and 36 alphanumeric characters. Haker et al.
(2009) have presented a detector of deictic gestures based on
a time-of-flight (TOF) camera. The model can determine if a
gesture is related to the specific meaning by pointing to some
information projected in a board; it also handles a slide-show,
switching to the previous or next slide with a thumb-index finger
gesture. Kerber et al. (2017) presented a method based on a
support vector machine (SVM) in a custom Python program,
to recognize 40 gestures in real-time. Gestures are defined
by finger dispositions and hand orientations. Motion data is
acquired using theMyo device with an overall accuracy of 95% of
correct gestures estimations. Authors have implemented a matrix
automatic transposition allowing the user to place the armband
with any precise alignment or left/right forearm considerations.

2.2. Automatic Music Gesture Recognition
There have been several approaches to study gestures in amusical
context. Sawada and Hashimoto (1997) applied an IMU device
consisting of an accelerometer sensor to describe rotational
and directional attributes to classify music gestural expressions.
Their motivation was to measure non-verbal communication
and emotional intentions in music performance. They applied
tempo recognition in orchestra conductors to describe how
the gestural information is imprinted in the musical outcome.
Peiper et al. (2003) presented a study of violin bow articulations
classification. They applied a decision tree algorithm to identify
four standard bow articulations, Détaché, Martelé, Spiccato,
and Staccato. The gestural information is extracted using an
electromagnetic motion tracking device mounted close to the
performer right hand. The visual outcome is displayed in a CAVE
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as a room with a four-wall projection setup for immersive virtual
reality applications and research. Their system reported high
accuracy (around 85%) when classifying two gestures; however,
the accuracy decreased to 71% when four or more articulations
were considered.

Kolesnik and Wanderley (2005) implemented a discrete
Hidden Markov Model for gestural timing recognition and
applied it to perform and generate musical or gestural related
sounds. Their model is able to be trained with arbitrary
gestures to track the user’s motion. Gibet et al. (2005)
developed an “augmented violin” as an acoustic instrument
with aggregated gestural electronic-sound manipulation. They
modeled a k-Nearest Neighbor (k-NN) algorithm for the
classification of three standard violin bow strokes: Détaché,
Martelé and Spiccato. Authors used an analog device (i.e.,
ADXL202), placed at the bow-frog, to transmit bow inertial
motion information. It consisted of two accelerometers to
detect bowing direction. Gibet et al. (2005) described a linear
discrete analysis to identify important spacial dissimilitudes
among bow articulations, giving a highly accurate gestural
prediction in the three models presented (Detaché 96.7%,
Martelé 85.8%, and Spiccato 89.0%). They also described a
k-NN model with 100% accuracy estimation in Detaché and
Martelé, 68.7% in Spiccato. They conclude that accuracy is
directly related to dynamics, i.e., pp, mf and ff. Caramiaux
et al. (2009) presented a real-time gesture follower and
recognition model based on HMMs. The system was applied
to music education, music performances, dance performances,
and interactive installations. Vatavu et al. (2009) proposed a
naive detection algorithm to discretize temporal events in a two-
dimensional gestural drawing matrix. The similitude between
two gestures (template vs. new drawing) is computed with
a minimum alignment cost between the curvature functions
of both gestures. Bianco et al. (2009) addressed the question
of how to describe acoustic sound variations directly mapped
to gesture performance articulations based on the Principal
component analysis (PCA) and segmentation in their sound
analysis. They focused on the study of a professional trumpet
player performing a set of exercises with specific dynamical
changes. The authors claimed that the relationship between
gestures and sound is not linear, hypothesizing the at least two
motor-cortex control events are involved in the performance of
single notes.

Caramiaux et al. (2009) presented a method called canonical
correlation analysis (CCA) as a gesture tool to describe the
relationship among sound and its correspondingmotion-gestural
actions in musical performance. The study is based on the
principle that speech and gestures are complementary and co-
expressive in human communication. Also, imagery-speech can
be reported as a muscular activity in the mandibular area.
The study described features extracted to define motion in
body movements, defining a multi-dimensional stream with
coordinates, vector velocities and acceleration to represent a
trajectory over time; as well as its correlation with sound
features, giving an insight on methodologies to extract useful
information and describe sound-gesture relationships. Tuuri
(2009) proposed a gestural-based model as an interface

for sound design. Following the principle that stereotypical
gesture expression communicates intentions and represent non-
linguistic meanings, sound can be modeled as an extension of
the dynamical changes naturally involved on those gestures. In
his study, he described body movement as semantics regarding
sound design.

Bevilacqua et al. (2010) presented a study in which an HMM-
based system is implemented. Their goal was not to describe a
specific gestural repertoire, but instead, they proposed an optimal
“low-cost” algorithm for any gestural classification without the
need for big datasets. Gillian et al. (2011) exposed a different
approach to the standard Markov Model described above.
They extended Dynamic Time Warping (DTW) to classify N-
dimensional signal with a low number of training samples, having
an accuracy rate of 99%. To test DTW algorithms, the authors
first defined a set of 10 gestures as an “air drawing” articulations
of the right hand. Drawn numbers from 1 to 5, a square, a circle,
a triangle, a horizontal and vertical gestural line similar to an
orchestral conducting, were the final gestural repertoire. Their
methodology, in conclusion, gives a valid and optimal approach
to classify any gesture. In the same year, a study conducted
by Van Der Linden et al. (2011) described the invention of a
set of sensors and wearables called MusicJacket. They aimed
to give postural feedback and bowing technique references to
novice violin players. Authors reported that vibrotactile feedback
directly engages the subjects’ motor learning systems, correcting
their postures almost immediately, shortening the period needed
to acquire motor skills and reduces cognitive overload.

Schedel and Fiebrink (2011), have implemented the
Wekinator application Fiebrink and Cook (2010) to classify
seven standard cello bow articulations such as legato, spiccato,
or marcato, among others. Using a commercial IMU device
known as K-Bow for the motion data acquisition. The cello
performer used a foot pedal to stop and start articulation
training examples. For each stroke, she varied the string,
bow position, bow pressure, and bow speed. After training
a model, the cellist evaluated it by demonstrating different
articulations. The authors created an interactive system for
composition and sound manipulation in real-time based on the
bow gesture classifications. Françoise et al. (2014) introduced
the “mapping by demonstration” principle where users create
their gestural repertoire by simple-direct examples in real-time.
Françoise et al. (2012, 2014) presented a set of probabilistic
models [i.e., Gaussian Mixture Models (GMM), Gaussian
Mixture Regression (GMR), Hierarchical HMM (HHMM)
and Multimodal Hierarchical HMM (MHMM), Schnell
et al., 2009] and compared their features for real-time sound
mapping manipulation.

In the context of IoMusT, Turchet et al. (2018b) extended a
percussive instrument called Cajón with embedded technology
such as piezo pickups, condenser microphone and a Beaglebone
Black board audio processor with WIFI connectivity. Authors
have applied machine learning (k-NN) and real-time onset
detection techniques to classify the hit-locations, dynamics and
gestural timbres of professional performers with accuracies
over 90% on timber estimations and 100% on onset and hit
location detection.
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3. MATERIALS AND METHODS

3.1. Music Materials
In collaboration with the Royal College of Music, London, a
set of seven gestural violin-bowing techniques were recorded
as a reference by professional violinist Madeleine Mitchell. All
gestures were played in G mayor for technical accommodation
to cover three octaves using a comprehensive violin range within
the four strings. Below we describe the seven recorded bowing
gestures (music score reference in Figure 1):

• Détaché. It means separated; the method describes a clean,
stable sound with each bowing direction, moving smoothly
from one note to the next. The weight over the violin strings is
even for each note performed. It is the most common bowing
technique in the violin repertoire. The exercise was performed
within two octaves ascending and descending scale in 4/4
at 70BPM, playing three eighth-triplet per note. In total 32
bow-strokes samples were recorded.

• Martelé. The term means hammered; it is an extension of
Détaché. with a more distinctive attack, caused by a faster
and slightly stronger initial movement to emphasize the
motion starting point and it has a moment of silence at the
end. Two octaves were played at 120 BPM in 4/4 played
with Quarter-notes. 32 bow-stroke samples were recorded
in total.

• Spiccato. It is a light bouncing of the bow against the strings.
It is achieved by the physical effect of attacking the strings
on a vertical (horizontal) angular approach of the bow with
a controlled weight and a precise hand-wrist control. Two
octaves performed at 90 BPM attacking each note with three
eighth-triplets. 32 bow-stroke samples were recorded in total.

• Ricochet. Also known as Jeté, it is a controlled bouncing
effect played in a single down-bowed stroke starting with a
Staccato attack but controlling the weight of the Bow against
the Violin’s string with the wrist. The bouncing produces a
rhythmic pattern, usually, among two to six notes. In this
particular example, three eight notes (triplet) where produced
for each bow-stroke notated as a quarter note in the musical
score. Two octaves were played at 60 BPM in 4/4.

• Sautillé. This technique implies fast notes played using one
bow-stroke per note. The bow bounces slightly over the string,
and the hair of the bow retains some slight contact with it.
Two octaves were played at 136 BPM in 4/4 with eighth-notes
rhythmic pattern per note of the scale. 32 bow-stroke samples
were recorded in total.

• Staccato. A similar gesture to Martelé. It is a clean attack
generated by a controlled pressure over the string with an
accentuated released in the direction of the bow-stroke. It
is controlled by a slight rotation of the forearm where
pronation attacks the sound and supination released it; it can

FIGURE 1 | Music score of the seven bow strokes. All in G Mayor as explained in Music Material section.
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be generated by up and downmotion of the wrist, or a pinched
gesture with the index finger and the thumb. Two octaves were
played at 160 BPM in 4/4, quarter-notes to generate each note.
We estimated four groups of notes as part of the gesture having
in total eight gestures.

• Bariolage. It means multi-colored, to express an ascending or
descending musical phrase. It is the bowing technique to cover
a group of changing notes in one bow-stroke direction usually
in adjacent strings. Eight arpeggios where played at 130BPM in
4/4 in a rhythmic pattern of eight-notes, each one played two
times drawing the harmony progression of I–ii2–Vsus4–I.

In total 8,020 samples within seven gestures, with a median of
35.8 samples per bow-stroke, having 32 bow-strokes per gesture.
Each bow-stroke covers a time window range approximately of
200 ms.

3.2. Data Acquisition, Synchronization, and
Processing
• Myo A highly sensitive nine-axis IMU device Myo was used

to acquire information from the right forearm-motion during

the gesture recordings. Myo is a bracelet composed of a set of
sensors for motion estimation and a haptic feedback motor.
The bracelet size is between 19 and 34 cm adjustable to the
forearm circumference. It weighs 93 grams. The hardware is

FIGURE 3 | HHMM illustration consists of 4 states, which emit 2 discrete

likelihood estimations y1 and y2. aij is the probability to transition from state si
to state sj , and bj (yk ) is the probability to emit likelihood yk in state sj . Solid

lines represent state transition probabilities aij and dotted lines represent bj (yk ).

FIGURE 2 | HHMM-likelihood progression of a single bow-stroke phrase example in each technique. x-axis is time (ms) and y-axis is percentage of correct prediction

(1:100). (A) Détaché, (B) Martelé, (C) Spiccato, (D) Ricochet, (E) Sautillé, (F) Staccato, (G) Bariolage, and (H) Color-label per bow stroke.
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FIGURE 4 | An instance of the Likelihood progression fulfillment of the

unobserved Markov chain sequence y1,y2,y2 for HMM in Figure 2. The thick

arrows indicate the most probable transitions.

composed of eight medical grade stainless steel EMG sensors
that report electrical muscle activity. The IMU contains three-
axis gyroscope giving degrees of change in radians per second
(angular velocity), three-axis accelerometer as an estimation
of -8g to 8g (1g=9.81 m/s2), three-axis magnetometer giving
as an output a Quaternion reference of the imaginary rotation
of the Myo in the space. It has an ARM Cortex M4 Processor,
and it may provide short, medium and long haptic feedback
vibration. Its communication with a computer is based on
Bluetooth with an included adapter, giving a sampling rate of
200Hz (Hop-time of 5 ms).

• Openframeworks (OF) (c++ open-source framework, 2018)
was used to acquire, visualize the IMU’s information in real-
time and play the audio files in synchronization with the
Myo device. OF is an open-source platform based on C++
which has a collection of libraries to develop applications in
all operating systems. Developers and artists commonly use it
in the field of interactive applications, video games, andmobile
apps. We have developed an additional library to receiveMyo’s
information which is released as an OF Addon1 Our library
translates Myo’s motion data into a compatible OF format and
makes CSV databases for motion analysis.

• Max/MSP is a visual programming language platform
commonly used in electronic music and interactive media
development and creation, suitable for quick prototyping and
it allows communication with external devices.

• Essentia is an Open-source C++ library and tools for
audio and music analysis, description and synthesis. It is

1MIT License. This gives everyone the freedoms to use OF in any context:

commercial or non-commercial, public or private, open or closed source.

TABLE 1 | Databases setup.

Dataset Features

Audio RMS, Onset, Pitch Confidence, Pitch Salience,

Spectral Complexity, Strong Decay

Myo (IMU) Euler, Accelerometer, Gyroscope

Combined Audio and Myo Euler, Accelerometer, Gyroscope, RMS, Pitch

Confidence

TABLE 2 | Confusion matrix (decision tree).

a b c d e f g Class

0.963 0.000 0.005 0.001 0.031 0.000 0.000 a

0.001 0.950 0.000 0.027 0.000 0.011 0.012 b

0.000 0.001 0.999 0.000 0.000 0.000 0.000 c

0.000 0.025 0.001 0.951 0.000 0.017 0.006 d

0.040 0.002 0.000 0.001 0.955 0.001 0.000 e

0.000 0.092 0.000 0.095 0.003 0.725 0.084 f

0.000 0.030 0.000 0.037 0.000 0.050 0.882 g

Confusion Matrix of Decision Tree Algorithm Blue numbers are the correct predicted

gestures as percentages of correct trials. Values are scaled from 0 to 1. Letters correspond

to: (a) Détaché, (b) Martelé, (c) Spiccato, (d) Ricochet, (e) Sautillé, (f) Staccato, and (g)

Bariolage.

developed in MTG-Pompeu Fabra University (http://essentia.
upf.edu). Essentia has many different algorithms that can be
custom designed. Using the standard setup list of values as
acoustic characteristics of the sound is computed, producing
spectral, temporal, tonal or rhythmic descriptors. Essentia is
included in the custom application using ofxAudioAnalyzer
(Leozimmerman, 2017).

• Synchronization The synchronization of the multimodal data
is divided into two phases.
Recording: At the moment to record the gestures and
synchronize the Myo device with video and audio data, we
implemented a Max/MSP program which sends OSC events
to the Myo application to generate a database of CSV files,
it records the data at 60 fps. These files are created taking
into account a synchronization format: timer in milliseconds,
accelerometer (x, y, z), gyroscope (x, y, z), Quaternion
(w,x,y,z), electromyogram ( eight values), point_vector(x,y,z),
point_direction (x,y,z), point_velocity(x,y,z), event (it is a
marker during recordings). Those CSV files are recorded in
the same time-window range reference of the audio data,
also created within Max. The format of the video, myo and
audio files are defined by counter_gesture_second-minute-
hour_day-month-year (extension are .csv, .mov or .wav),
where the counter is the iteration of the recording session, the
gesture is the identificator number and time/date description
to pair all files and avoid overwriting. The master recorder
in Max/MSP sends the global timer (ms) reference to the
Myo application which is reported in the CSV file. To acquire
audio we used an interface Zoom H5 linked to Max, recording
WAV files with a sample rate of 44.100 Hz/16 bits.Myo device
running in a MacBook Pro (13-inch, 2017), 2.5 GHz Intel
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TABLE 3 | Accuracy by class (combined audio and motion).

Class TP rate FP rate Precision Recall F-Measure MCC ROC area PRC area

Détaché 0.963 0.005 0.979 0.963 0.971 0.964 0.988 0.967

Martelé 0.950 0.015 0.948 0.950 0.949 0.934 0.975 0.940

Spiccato 0.999 0.001 0.993 0.999 0.996 0.995 0.999 0.993

Ricochet 0.951 0.016 0.936 0.951 0.943 0.929 0.975 0.905

Sautillé 0.955 0.007 0.938 0.955 0.947 0.940 0.987 0.942

Staccato 0.725 0.010 0.773 0.725 0.749 0.738 0.903 0.682

Bariolage 0.882 0.008 0.889 0.882 0.886 0.877 0.960 0.865

Weighted Avg. 0.946 0.010 0.946 0.946 0.946 0.937 0.978 0.930

TP Rate, True Positive Rate; FP Rate, False Positive Rate; MCC, Matthews Correlation Coefficient; ROC, Receiver Operating Characteristic; PRC, Precision-recall. Correctly Classified

94.625%. Incorrectly Classified 5.37%.

Core i7 processor and a memory of 8 GB 2133 MHz LPDDR3
with a latency of 10ms to 15ms. However, the final alignment
is controlled by the Openframeworks app. The sound file
reader reports the millisecond where the audio is being read,
then, that value is passed to the CSV reader with an offset of
-10 (ms) giving the motion information to be visualized.

Testing: Data from the Myo application is sent to
Max/MSP to train and test the machine learning models. This
data is an OSC message bundle which consists of a Timer,
Euler Angles (x,y,z), Gyroscope (x,y,z), Accelerometer (x,y,z),
RMS, Pitch Confidence, Bow-Stroke (reference of the gesture-
sample) and Class (gesture identificator). (Essentia features
are explained in section Audio Analysis) The application runs
at 60 fps, where the Essentia setup is: sample rate of 44,100
Hz, a buffer of 512 samples, two channels (stereo), having
a latency of 12ms. OSC package sent from OF application
to MAX/MSP, reads the Myo data and obtains the audio
descriptors (Essentia) in a process that takes one cycle (16.6666
ms) and any time alignments or offset between both sources
is considered.

3.3. Methods
3.3.1. Audio analysis

The Essentia library was used to extract audio features from
the recordings. The descriptors extracted with real-time audio
buffering analysis were:

• RMS: The Root-Mean-Square descriptor informs about the
absolute area under the audio waveform. In other words,
it describes the power voltage that the waveform sends to
the amplifier.

• Onset: It is a normalized value (0.0 to 1.0) which reports
locations within the frame in which the onset of a musical
phrase, rhythm (percussive event) or note has occurred.

• Pitch Confidence: It is a range value from zero to one to
determine how stable the description of a pitch presence is in a
defined windowing buffer as opposed to non-harmonic or not
tonally defined sound.

• Pitch Salience: It is a measure of tone sensation, which
describes in a range from zero to one when a sound contains
several harmonics in its spectrum. It may be useful to

discriminate, for instance, between rhythmic sound presence
and instrumental pitched sound presence.

• Spectral Complexity: It is based on the number of peaks in
the sound spectrum referred to a windowing sound buffer.
It is defined as the ratio between the spectrum’s maximum
peak’s magnitude and the “bandwidth” of the peak above half
its amplitude. This ratio reveals whether the spectrum presents
a pronounced maximum peak.

• Strong Decay: A normalized value that gives a reference to
express how strong or pronounced is the distance between the
sound power centroid to its attack. Hence, a signal containing
a temporal centroid near its start boundary and high energy is
said to have a steady decay.

We used RMS, Pitch Confidence and Onset to segment the Myo
gesture to eliminate non-gesture data. In this way, we defined
meaningful gesture time-intervals and used the corresponding
Myo data for training the system.

Also, to use audio descriptors for data segmentation, a second
objective was to complement the Myo information with relevant
audio information to train the machine learning models with
multimodal data. While the Myo provides information about
forearm motion, it does not directly report activity of the
performer fine-movements from the wrist and fingers; the audio
analysis may provide information relevant to those gestural
characteristics. A custom application build on Openframeworks
was used to read in real-time the data from the Myo, record
CSV files with events, synchronize with the audio recordings,
and read the synchronized data from the motion files and audio
files, automatically. It is also possible to automatically send
the data to Repovizz, an on-line publicly available repository
(Mayor et al., 2011).

3.4. Classification Models
We applied a Hierarchical Hidden Markov Model (HHMM)
for real-time continuous gesture recognition (Schnell et al.,
2009). We built three different gestural phases of the violin bow
strokes and defined a model with ten states. States are used for
segmentation of the temporal windowing of each bow stroke.
The model provides a probabilistic estimation of the gesture
being performed. Hence, those ten states are composed of ten
Gaussian mixture components, which reports out the likelihood
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FIGURE 5 | Box-plot summarizing all HHMM-likelihood progression in 7,846 samples with a mean of 42,394 samples per gesture. Bow strokes are organized as:

(A) Détaché, (B) Martelé, (C) Spiccato, (D) Ricochet, (E) Sautillé, (F) Staccato, (G) Bariolage, and (H) Color-label per gesture.

estimation on a scale from 0. to 1.0. We used a regularization in
a range of [0.01, 0.001] to filter noise. In Figure 2 all bow-strokes
are taken randomly to visualize the probabilistic output of the
likelihood, for instance in the first bow-stroke (Détaché), the first
three likelihood progression reportedMartelé.

Three different musical phrases covering low, mid and high
pitch registers were provided for each gesture as performed by
the expert. Hence, the model was trained using examples of “good

practice”, following the principle of mapping by demonstration
(Françoise et al., 2012).

Following this methodology, it is possible to have accurate
results without the need for a big dataset of training examples.
The data is sent from the custom application to the Max
implementation through OSC (explained in Synchronization
section). For the regression phase, the HHMM provides
an output with a normalized number corresponding to the
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gesture prediction, and a set of values called likelihood as a
temporal description of the Gaussian probability distribution
in time, covering the ten following states of the bow
stroke (Figures 2–4).

We evaluated three HHMMs: one trained with the
information from the Myo sensors, a second model was
trained with the audio descriptors previously described, and a
third model trained with a selection of both, motion and audio
descriptors. Table 1 shows the complete descriptors included in
each motion, audio and combined datasets. Applying automatic
feature selection algorithms in WEKA, we have finally discarded
some of the audio descriptors (Onset, Pitch Salience, Spectral
Complexity, Strong Decay) that were reported as not strongly
informative to the gestures quality.

4. RESULTS

We trained decision trees models using three feature sets: Myo
motion features, audio features, and motion and audio features
combined. Applying 10-fold cross-validation, we obtained
correctly classified instances percentages of 93.32, 39.01, and
94.62% for the motion only, audio only, and combined feature
sets, respectively. As it can be seen in the confusion matrix
reported in Table 2, we obtained an accuracy per gesture of (a)
96.3%, (b) 95%, (c) 99.9%, (d) 95.1%, (e) 95.5%, (f) 72.5%, (g)
88.2% for detache, martele, spiccato, ricochet, sautille, Staccato,
and bariologe, respectively. Table 3 gives the detailed statistics
for each gesture. In addition, we trained an HHMM with the
combined motion and audio dataset. In the reminder of the
paper, we will report the results of this model.

We trained the HHMM previously described for real-time
gesture estimation, resulting in a correctly classified instances
percentage of 100% for detaché, martelé and spiccato; 95.1%
for ricochet; 96.1% for sautillé; 88.1% for Staccato, and 98.4%

for bariolage. These percentages represent the median of
the gesture estimation in time. Each bow stroke has ten
internal temporal states, and the model produces evaluations
as likelihood probabilities progressions. The box-plot in the
Figure 5 shows all HHMM-likelihood progression with 7846
samples, a mean of 42,394 samples per gesture. Similarly,
Figure 6 shows The HHMM-likelihood median of the gesture
recognition progression. Both figures give an insight of which
gestures were better recorded and then described by the HHMM.

5. DISCUSSION

• Gesture Prediction: The HHMM has resulted in high
accuracy when classifying the seven gestures given motion and
audio data combined. It performs particularly well when it
comes to classifying the détaché, martelé, spiccato gestures
with 100% correct classification instances, and bariolage as
well, with 98.4% of accuracy. Prediction of a gesture was made

TABLE 4 | Confusion matrix (HHMM).

a b c d e f g Class

1.000 0.335 0.673 0.050 0.643 0.000 0.514 a

0.007 1.000 0.000 0.251 0.075 0.473 0.016 b

0.551 0.000 1.000 0.000 0.200 0.000 0.334 c

0.004 0.671 0.047 0.951 0.105 0.422 0.823 d

0.299 0.491 0.000 0.000 0.961 0.000 0.000 f

0.000 0.331 0.000 0.447 0.165 0.881 0.690 g

0.319 0.000 0.041 0.103 0.150 0.248 0.984 h

Confusion matrix of the HHMM. Blue numbers are the correct predicted gestures as

percentages of correct trials. Values are scaled from 0 to 1. Letters correspond to: (a)

Détaché, (b) Martelé, (c) Spiccato, (d) Ricochet, (e) Sautillé, (f) Staccato, and (g) Bariolage.

FIGURE 6 | X-axis: gestures collection. Y-axis: 0. to 1. range as percentage of correct estimations (1:100). The graph shows a summarizing state of all gestures

correct-estimations and their similitude. For instance, Gesture Détaché and Spiccato has some similarities in motion as they are closely described in the likelihood

probability. Articulations: (1) Détaché, (2) Martelé, (3) Spiccato, (4) Ricochet, (5) Sautillé, (6) Staccato, (7) Bariolage.
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by computing the median of the ten states of each bow-stroke
likelihood. Within a partial execution of a gesture, the model’s
estimation fluctuates due to the similarities between gestures
and the partial information provided. In Figure 2 single bow
strokes of each bow-technique are chosen to illustrate HHMM
likelihood estimations. For instance, in the Bariolage graph
(bottom left in the figure), a drop in likelihood estimation
value halfway in the stroke can be seen, which is caused
by the fact that the gesture has a fast bow swipe covering
four strings in an ascending arpeggio followed by the inverse
pattern in a descending arpeggio. The gesture of the arpeggio
Bariolage is very similar as Détaché, a fact that is apparent at
the end of the graph (280 ms) when the model’s likelihood
estimate of both gestures is practically the same. The choice
of HHMM for training a gesture classifier was a natural one
given that HHMM performs particularly well in problems
where time plays an important role. Thus, as we mentioned
before, not surprisingly they have been widely applied to
problems in gesture recognition (Je et al., 2007; Caramiaux
and Tanaka, 2013; Caramiaux et al., 2014; Françoise et al.,
2014). Ricochet proved to be the most difficult gesture to
be identified (i.e., produced the lowest accuracy) due to its

similarity with Martelé. Both gestures are generated by a fast
attack and then a smooth release, and they cover similar
spacial areas (Figure 9). Ricochet sound is directly related to
a wrist and finger technique applying a controlled weight over
the strings causing a bouncing bow effect; for that reason,
the audio descriptor helped to identify audible dissimilitudes
among both gestures. A similar case is the case of Sautillé,
which is produced with a fast attack motion, causing to be
confused with Martelé. In an overall view, both datasets based
on Myo and Myo + Audio descriptors reported very similar
accuracy (93.32% and 94.62%), however, regarding bow-
stroke recognition within the likelihood progression, audio
descriptors increment the distance between similarities. For
instance, Martelé and Ricoche has similar motion signatures
(Figure 9) but the second gesture has a bouncing effect of
the Bow over the violin’s strings which is not reported in the
IMU’s data; hence, audio descriptor (RMS) gives the model the
missing information.

• Confusion Matrices: Confusion Matrix of the Decision Tree
(Table 2) reported high accuracy in the first five gestures and
lower efficiency in the case of Staccato (f). Staccato gesture
has a confusion of 9.5% with Ricochet, 9.2% with Martelé and

FIGURE 7 | Openframework implementation to visualize and synchronize the IMU’s and audio data. It reports in a spider chart the probability of the bow-stroke

performed.
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8.4% with Bariolage. Those gestures have some fundamental
similarities, especially Martelé against Staccato, both start with
a strong attack accent. For instance, in the Figures 5, 6,
based on an HHMM-Likelihood Boxplots, those similarities
are also expressed. In Staccato (f) case, other three gestures
are present: Martelé (b), Ricochet (d) and Bariolage (g). It
means that HHMM-likelihood was giving higher values in the
temporal states to those gestures. The confusion matrix of the
trainedHHMM(Table 4) shows a correctly classified instances
percentage of 100% for détaché, martelé and spiccato.

• Pedagogical Application: The ultimate purpose of the
HHMM is to receive information in real-time about the
progression of the bow stroke to give visual and haptic
feedback to the students. To exemplify the idea, we have
chosen randomly one single phrase within the seven different
bow strokes. In Figure 2, the temporal progressions plotted are
the seven bow strokes, where the x-axis is time (ms), and the
y-axis is the probability estimation (scale 1:100). Likelihood
estimation may be used to give real-time haptic feedback to
a student to indicate deviations from the intended gesture.
Such a feedback system is out of the scope of this paper
and will be investigated in the future, including not only
motion data but timing and pitch accuracy. In Figure 7 an OF
application was designed for that purpose, a spider char gives
information in real-time about the gestures recognition, as
well it provides a visualization about Essentia descriptors and
Myo data.

• Myo Observations: The Myo device needed to be placed
carefully on the correct upward-front orientation. Changes in

the disposition of the device in the forearm can cause deviation
of the directional signals. For that reason, we focused on the
“mapping by demonstration” principle (Françoise et al., 2014)
where the models can be trained for particular users allowing
in this way to tune the system for the master-apprentice
scenario. In the Figure 8 a cluster of the seven gestures is
plotted to give an insight into gestures different trajectories.
It has to be noted that the data captured by the Myo does
not precisely correspond to the bow motion. It is attached
to the player’s forearm and not the bow, thus not being
able to capture the wrist movements. However, the results
obtained show that the information captured by the Myo,
i.e., forearm motion information, and the machine learning
techniques applied, are sufficient to identify the singularities
of the gestures studied. Figure 9 shows how each gesture has
its particular spatial pattern and range of movement. In the
figure, it is also possible to identify violin’s string areas during
the performance of the gestures.

• Future Work: We plan to explore deep learning models for
the task to compare their accuracy against that of HHMMs.
Another area of future research is to test the models in a
real learning scenario: we plan to use the models to provide
real-time feedback to violin students and compare learning
outcomes in a group with feedback with a group with no-
feedback. Deep Learning models were not implemented in this
study as the dataset is limited in samples, we are planning
to record several students and experts from Royal School of
Music in London, performing those gestures to increment our
data samples.

FIGURE 8 | Cluster: Euler-angle spacial distribution of the seven articulations from the Myo device. Axis are estimated in centimeters.
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FIGURE 9 | A single sample of the gestural phrase per each bow stroke technique. (A) Détaché, (B) Martelé, (C) Spiccato, (D) Ricochet, (E) Sautillé, (F) Staccato,

(G) Bariolage. Color bar describes depth in z axis. Values are expressed in cm, taken from an positional origin first placed by the performer as a reference of the

starting point, hence, values are the displacement from the original posture.
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In TELMI project, colleges develop interactive
applications to provide information to students about
the quality of the sound and temporal precision of
interpretation, in future work, we intend to embed
the IMU’s sensors into the Bow and Violin and
merge both strategies, postural sensing technologies
and a desktop/online app. Furthermore, we plan to
implement the IMU device called R-IOT (Bitalino-
IRCAM, 2018) with a size of 34 × 23 × 7 mm that can
be incorporated into the Bow’s frog, which will report
gestural information in real-time in a similar manner
of the Myo. It has a kit of Accelerometer, Gyroscope
and Magnetometer, with a Sampling Rate: 200 Hz,
Resolution: 16-bit (per IMU ch.), Communication: 2.4
GHzWiFi.
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