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Abstract

Fundamental to the function of nervous systems is the ability to reorganize to cope with

changing sensory input. Although well-studied in single neurons, how such adaptive versa-

tility manifests in the collective population dynamics and function of cerebral cortex remains

unknown. Here we measured population neural activity with microelectrode arrays in turtle

visual cortex while visually stimulating the retina. First, we found that, following the onset of

stimulation, adaptation tunes the collective population dynamics towards a special regime

with scale-free spatiotemporal activity, after an initial large-scale transient response. Con-

currently, we observed an adaptive tradeoff between two important aspects of population

coding–sensory detection and discrimination. As adaptation tuned the cortex toward scale-

free dynamics, stimulus discrimination was enhanced, while stimulus detection was

reduced. Finally, we used a network-level computational model to show that short-term syn-

aptic depression was sufficient to mechanistically explain our experimental results. In the

model, scale-free dynamics emerge only when the model operates near a special regime

called criticality. Together our model and experimental results suggest unanticipated func-

tional benefits and costs of adaptation near criticality in visual cortex.

Author summary

The cerebral cortex is versatile; depending on changes in behavioral context, the same neu-

ral circuit can exhibit dramatically different neural activity and perform different functions.

A long-standing hypothesis at the interface of physics and neuroscience posits that such

shifts in cortical operation are governed by the same basic principles as those governing

phase transitions in certain physical systems. Importantly, this theory predicts changes in

information processing as the system changes phases. Here we present experiments on the

visual system of turtles, which are consistent with these theoretical predictions. As the sys-

tem adapts to changes in visual input, we found that cortical dynamics shift towards a

scale-free regime, as predicted at the critical point of a phase transition. At the same time,

this shift in dynamical regime incurs a tradeoff between sensory detection and

discrimination.
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Introduction

Depending on behavioral and environmental context, the same neural circuits can perform

different functions. Two essential functions performed by sensory cortices are stimulus detec-

tion and discrimination [1]. The ability to detect the presence or absence of certain stimuli is

crucial when seeking or avoiding aspects of our environment (e.g. food, mates, predators),

whereas the ability to discriminate among the finer details of sensory input is necessary in

many other contexts. Can detection and discrimination be performed simultaneously by the

same cortical network or do the two functions require different properties from the underlying

circuit?

An important scenario in which this question arises is in visual cortex during adaptation to

the onset of a strong visual stimulus [1–3]. In this context, we reframe our question (Fig 1);

how do adaptive changes in the cortical network alter the ability of these circuits to detect and

discriminate stimuli? Are detection and discrimination better during the transient response or

after adaptation has reached a steady-state? Most traditional coding studies do not answer

these questions because they have been based on brief (non-adapted) stimuli or, if they consid-

ered sustained stimuli, they focused only the steady-state, avoiding the transient response.

Studies of the rat somatosensory system suggest that there is a tradeoff [4–7]; as discrimination

improves during adaptation, detection worsens, but this remains debated in visual cortex

[1,8,9]. In computational models, discrimination can improve or worsen depending on the

details of the adaptation mechanisms [10]. Here we test the tradeoff hypothesis in visual cortex

of turtles.

To further introduce the tradeoff hypothesis, we compare to some alternative scenarios.

One possibility is that stimulus detection and discrimination could vary jointly, both getting

worse as adaptation progresses (covarying scenario). In contrast, the tradeoff scenario posits

that good discrimination comes at the cost of degraded detection; the two properties change

oppositely during adaptation. In both scenarios, detection is most effective during the intense

transient response at stimulus onset and decreases as adaptation progresses and response

attenuates. How discrimination changes during adaptation is less obvious. In the covarying

scenario, the onset response is most informative (for example [9,11,12])–best for discrimina-

tion–perhaps because synaptic depression during adaptation lowers spike rates and lowers

response information capacity, thereby degrading discrimination. In contrast, the tradeoff sce-

nario supposes that a sufficiently intense onset response can limit information capacity due to

saturation and excessive correlations, while adaptation tunes the network into a regime better

suited to discrimination [13–15]. Alternative scenarios, intermediate between the two

extremes described here, could also exist; for example, discrimination might remain

unchanged throughout adaptation (for example [12]).

A separate line of research also predicts the tradeoff hypothesis. Recent experiments [16]

and theory [17] suggest that adaptation can tune cortex to a special regime of network dynam-

ics called ‘criticality’. At criticality, network dynamics manifest as diverse spatiotemporal pat-

terns of population activity, governed by specific statistical scaling laws [16,18,19]. For

example, the sizes of population activation events are distributed according to a power-law,

without a dominant spatiotemporal scale. Throughout this manuscript, we will refer to such

power-law distributed population activity as ‘scale-free’. Scale-free dynamics and other fea-

tures predicted at criticality were previously shown to emerge during adaptation, but were not

present during the intense transient response following stimulus onset [16]. Importantly, corti-

cal slice experiments [20] and theory [21–23] suggest that when a network operates near criti-

cality, it is optimal for stimulus discrimination, although these studies did not address
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adaptation. Similarly, Fisher information is predicted to peak at criticality [24]. Thus, consis-

tent with the tradeoff hypothesis, these studies predict the emergence of criticality and

enhancement of discrimination during adaptation, but this prediction has yet to be tested.

Here our study was designed with two goals (Fig 1). First, we aimed to determine whether

there is an adaptive trade-off between detection and discrimination or whether the two func-

tions co-vary. Second, we sought to link adaptive changes in these two functions to changes in

cortical network dynamics. We found that changes in network dynamics were consistent with

adaptation tuning the cortex to a steady state near criticality after a transient response that was

far from criticality. Discrimination was higher when the network was near criticality, while

detection was higher during the non-critical transient. Thus, our results confirm the tradeoff

hypothesis in visual cortex and associate a functional tradeoff with changes in cortical state

near criticality.

Results

To investigate adaptive changes in dynamics and function of cortical networks, we employed a

visual stimulation paradigm that entails strong adaptation in the visual system. We suddenly

switched from no visual input (darkness) to a movie projected onto the retina of the ex vivo

turtle eye-attached whole-brain preparation [16,25] (Fig 2A). Using a microelectrode array we

recorded local field potential (LFP) and multi-unit activity (MUA) from visual cortex (Fig 2B).

Fig 1. Hypothesized relationships between stimulus discrimination and detection during adaptation.

Cartoon illustration of how the gross detection of input may differ from the ability to discriminate fine input

differences during adaptation following stimulus onset. One possibility–the covarying hypothesis–is that the

highly active transient response carries the most information about the stimulus regardless of whether we

consider discrimination or detection. In this view, adaptive depression of synapses reduces information

transmission and the critical dynamics of the steady state are too noisy for effective discrimination.

Alternatively, the trade-off hypothesis is that the strong onset response is good for detection, but lacks the

selectivity needed for good discrimination. This view is in line with the prediction that the critical dynamics of

the steady state optimize information transmission.

https://doi.org/10.1371/journal.pcbi.1005574.g001
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Fig 2. Adaptation tunes cortical dynamics from large-scale transient response to scale-free steady-state. (A) Motion-enhanced

movies were projected onto the retina while recording local field potential (LFP) with a microelectrode array in visual cortex of the turtle ex

vivo eye-attached whole-brain preparation. (B) Shown are LFP traces from a subset of 12 electrodes. Intense population activity occurs at

the onset of the movie; adaptation leads to more moderate steady-state activity. To characterize these changes in population activity, we

analyze ‘avalanches’ which are defined as spatiotemporal clusters of LFP peaks beyond ±3 SD (black ticks). Avalanche size was defined as

the number of LFP peaks comprising the cluster. (C) LFP peak rate time series, averaged over 80 movie repetitions. (D) Each point

represents the size and time (middle of duration) of one avalanche. Avalanches from 80 trials are overlaid. Avalanches were typically very

large during the transient response, but adaptation resulted in smaller and more diverse sizes. (E) Typical distributions of avalanche sizes

during the transient (blue, 0–1 s after movie onset) and the baseline period (green, 2–5 s after movie onset). During the transient, the

distribution exhibited a ‘bump’ at large size indicating a high likelihood of very large avalanches. During baseline, avalanche size

distributions were well-described by a power-law function, in line with recent findings that adaptation tunes cortical network dynamics to

criticality. Green box delineates the expected range (5–95 percentile) of probabilities for a finite sample drawn from a perfect power law. (F)

To quantitatively characterize population dynamics during different time periods we computed δ, which measures deviation from the

baseline distribution. Calculation of δ is based on differences between cumulative distributions like the examples shown. (G) Shown is a

summary of 14 experiments. Without exception, the transient exhibited many more large avalanches than the baseline (δ>0) while the

steady state period (4–5 s after movie onset) exhibited small deviations, both positive and negative, from baseline.

https://doi.org/10.1371/journal.pcbi.1005574.g002

Shifting network dynamics and a functional tradeoff in visual cortex

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005574 May 30, 2017 4 / 21

https://doi.org/10.1371/journal.pcbi.1005574.g002
https://doi.org/10.1371/journal.pcbi.1005574


We observed intense neural response during a brief transient following movie onset and atten-

uated response as the system adapted towards a steady-state during continued movie stimula-

tion (Fig 2C). In the following sections, we first show how collective population dynamics

change during adaptation, based on analysis of LFP. Then, we delineate adaptive changes in

visual detection and discrimination, based on both LFP and MUA. Next, we show that these

adaptive changes in function are not the same in all animals and that variability in population

dynamics is correlated with variability in function. Finally, using a network-level computa-

tional model, we demonstrate that short-term synaptic depression provides a simple explana-

tion of our experimental findings.

Adaptation results in scale-free cortical network dynamics

To characterize adaptive changes in cortical network dynamics, we examined spatiotemporal

bouts of large amplitude, correlated LFP fluctuations, called neuronal avalanches

[16,20,21,26,27]. Briefly, a neuronal avalanche was defined as a temporally correlated cluster of

LFP peaks, often occurring on many electrodes (Fig 2B, Methods). Avalanche size was defined

as the number of constituent LFP peaks (Fig 2B). After repeating the visual stimulation para-

digm many times (n = 80), we combined all avalanches that occurred during transient periods

(0–1 s after stimulus onset) into one group and, in a separate group, we combined all ava-

lanches that occurred in a later period (2–5 s after stimulus onset), labeled the ‘baseline’ period

in Fig 2D. Comparing probability distributions of avalanche sizes from the transient versus the

baseline provided concise and quantitative characterizations of how cortical network dynamics

change during adaptation.

During the transient period, we found that avalanche size distributions were bimodal in

shape, indicating the tendency for large avalanches often spanning the entire recording area

(Fig 2E). In contrast, as the visual cortex adapted towards a steady-state regime, avalanche

sizes became more diverse with a scale-free size distribution, i.e. the size distribution became

power-law in shape (Fig 2E). Using statistically rigorous methods [16], we found that ava-

lanche sizes during the baseline period were power-law distributed (significance parameter

q = 0.2 ± 0.26, see Methods), with exponents -1.8 ± 0.3, consistent with previous findings [16].

Importantly, such scale-free avalanche distributions are expected when a network operates at

criticality, while bimodal distributions are inconsistent with criticality. Thus, in line with pre-

vious work [16], our results are consistent with the conclusion that the onset of stimulation

drives the visual cortex into a state far from criticality and adaptation tunes the system towards

criticality.

One interesting implication of this finding is that the spatiotemporal changes in visual

input during the movie could also cause moment-to-moment deviations from scale-free

dynamics. Indeed, the onset of the movie is simply a particularly intense change in visual

input. Deviations from scale-free dynamics during the movie could be ‘averaged out’ when

considering the entire baseline period (2–5 s after stimulus onset). Therefore, to test this possi-

bility, we examined avalanche size distributions during a shorter time period well after the

transient (4–5 s after stimulus onset), labeled ‘steady-state’ in Fig 2D. For both the steady-state

periods and the transient periods, we computed the deviation δ from the baseline avalanche

size distribution, based on summed differences between cumulative distributions, similar to a

Kolmogorov-Smirnov statistic (Fig 2F; Methods). As expected, the deviation δ was large dur-

ing the transient (0.32 ± 0.12, mean ± SD) and near zero in the steady-state (-0.02 ± 0.04; Fig

2F). However, there was substantial brain-to-brain variability in δ for the steady-state period.

To interpret the meaning of this variability in δ for the steady-state period, we note that the

steady-state time period was deliberately chosen to overlap with the baseline time period.

Shifting network dynamics and a functional tradeoff in visual cortex
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Thus, the steady-state distribution is based on a subset of all the avalanches that occur during

the full baseline period. A non-zero deviation δ in the steady-state indicates a brief excursion

from the time-averaged statistics of the baseline period. Experiments with positive values of

steady-state δ suggest a brief excursion towards large-scale dynamics like those observed dur-

ing the transient. Experiments with negative values of δ may indicate an excursion towards

small-scale dynamics, consistent with a somewhat subcritical regime, in which large ava-

lanches are relatively rare (further discussion of this possibility is in the model results below).

In the following section, we will show that these variations in network dynamics revealed by δ
are correlated with variations in how visual cortex processes input.

Improved stimulus discrimination at the cost of reduced detection

Next we sought to relate the adaptive changes in network dynamics described above to changes

in how the cortex encodes the sensory input. We focused on two important aspects of cortical

coding, stimulus detection and stimulus discrimination (Fig 1).

First, we measured adaptive changes in detection. We took the perspective of an ideal

observer and asked to what extent the presence of the movie was detected based on the LFP

cortical population response. We answered this question first based on activity recorded dur-

ing the transient and then based on activity during the steady state (Fig 3A). To quantify stim-

ulus detection, we calculated the mutual information I(R;S) of visual stimulus and neural

response, adjusted for low sample count bias (see Methods). The stimulus set S was binary,

consisting of many repetitions (n = 80) of two possible stimuli–movie off or movie on. The

response set R was defined as the LFP peak count during a 1 s period while the movie was off

or on. The ‘movie on’ response was taken from either the transient period or the steady state

period, thus allowing us to compare the efficacy of detection during these two different stages

of adaptation. We found that stimulus detection was high during the transient period

(0.9 ± 0.1 bits) and typically reduced during the adapted and critical steady state (0.7 ± 0.2 bits;

Fig 3B).

Next, we measured adaptive changes in discrimination. Here, our goal was to go beyond

the rather coarse and simple detection considered above and assess how more detailed infor-

mation about the visual input is represented in the cortex. To meet this goal, we modified the

visual stimulation paradigm described above. We presented the same movie stimulus many

times (n = 80), but now with four different ‘foreground’ stimuli, each presented 20 times in

pseudorandom order, superimposed on the ‘background’ movie. The foreground stimulus was

a red dot with four different levels of ‘redness’ ranging from gray to bright red (Fig 3A). This

foreground red dot was presented either during the transient immediately following movie

onset or later during the steady state. As with detection, we quantified discrimination using

the mutual information I(R;S) of stimulus and response. However, the stimulus set S was dif-

ferent, now representing the four possible foreground red dot stimuli. Response was defined as

the LFP peak count during a 1 s period immediately following the red dot presentation (Fig

3A). Stimulus discrimination was low during the transient period (-0.01 ± 0.1 bits) and higher

in the adapted and critical steady state (0.2 ± 0.3 bits; Fig 3C).

Next we performed the same detection and discrimination analysis, but using MUA spike

counts instead of LFP peak counts to define response. First we note that, in general, MUA

spike rate is strongly correlated with LFP peak rate (Pearson’s ρ = 0.8 ± 0.2, p<10−4, p value

based on permutation distributions, Fig 4A). Next, we computed detection and, like the LFP-

based results, we observed that detection is strong in the transient response (0.8 ± 0.2 bits) and

relatively weak in the steady state response (0.2 ± 0.2 bits) (Fig 4B). Likewise, discrimination

Shifting network dynamics and a functional tradeoff in visual cortex
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improved from 0.001 ± 0.1 bits during the transient to 0.1 ± 0.2 bits during steady state (Fig

4C).

Thus, we conclude that, in visual cortex, there is an adaptive tradeoff between stimulus

detection and discrimination during adaptation; detection drops from an initially high level

while discrimination improves. To test whether these findings generalized beyond stimuli with

naturalistic spatiotemporal structure, we also considered adaptation following the onset of a

static gray screen, instead of a movie. The conclusions were largely the same as for the movie

stimuli (Figs 3D, 3E, 4B and 4C).

Fig 3. Adaptation enhances discrimination at the cost of reduced detection: LFP rate coding. (A) TOP: Typical rasters of LFP peaks

(taken from all electrodes, randomly subsampled to 10%) showing response to 13 trials with the same background movie visual stimulus

(no foreground). Detection was quantified based on the LFP peak count when the movie was off (pink box) compared to when the movie

was on (blue or orange box). BOTTOM: For discrimination a foreground stimulus (4 different red dots) was presented during each of four

blocks with 13 trials each, all with the same background movie stimulus. The red dot was presented either during the transient period just

after background stimulus onset (blue box) or later during the steady-state (orange box). Note that the different foreground stimuli were

more easily distinguished by the LFP peaks in the steady-state compared with the transient, but the presence of the background stimulus is

more easily detected based on strong transient response. (B) Summary (n = 14 turtles) of how well the LFP peak count can detect the

presence of the background stimulus. All turtles show a decrease in detection from transient to steady-state. (C) Summary of how well the

LFP peak count can discriminate the four different foreground stimuli. Most turtles showed an increase in discrimination from transient to

steady-state. (D, E) A more refined explanation of detection and discrimination is obtained by comparing to δ. Generally, lower δ resulted in

enhanced discrimination and poorer detection, while higher δ exhibited the opposite trend. Thus, power-law distributed (low δ) population

dynamics are associated with a functional trade-off, gaining discrimination at the cost of decreased detection. The inset is an expanded

view to better show the correlation between discrimination and δ during the steady-state.

https://doi.org/10.1371/journal.pcbi.1005574.g003
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In the preceding results, we have shown that both network dynamics and function evolve

systematically over the time course of adaptation. The correlation between network dynamics

and function becomes more apparent when we plot detection versus δ (Fig 3D) and discrimi-

nation versus δ (Fig 3E). Discrimination was anticorrelated with δ (for LFP ρ = -0.6, p<10−5;

for MUA ρ = -0.38, p<0.004) and detection was correlated with δ (for LFP ρ = 0.6, p<10−5; for

MUA ρ = 0.8, p<10−13). More interesting, we found that, even within the steady state period

alone, variability in network dynamics, i.e. variability in δ, could explain a significant amount

of the variability in discrimination (for LFP ρ = -0.6, p<0.02, Fig 3E; for MUA ρ = -0.56,

p<0.03, Fig 4C). Such brain-to-brain variability in discrimination at the same time point fol-

lowing movie onset (4–5 s after movie onset) highlights the fact that the same movie back-

ground stimulus caused different neural response in different brains. Thus, presumably,

differing degrees of adaptation were present in different brains. Moreover, the fact that stimu-

lus discrimination improved with decreasing δ values, including into the δ< 0 regime, sug-

gests that discrimination of foreground stimuli is optimal when network dynamics deviate

from scale-free, towards the small-scale. In the context of the criticality hypothesis, this would

indicate that slightly subcritical dynamics are better for discrimination than criticality.

In the above analysis, detection and discrimination were calculated assuming a rate based

code (LFP peak rate in a fixed time window). Previous studies highlight the possibility that

temporal or spatial patterns can encode information in addition to that encoded in rates [28–

31]. Therefore, we next sought to determine if other forms of coding also exhibit an adaptive

tradeoff between detection and discrimination. We tested this possibility for a temporal code

and a spatial pattern code. First, we computed discrimination based on a 6-bit spatial pattern

of response (normalized to remove dependence on activity rate.) Each bit represented a differ-

ent, spatially contiguous group of electrodes in the matrix array. We found that spatial pattern

of response did not carry significant information for discrimination of the foreground red dot

stimuli. However, we next tested the temporal pattern of response and found adaptive

improvement of discrimination based on such temporal coding. We defined the temporal

response to a single stimulus to be a 5-bit binary ‘word’ corresponding to a sequence of 5 con-

secutive time bins, each 0.2 s in duration, following the onset of the foreground red dot (Fig

5A and 5B). Each bit was set to 1 if its LFP peak count (summed over all electrodes) was higher

than the mean across the 5 time bins (counts were also normalized by variance across time).

Fig 4. Adaptation enhances discrimination at the cost of reduced detection: MUA rate coding. (A) Based on the entire recording for

each turtle, the LFP count per 1 second time window is strongly correlated with the MUA spike count per 1 second. MUA was generally

lower rate than LFP. Each shaded region corresponds to one experiment. The vertical extents of the shaded regions delineate quartiles.

(B) Similar to our observations based on LFP peak response (Fig 3), we found that when response was defined based on MUA spike

counts, detection is highest during the transient response and decreases as adaptation progresses to a steady state. The decrease in

detection during the steady-state compared with LFP-based detection is likely due to the lower activity rate of MUA relative to LFP. (C)

MUA spike response also exhibited increased discrimination during the steady state compared with the transient.

https://doi.org/10.1371/journal.pcbi.1005574.g004
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Fig 5. Adaptation enhances discrimination at the cost of reduced detection: Temporal coding. (A) The

time course of population response during the 1 s (0.2 s resolution) following the four different foreground

stimuli (red dots) showed little difference during the transient response. Black lines indicate response

averaged over repeated trials. Gray lines indicate individual trials. Each response was subtracted by its time

average and normalized by its variances to emphasize effects of rate coding. One example turtle shown.

White dots indicate the 5 bins used to compute the 5 bit temporal response. (B) During the steady-state,

different foreground stimuli evoked differing temporal structure of responses. Thus, temporal structure carries

useful information for discrimination. (C) Summary of discrimination based on temporal structure for 14

experiments. Most turtles showed an increase in discrimination from transient to steady-state. (D) Variability

in discrimination is better explained when changes in δ are accounted for. Similar to rate-based discrimination,

power-law distributed (low δ) population dynamics are associated with optimal temporal discrimination. (E)

Summary of detection based on temporal structure for 14 experiments. Detection typically decreased from

transient to steady-state. (F) Variability in detection is better explained when changes in δ are accounted for.

Similar to rate-based detection, power-law distributed (low δ) population dynamics are associated with low

detection.

https://doi.org/10.1371/journal.pcbi.1005574.g005
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By this definition, the temporal pattern of response is normalized to emphasize temporal

aspects of the response rather than the rate coding considered above (but may not be entirely

independent of rate as discussed elsewhere [31]). We computed mutual information between

this 5-bit temporal response and the stimulus (foreground red dot levels), corrected for low

sample bias as done with the rate coding discrimination presented above. We found that the

temporal pattern of response often did carry information about the stimulus, but only during

the steady-state (0.15±0.17). During the transient response, temporal information was mini-

mal (-0.01±0.06, Fig 5C). Moreover, temporal discrimination was significantly anticorrelated

with changes in network state as measured by δ (ρ = -0.45, p<0.005). We note that when

unstructured, static background stimulation (gray screen) was used instead of the movie back-

ground, adaptive improvement of temporal discrimination was less prominent and only

observed in a minority of turtles. Comparing among the 9 turtles with significant discrimina-

tion during the steady-state, 6 had higher rate-based discrimination compared with timing-

based discrimination. To determine if rate and timing were redundant or carried different

information, we next computed discrimination using both rate and timing responses (joint

mutual information). We found that this joint-discrimination was close to the individual val-

ues of rate-discrimination and timing-discrimination (difference of 0.04 ± 0.14 bits), which

suggests that the rate and timing information was rather redundant. In contrast, if the rate and

timing information was not redundant, i.e. coded different aspects of the stimulus, we would

expect the joint-discrimination to be closer to the sum of the rate-discrimination and timing-

discrimination. This difference was 0.36±0.24 bits. In summary, adaptive improvements of dis-

crimination were most obvious when considering a rate code, but generalize beyond a simple

rate code and apply to temporal population coding as well.

We also considered whether temporal response pattern is better for detection during the

transient response than in the steady-state, as we found for rate-based response. First, com-

pared to rate based detection, we found that detection based on temporal response was poor

(but far from zero). This is perhaps not surprising since, during darkness, there is no expecta-

tion for temporally structured activity to encode the lack of stimulus. Nonetheless, there was a

small, but significant decrease in detection from the transient to the steady state. Detection

using temporal response was 0.42 ± 0.14 bits during the transient and 0.26 ± 0.17 bits during

the steady state (Fig 5E and 5F).

Synaptic depression can mediate the computational trade-off

What biophysical mechanisms could explain our observations of a trade-off between detection

and discrimination as a network adapts from large-scale transient response towards scale-free

dynamics (Figs 3 and 4)? Previous studies suggest that short-term synaptic depression is suffi-

cient to explain adaptation towards criticality, where scale-free dynamics are expected [16,17].

Can such a simple mechanism also account for the observed trade-off between detection and

discrimination? We investigated this possibility in a model network of excitatory and inhibi-

tory probabilistic integrate-and-fire neurons with all-to-all connectivity and short-term synap-

tic depression [16] (Methods). To mimic the experimental visual stimuli (movie onset), the

model was subjected to an abrupt increase in input rate followed by a slowly varying input rate

(Fig 6A). This process was repeated 80 times. As in the experiments, we examined three time

periods during the time course of adaptation following the onset in background stimulation–

the transient, baseline, and steady state (Fig 6B). As found experimentally (Fig 2E), extremely

large avalanches were common during the transient period (Fig 6B). Avalanches decreased in

size as synapses depressed (Fig 6C). Specifically, the avalanche size distribution during the

transient period displayed a distinct bimodal character, while a power-law distribution

Shifting network dynamics and a functional tradeoff in visual cortex
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emerged as adaptation progressed into the baseline period (Fig 6D), consistent with the

hypothesis that synaptic depression can tune the cortex towards criticality.

Deviations from the baseline power-law were large during the transient (δ = 0.18 ± 0.1).

The steady state test period exhibited much smaller deviations from the baseline power-law (δ
= 0.004 ± 0.06). Thus, the effects of synaptic depression on the model network dynamics

matched well the adaptive changes in network dynamics we observed in our experiments (Fig

2F). We next investigated the impact of synaptic depression on detection and discrimination

in the model. We focused on a rate code, since the majority of discrimination information in

the experimental data was carried by a rate code.

Mirroring the experimental approach, we asked to what extent the presence of the elevated

external input (Fig 6E) was detectable based on the simulated network spiking (Fig 6F) and

how this detection was affected by synaptic depression. Detection was computed the same way

as in the experimental data analysis presented in (Figs 3 and 4), with response defined in terms

Fig 6. A network model with short-term depression reproduces the discrimination-detection trade-off. (A) The model network is driven

by a slowly varying ‘background’ stimulus that turns on at t = 500 timesteps. We interpret 1 time step to be approximately 1 ms. (B) Avalanches

with a tendency for very large sizes occur during the transient following stimulus onset (blue). Smaller avalanches occur during the baseline

period (green), which includes the later time period labeled ‘steady-state’ (orange). Avalanches are overlaid from 80 repetitions of the same

background stimulus. (C) Synapse strength (averaged over all except the input synapses) drops at stimulus onset and fluctuates due to short

term depression. Gray lines indicate single trials (n = 80); black line is the cross-trial average. (D) Avalanches are distributed according to a

power-law during the baseline (green) and have a high likelihood of very large avalanches during the transient (blue). Inset: cumulative

distributions of the same data reveal that δ>0 for the transient. (E) A ‘foreground’ stimulus (red) is applied at two times: during the transient and

later during the steady-state. (F) Raster of model spikes (from all neurons, subsampled) including 80 trials, broken into four blocks of 20, each

with a different intensity of foreground stimulus. Response was defined as the spike count during the transient (blue) or the steady-state (orange).

(G, H) Consistent with our experiments, discrimination of foreground stimuli was inversely proportional to δwhile detection was proportional to δ.

https://doi.org/10.1371/journal.pcbi.1005574.g006

Shifting network dynamics and a functional tradeoff in visual cortex

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005574 May 30, 2017 11 / 21

https://doi.org/10.1371/journal.pcbi.1005574.g006
https://doi.org/10.1371/journal.pcbi.1005574


of spike count. For all networks and trials tested, stimulus detection was high (0.57 ± 0.19 bits)

during the transient period at stimulus onset and significantly reduced (0.17 ± 0.10 bits) dur-

ing the adapted and critical steady state. In this respect, the model reproduced the adaptive

changes in stimulus detection in turtle visual cortex.

The model also successfully reproduced the dynamics of stimulus discrimination we

observed experimentally. We asked to what extent four levels of a brief increase in external

input rate (foreground stimulus) on top of the high external input rate (background stimulus)

were discriminated based on the simulated network spiking (Fig 6E and 6F). For all networks

and trials tested, stimulus discrimination was low (0.25 ± 0.10 bits) during the transient period

at stimulus onset and higher (0.46 ± 0.11 bits) during the adapted and critical steady state.

Thus, we conclude that short-term synaptic depression is sufficient to reproduce our experi-

mentally observed tradeoff between detection and discrimination.

Our experiments exhibited substantial brain-to-brain variation in discrimination and

detection (Figs 3B, 3C, 4B and 4C). This functional variability was partially explained by

accounting for variability in the network state (the δ measure) (Figs 3D, 4E, 4B and 4C). As

discussed above, one possible explanation of these variations in network state and function is

that the same visual stimulus could result in a different time course of population response in

different animals, and therefore, a different time course of adaptation. To test this idea in our

model, we systematically varied the time course of the slowly varying component of the back-

ground stimulus (Fig 6A). We temporally shifted the peaks and valleys of the background stim-

ulus with respect to the foreground stimulation onset and computed δ during the same

transient and steady state time periods. This resulted in a range of δ from approximately 0 to

0.4 for the transient period and from approximately -0.1 to +0.1 in the steady state period. As

found experimentally, discrimination in the steady state time period was anticorrelated with δ.

Discrimination was highest when the system exhibited nearly scale-free dynamics, but slightly

shifted towards small-scale (δ< 0) (Fig 6H), consistent with a slightly subcritical state.

These observations raise a question: if we push the cortex further towards small-scale

dynamics (further subcritical) does discrimination continue to improve, or does discrimina-

tion drop in more extreme regimes? We used our model to answer this question (Fig 7). We

made depression stronger (100 times stronger than the results in Fig 6) and the model steady

state displayed extremely subcritical network dynamics, strongly deviating from scale-free ava-

lanche sizes (Fig 7D). For such extreme synaptic depression, stimulus discrimination declined

(Fig 7E). Together with our experiments (Figs 3E and 4C) and other recent model studies

[22,32], this is consistent with the hypothesis that there is an optimal network state for stimulus

discrimination near criticality, but slightly subcritical.

Discussion

Cortical neural circuits are computationally versatile, capable of functionally reorganizing

themselves to accommodate changes in sensory input. How two specific functions–stimulus

detection and discrimination–emerge from the collective dynamics of the same neural circuit

has remained an important and unanswered question [4–7]. Here, we found, using experi-

ments and computational modeling, that adaptation to a change in sensory input incurred a

shift in cortical dynamics and a trade-off between visual detection and discrimination. Visu-

ally-driven cortical dynamics shifted from an initially intense large-scale response to a more

moderate, scale-free network dynamics, consistent with recent findings that adaptation tunes

visual cortex towards criticality [16]. Concurrently, we found that adaptation towards scale-

free dynamics coincided with enhancement of stimulus discrimination at the expense of

decreased stimulus detection. Our simulations of a model network demonstrated that short-
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term synaptic depression can provide a mechanistic explanation for the computational trade-

off during network adaptation towards criticality.

Our study offers an answer to an important, but typically overlooked, question. How do

adaptive changes at the synaptic or single-neuron level impact network-level dynamics? It is

Fig 7. Extreme synaptic depression results in small-scale dynamics and decreased discrimination.

(A) Shown are results from our model with more extreme depression with τd decreased by a factor of 100

compared to the model results in Fig 6. All other model parameters including the stimulus paradigm are

unchanged. (B) Subsampled spike rasters for 20 trials for each of 4 different foreground stimulus levels. Note

that the steady state spike rate is lower than that in the model results of Fig 6. Spike response does not vary

strongly with changing foreground during the steady state. (C) The extreme depression implemented here

results in about 50% reduction in cortex synapse strengths. This is a large reduction compared to the ~10%

reduction for the model results in Fig 6. (D) During the baseline period (same definition as shown in Fig 6),

avalanche sizes are not distributed according to a power-law (green), indicating that the dynamics are not at

criticality. Rather, the curvature of the distribution and the lack of large avalanches are consistent with

subcritical dynamics. In contrast, the avalanche size distribution during the transient is close to a power-law

because the synapses have not yet reached a low enough level to strongly deviate from criticality. (E) In

contrast with the results in Fig 6, the transient period (blue) exhibits high discrimination as expected for critical

dynamics. The subcritical steady state (solid, orange) exhibits decreased discrimination compared with the

critical steady state of Fig 6 (open, orange). Box vertically spans the two quartiles around the median (middle

line). Whiskers indicate the range of the data.

https://doi.org/10.1371/journal.pcbi.1005574.g007
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well known that changing single neuron properties [33] or altering synaptic interactions [34]

can result in dramatic changes in the collective dynamics of the cortical network. Moreover,

many aspects of cortical function are sensitive to such changes in cortical state [33–35]. Given

that adaptation can alter single neuron properties and synapses, it is important to determine

how adaptation impacts cortical network dynamics. Traditional theoretical studies have

focused on how adaptation impacts detection and discrimination at the single neuron, or sin-

gle synapse level. Some of these studies even predicted a tradeoff between detection and dis-

crimination, e.g. [36]. However, these studies left open the possibility that the observed

neuronal or synaptic changes entail changes in large-scale network dynamics which, in turn,

feed back and disrupt the conclusions found at the small scales. For example, most theoretical

single neuron studies assume a certain level of background noise to account for the network

input to the neuron. The assumption that such background noise is independent of single-

neuron adaptive processes could lead to erroneous conclusions if adaptation changes the

nature of the background network dynamics. Our results suggest that by tuning visual cortex

towards a scale-free dynamical regime, adaptation facilitates improvements in discrimination.

Previous experiments [4–7] on mammalian somatosensory cortex observed a trade-off

between detection and discrimination, similar to that we found in turtle visual cortex. This

commonality in function is remarkable given the differences in structure between mammalian

neocortex and the ancestral cortex of reptiles. For instance, turtle visual cortex is comprised of

three layers similar to mammalian piriform cortex and hippocampus [37–39]. Together with

studies of mammalian brains, our results suggest that the detection-discrimination trade-off

either evolved independently for turtles and mammals or has been evolutionarily preserved for

hundreds of millions of years with origins as early as the emergence of amniotes.

A simple interpretation for why the detection-discrimination trade-off might occur arises

from considering some basic ethological aspects of how we interact with the environment.

When a new object or feature of the environment is first encountered, the first job of our visual

system is to detect its presence. A likely second step is to examine and discriminate the finer

details of the newly-detected thing. The utility of this temporal sequence—detection followed

by discrimination–suggests an explanation for our findings in the turtle visual cortex as well as

similar findings in mammalian somatosensory cortex [4–7]. Moreover, our results suggest that

this detection-discrimination sequence is facilitated by the flexibility in cortical state that

comes of operating near criticality.

Although our measurements were done in cortex, it is also likely that retinal and thalamic

adaptation contribute to our results. Our model suggests that short-term depression among

thalamocortical and corticocortical synapses may be sufficient to explain our results, but future

experiments are required to determine the relative importance of adaptation in different parts

of the visual system. Indeed, detection and discrimination may relate differently at different

stages of the visual system.

Our modeling focused on synaptic depression as the relevant adaptive mechanism to parsi-

moniously explain our results. However, other adaptive mechanisms could also play roles.

Indeed, synaptic facilitation could result in a strong transient response similar to that we

observed [40]. Differing time courses of excitatory and inhibitory response to thalamocortical

input could also be relevant [41,42]. Further study is required to pinpoint which possible

mechanisms contribute to our observations.

Our study focused on the adaptation that follows the onset of a sensory stimulus. However,

it is also well established (at least in mammals) that ongoing activity without sensory input can

manifest as bouts of intense network activity (e.g. up-states [43] and neuronal avalanches

[26]). Our results suggest that adaptive changes during such internal activity may also incur a

Shifting network dynamics and a functional tradeoff in visual cortex

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005574 May 30, 2017 14 / 21

https://doi.org/10.1371/journal.pcbi.1005574


trade-off between discrimination and detection. This trade-off may help to explain how

response to sensory input is modulated by ongoing activity [43–45].

We designed our visual stimulus to cause a very clear and reliable time course of adaptation

—an abrupt transition from no stimulus to a rather intense, dynamic movie. However, in real-

ity, such an intense change is rarely part of naturalistic visual input. More realistically, the

visual system is constantly receiving input; the “movie” does not turn off until we close our

eyes. Thus, for realistic visual input it may be unusual for detection and discrimination to

reach the extremes we observed during the transient onset response. Nonetheless, our results

do have practical implications for the countless experimental studies in which a visual stimulus

is presented following a black screen. For sustained natural visual input, our results suggest

that the visual cortex spends most of its time near a scale-free dynamical regime, like the visu-

ally-driven steady state period we discuss above.

Our work focused on two specific aspects of sensory function—detection and discrimina-

tion. However, the computational repertoire of sensory cortex is certainly broader than just

detection and discrimination. Different functions may require the underlying cortical network

to be tuned differently. For instance, sensory dynamic range has been shown to be maximized

at criticality [34,46,47]. Other functions such as oscillatory binding and information transmis-

sion across cortical regions [48,49] may benefit from synchronous (perhaps supercritical)

dynamics, while object representation has been suggested to benefit from asynchronous (per-

haps subcritical) dynamics [22]. Our results demonstrate a clear case of switching between

competing computational properties depending on context. We expect future studies to build

upon our findings to obtain a more comprehensive understanding of the computational versa-

tility of the cortex.

Materials and methods

Ex vivo eye-attached whole-brain preparation

All procedures were approved by Washington University’s and University of Arkansas’ Insti-

tutional Animal Care and Use Committees and conform to the guidelines of the National

Institutes of Health on the Care and Use of Laboratory Animals. Animal use protocol numbers

were (20150248 for Wash U, and 16041 for U Ark) Adult red-eared turtles (n = 14, Trachemys

scripta elegans, 150–200 g weight, 12–15 cm carapace length) were studied. Following anesthe-

sia (Propofol 10 mg/kg) and decapitation, we surgically removed the brain, optic nerves, and

eyes, from the cranium [16,50]. One eye was hemisected and drained, thus exposing the retina

for visual stimulation; the other eye was removed. Two cuts allowed the cortex to be unfolded,

exposing the ventricular surface, thus facilitating the subsequent insertion of the microelec-

trode array. The eye and the brain were continuously perfused with artificial cerebrospinal

fluid (in mM; 85 NaCl, 2 KCl, 2 MgCl2, 45 Na HCO3, 20 D glucose, and 3 CaCl2 bubbled with

95% O2 and 5% CO2), adjusted to pH 7.4 at room temperature. Recordings began 2–3 hrs

after induction of anesthesia.

Microelectrode array measurements

Using a micromanipulator (Sutter, MP-285), we inserted a microelectrode array into the visual

cortex. The array was comprised of a three dimensional grid of electrodes (4x4x8 grid, 16

shanks, 8 electrodes per shank, 300 μm inter shank spacing, 100 μm interelectrode spacing on

each shank, Neuronexus). We analyzed data from every other electrode along each shank to

avoid sampling redundant LFP. This included 48 electrodes in total. The array was inserted

into visual cortex to a depth such that electrodes spanned the cortex from the ventricular to

the dorsal surface. We recorded wideband (0.7 Hz– 15 kHz) extracellular voltages relative to a
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silver chloride pellet electrode in the bath at 30 kHz sample rate (Blackrock Microsystems, Cer-

ebus). With post-processing filtering we extracted local field potential (LFP, band-pass 5–100

Hz) and multi-unit activity (MUA, band-pass 100–1000 Hz). MUA spike times were defined

as the times of negative peaks that surpassed a -3 SD threshold.

Visual stimuli

Visual stimuli were created by a computer and delivered with a miniature video projector

(Aaxa Technologies, P4X Pico Projector). The projector image was focused onto the retina

with additional lenses (Fig 2a). The mean light intensity (irradiance) at the retina was 1 W/m2.

For our stimulus detection measurements, the stimulation consisted of a transition from

darkness to one of two types of grayscale movie (5 s in duration). One was the first 5 s of a

‘motion-enhanced’ movie [51], the other was a spatiotemporally phase-shuffled version of this

movie. We also tested a transition from darkness to a static, uniform gray visual field.

For stimulus discrimination, the same movies were considered as “background” stimula-

tion, upon which we added 1 of 4 different foreground stimuli. The foreground stimuli were a

circular patch (dot) of uniform color ranging from gray to red in linear steps in RGB space.

The dot spanned ¼ of the visual field centered in the middle of the visual field. The dot was

presented for 30 ms either during the transient period (300 ms after background onset) or dur-

ing the steady state period (4 s after background onset).

Avalanche analysis

The first step of avalanche detection was to compute the standard deviation of every LFP trace.

Next we defined an ‘LFP peak’ as a period of time during which an LFP trace fluctuates beyond

3 standard deviations, due to either a positive or negative deflection (Fig 2b). For each LFP

peak, we determined the time of its extreme value and the identity of the channel on which it

was recorded. An avalanche was defined as a spatiotemporal cluster of consecutive LFP peaks

with inter-peak intervals not exceeding a temporal threshold ΔT (channel information does

not play a role in avalanche definition). For each turtle, ΔT was chosen to be the average inter-

peak interval (<IPI>, inverse of population LFP peak rate), which was 19.3 ± 7.3 ms. The size

of an avalanche was defined as the number of LFP peaks comprising the avalanche. Avalanches

were grouped and analyzed separately depending on whether they occurred during the tran-

sient period or visually-driven baseline or steady state periods.

Power law fitting, fit quality q, and deviation δ
For avalanche size distributions in the baseline period, we used previously developed maxi-

mum likelihood fitting methods [16] to fit a truncated power law (truncated at both the head

and tail). The fitting function was f ðSÞ ¼ S� tð
XxM

x¼x0

x� tÞ
� 1

, where the maximum size xM was

assumed to be the largest observed avalanches size. The minimum size x0 and the exponent τ
were fitting parameters. Minimum values for x0 were tried increasing from 0, but only up to

the point when the fitted power law matches the data well enough to have a Kolmogorov-Smir-

nov statistic KS < 1=
ffiffiffiffiffiffiffiffiffiffi
Nsamp

p
, where Nsamp is the number of avalanches comprising the dataset

as established in previous work [16].

After finding the best-fit power law, the next step was to assess goodness-of-fit q [27,52].

We compared the experimental data to 1000 surrogate data sets drawn from the best-fit power

law distribution with the same number of samples as the experimental data set. The deviation

between the surrogate data sets and a perfect power law was quantified with the KS statistic.

The quality q of the power law fit was defined as the fraction of these surrogate KS statistics
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which were greater than the KS statistic for the experimental data. A very conservative crite-

rion for judging the data to be power law distributed is q>0.1. This is demonstrated visually in

Fig 2e by plotting the experimental distribution over a green outlined region which delineates

the 5–95 percentiles of the surrogate data sets.

We characterized changes in network dynamics with the measure δ. For the transient

period δ was defined as the deviation between the baseline avalanche size distribution and the

distribution of avalanches that occurred during the first second following stimulus onset. Simi-

larly, for the “steady-state” period, δ is the deviation between the baseline distribution and the

distribution of avalanches that occurred between 4–5 s following stimulus onset. To compute

δ, we followed previously developed methods [16,47], first recasting the two compared distri-

butions as cumulative distribution functions (CDF). Next, we took the mean of 10 differences

between the two compared CDFs. The 10 differences were spaced logarithmically between

minimum and maximum observed avalanche sizes. Thus, the range of possible δ is -1 to 1,

with negative δ indicating a tendency for small-scale dynamics, positive δ indicating a ten-

dency for large-scale dynamics, and δ = 0 indicating scale-free dynamics. In contrast, a Kolmo-

gorov-Smirnov statistic is defined as the absolute value of the single largest difference between

two cumulative distributions.

I(R;S) and adjusting for low sample bias

The mutual information calculations used to quantify detection and discrimination were

adjusted to correct for potential finite sampling bias. We followed well established, non-

parametric methods [53,54], sometimes referred to as ‘bootstrap correction’ [55]. More specifi-

cally, the naïve uncorrected mutual information was reduced by subtracting a surrogate ‘noise’

mutual information I(R;Sshuff) obtained by recomputing mutual information with the order of

stimuli randomized. I(R;Sshuff) was computed for 100 independent randomizations of the sti-

muli order; error bars in Figs 3 and 4 reflect variability across these 100 randomizations. When

the true mutual information is high, this correction scheme provides a conservative estimate,

with a slight bias towards underestimating the true mutual information (S1 Text). However,

the correction is less biased and particularly important when the true mutual information is

low (S1 Text). Our primary conclusions–different discrimination and detection during the

transient response compared with the steady-state response–would likely be even stronger if

we were able to do more repetitions of the stimuli. To further mitigate low sampling bias, we

also reduced the dimensionality of LFP and MUA response by categorizing each response into

one of four bins defined by the following bin edges: 0, R20 + ΔR/4, R20 + ΔR/2, R20 + 3ΔR/4,

Rmax. Here R20 is defined as the 20th quantile of all responses for a given time period (e.g. for

all transient responses or all steady state responses), ΔR is the differences between the 80th and

20th quantiles, and Rmax is the largest response.

Computational model

N = 1000 all-to-all connected binary neurons received input from outside the network. The

‘strength’ of the synapse from neuron j onto neuron i at time t is determined by the correspond-

ing element of the synaptic weight matrix Wij(t). 20% of neurons are inhibitory, i.e. with nega-

tive entries in the weight matrix. Oi(t) is the strength of the input synapse onto neuron i (all

excitatory). The binary state si(t+1) of neuron i (s = 0 inactive, s = 1 spiking) is determined prob-

abilistically based on the sum p(t+1) of its inputs pðt þ 1Þ ¼ OiðtÞsiðtÞ þ
XN

j¼1
WijðtÞsjðtÞ. If

0< p< 1, then the neuron fires with probability p. If p�1, then the neuron fires with probabil-

ity 1. If p� 0, then the neuron does not fire. Time is discrete and state updates are synchronous.
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The input σi(t) from the ith input synapse is binary (1 with probability r(t)). The dynanmics of r
(t), define the stimulus in the model as discussed further below. The update rules for synaptic

dynamics are

Wijðt þ 1Þ ¼WijðtÞ þ tr
� 1ðWo

ij � WijðtÞÞ � td
� 1WijðtÞsjðtÞ

Oiðt þ 1Þ ¼ OiðtÞ þ tr
� 1ðO

o
i � OiðtÞÞ � td

� 1OiðtÞsiðtÞ:

The default weight matrix Wo
ij was constructed such that its largest eigenvalue Λ0 has abso-

lute value equal to 1.03 (this results in synaptic strengths near 1.03/N on average) [16,56].

Default input synaptic strengths O
o
i were 0.02. Synapses depress with a time constant of τd = 40

time steps following a presynaptic spike and recover exponentially with a time constant of τr =

400 time steps. These parameter choices were made based on previous work with this model

[16] and with the goal of reproducing our experimental results.

To model the background stimulus used for studying detection, the onset of stimulation is

modelled as a step increase from a constant low level (r = 5x10-4) to a higher level that slowly

fluctuates as r(t) = 0.1 +0.075 sin(0.0075t + 2πφ), where φ was varied across trials (in linear

steps from 0 on trial 1, to 1 on trial 80). This background stimulus is delivered to half of the

neurons. To model the brief foreground stimulus used to study discrimination, we set r(t) =

0.05, 0.1, 0.2 or 0.4 (to mimic the 4 levels of foreground stimulus (red dots) in the experiments)

for 30 model time steps for all neurons before returning to the background stimulus.

In the model, an avalanche is initiated by external input. Upon reaching a time step with no

active neurons, the avalanche is considered to be ended. We simulated 80 trials of step increase

in input for detection and 80 trials for discrimination (20 for each foreground stimulus). Each

trial consisted of 2500 time steps (1 time step can be interpreted to be approximately 1 ms).

The background stimulus onset was at time 500. The foreground stimulus was presented

between times 530 and 560 (transient) or between times 2000 and 2030 (steady state).

Supporting information

S1 Text. Interpreting mutual information considering low sample bias. We demonstrate

how our experimental results depend on the number of repeated trials for the visual stimula-

tion and how such finite sampling is expected in theory to affect estimates of mutual informa-

tion.
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