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Objective. Our aim was the development and validation of a modular signal processing and classification application enabling
online electroencephalography (EEG) signal processing on off-the-shelf mobile Android devices. The software application SCALA
(Signal ProCessing and CLassification on Android) supports a standardized communication interface to exchange information
with external software and hardware. Approach. In order to implement a closed-loop brain-computer interface (BCI) on the
smartphone, we used a multiapp framework, which integrates applications for stimulus presentation, data acquisition, data
processing, classification, and delivery of feedback to the user.MainResults.Wehave implemented the open source signal processing
application SCALA.Wepresent timing test results supporting sufficient temporal precision of audio events.We also validate SCALA
with a well-established auditory selective attention paradigm and report above chance level classification results for all participants.
Regarding the 24-channel EEG signal quality, evaluation results confirm typical sound onset auditory evoked potentials as well
as cognitive event-related potentials that differentiate between correct and incorrect task performance feedback. Significance. We
present a fully smartphone-operated, modular closed-loop BCI system that can be combined with different EEG amplifiers and can
easily implement other paradigms.

1. Introduction

Electroencephalography (EEG) is awell-established approach
enabling the noninvasive recording of human brain-electrical
activity. EEG signals refer to voltage fluctuations in the
microvolt range and they are frequently acquired to address
clinical as well as research questions. Many studies in the
research field of cognitive neuroscience rely on EEG, since
EEG hardware is available at relatively low cost and EEG
signals enable to capture the neural correlates of mental
acts such as attention, speech, or memory operations with
millisecond precision [1]. Brain-computer interfaces (BCI)

typically make use of EEG signals as well [2]. The aim is to
identify cognitive states from EEG signatures in real time
to exert control without any muscular involvement. BCIs
typically benefit from a machine learning signal processing
approach [3]. To name a few BCI applications, speller sys-
tems provide a communication channel for fully paralyzed
individuals (e.g., [4]), motor imagery BCI systems promise
controlling prostheses by thought alone [5, 6], and BCI
error monitoring systems have been shown to reliably detect
car driver emergency braking intentions even before the
car driver can hit a brake pedal, thereby supporting future
braking assistance systems [7]. A clear drawback of current
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laboratory BCI technology is that the hardware is often
bulky, stationary, and relatively expensive and thereby limits
progress.

Furthermore, established laboratory EEG recording tech-
nology does not easily allow for the investigating of brain
correlates of natural human behaviour. EEG systems, as they
are typically used in the lab, include wires connecting scalp
electrodes and bulky amplifiers and they do not tolerate
human motion during signal acquisition very well [8, 9].
With the recently introduced small, head-mounted wireless
EEG amplifiers and their confirmed applicability in real-
life situations [10] new paradigms for out-of-the-lab setups
are now possible. Head-mounted wireless EEG amplifiers in
combination with small notebooks allow for EEG acquisition
during natural motion, such as outdoor walking [10] and
cycling [11]. Moreover, we recently showed that off-the-shelf
Android smartphones can handle stimulus presentation as
well as EEG acquisition on a single device [8].

The combination of unobtrusive EEG sensors [8], wireless
EEG amplifiers, and smartphone-based signal acquisition
and stimulus presentations (which we call transparent EEG
[12]) opens up a plethora of possibilities for research, diag-
nostics, and therapy. The focus on smartphone-operated
wearable devices for health and care [13] allows for home-
based applications with a high usability. Smartphone are
ubiquitous and socially accepted and provide an unparalleled
flexibility.

Current smartphone technologies provide sufficient com-
puting power to implement all the steps required for a BCI on
a single device, but few groups have attempted to explore this
possibility [14].

In previous studies we have shown that Android
smartphone-based EEG recordings [10, 15] as well as stim-
ulus presentation on the phone [8] or on a tablet [16]
are feasible. However, while the signal quality achieved on
handheld devices may be comparable to previous desktop
computer-recorded EEG signals [10], all signal processing
and classification routines were applied offline on desktop
computers, after signal acquisition was concluded. Also, in
Debener et al. [8] the temporal precision of auditory events
lacked laboratory standard millisecond precision. Debener
et al. [8] reported a temporal jitter of approximately 6ms
standard deviation. Stopczynski et al. [9] pioneered an online
EEG acquisition and source modelling system running on
Android devices. The Smartphone Brain Scanner project
is freely available and includes real-time visualization of
ongoing EEG activity in source space [17]. While confirming
the general practicability of on-smartphone processing, the
system does not consider delays and processing overheads,
as more general processing frameworks would do, and it does
not provide a general framework for precise stimulus control
and presentation of stimuli, as it is typically required for
the implementation of BCI applications. A further drawback
is that the Smartphone Brain Scanner requires a rooted
smartphone and a custom kernel. Another group presented
the NeuroPhone [18], a BCI application on iPhone. However,
while the iPhone application implemented EEG preprocess-
ing and classification along with stimulus presentation and
feedback, a laptop was required for EEG signal acquisition.

Wang et al. [19] implemented online EEG processing using a
frequency coding approach on amobile device.They reached
an impressive classification accuracy (mean = 95.9%) with
a steady-state visual evoked potential (SSVEP) paradigm to
steer an Android application. In addition to the signal pro-
cessing, they established EEG data acquisition on the phone
but used external hardware for visual stimulus presentation.
In a follow-up study, the same work group presented a fully
smartphone-operated visual BCI, by integrating stimulus
presentation and signal processing on a single mobile device
[20]. Their mobile application may be considered the first
smartphone-only operated BCI system, but use of proprietary
communication protocols and a specific paradigm makes it
difficult for others to follow up on this approach.

We present here a fully smartphone-operated, modular
closed-loop BCI system. Our system is highly flexible and
extendable with regard to the EEG hardware, the experi-
mental paradigm, and the signal processing. Our aim was
the development and validation of a reliable, accessible open
source software solution for Android smartphone BCIs that
allows us to conduct BCI research beyond the lab. A closed-
loop BCI system requires time-resolved stimulus presenta-
tion, multichannel data acquisition, online data processing
and feature extraction, classification, and the delivery of
classification outcomes as a feedback signal to the user.

Given our prior experience with smartphone-based EEG
acquisition [8], we focused here on integrating available solu-
tions for data recording and stimulus presentation with own
signal analysis and classification routines as implemented in
a new Android application SCALA (Signal ProCessing and
CLassification on Android). Figure 1 illustrates our multiapp
approach where all applications run on the same phone
during an experiment. We implemented a highly flexible
framework by using well-defined communication protocols
and datatypes suitable for different paradigms and different
sensor data. We used existing applications for EEG acquisi-
tion and stimulus presentation and developed solutions for
reliable communication between these applications based on
the transmission control protocol (TCP) and the user data-
gram protocol (UDP). A clear advantage of such a multiapp
architecture is that any kind of physiological time series can
be processed and that the signal processing application can
be easily adapted to different EEG acquisition hardware and
different stimulus presentation software solutions.

In the following section we will present our modular
system architecture in detail. The timing of the system was
evaluated, focusing in particular on auditory event timing
in the stimulus presentation application. Finally, the perfor-
mance of the system was evaluated by employing a reliable
selective auditory attention task and comparing our results
to previously published reports implementing the identical
paradigm offline in the laboratory [22, 23].

2. Methods

In this section we describe the software architecture of the
signal processing application SCALA and its integration with
the EEG acquisition and stimulus presentation applications.
Then, we discuss our solution to systematically test the timing



BioMed Research International 3

(a) EEG acquisition
(Smarting app)

(c) BCI processing
(SCALA) 

(b) Stimulus presentation
(presentation Android app)

Figure 1: The multiapp BCI on Android approach. An EEG data acquisition application (a) and a stimulus presentation application (b)
communicate with our BCI signal processing application SCALA (c). All three applications run on the smartphone during an experiment.
They exchange data using socket-based, synchronized communication.

of auditory stimulus events on mobile devices. We specify
the recording parameters and describe the online and offline
signal processing procedures.

2.1. The Multiapp Setup. For this study an off-the-shelf Sony
Xperia Z1 smartphone (model: C6903; OS: Android 5.1.1) was
used for stimulus presentation, data acquisition, and signal
processing. Three applications run simultaneously on the
same device during an experiment (cf. Figure 1). Specifically,
we used the Smarting Android application for EEG acqui-
sition and storage [24]. The Smarting Android application
receives EEG data via Bluetooth from a small, wireless
head-mounted 24-channel EEG amplifier and streams signals
continuously over the local network via the Labstreaming
Layer (LSL) [25]. The EEG samples are time-stamped on
the amplifier before they are sent out via Bluetooth which
allows for a possible correction of transmission delays on the
receiving device. LSL is a framework for the time-stamped
acquisition of time series data. The core LSL library is open
source and platform-independent. It uses the TCP protocol
for a reliable communication between applications in the
same network. All applications in ourmultiapp setup support
and include LSL; no additional installation is necessary. For
stimulus presentation and experimental control the mobile
application from Neurobehavioral Systems’ presentation was
used (Version 1.0.2 [26]). Presentation performs stimulus
presentation with high temporal precision and sends event
markers via LSL to the local network. SCALA receives these
event markers as well as the EEG data from Smarting and
processes them. SCALA in return sends classification results
to presentation, which delivers visual feedback to the user.

2.2. Software Architecture of SCALA. SCALA has been
designed as an Android signal processing application. In
order to implement a closed-loop BCI application, it accepts
stimulus event marker and time series data streams as inputs
(cf. Figure 1). SCALA can process and classify data streams on
a trial-by-trial basis, thereby enabling online signal process-
ing and feedback.The SCALA signal processing pipeline uses
amultithreaded setup. Parallel processing inmultiple threads
was implemented to parallelize data acquisition and signal
processing demands. SCALA consists of a general-purpose
central-control module and task-specific modules for the
signal processing. The general architecture is inspired by the
structure of central-control architectures (e.g., Task Control
Architecture (TCA) [27]). As a result, SCALA supports
task decomposition and time-synchronized processing. In
order to achieve maximum hardware flexibility and an easy
installation procedure, we used an out-of-the-box Android
and omitted the necessity of a customized kernel or root
privileges. For user interaction and configuration purposes,
SCALA offers a simple graphical user interface (GUI) and
the possibility of loading configuration files and data from the
phone storage.

A detailed overview of SCALA’s system architecture
is shown in Figure 2. The Communication Module (CM)
contains all communication logic. It receives time series
data of any kind and discrete event markers using a socket-
based communication. The CM continuously receives data
from the network but buffers data for processing only when
the corresponding event marker to an event of interest is
received. The CM stores data in internal data structures and
notifies the central controlling module, the Main Controller
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Figure 2: SCALA architecture and functional connections illustrated as a fundamental modelling concepts diagram [21]. Connections with
overlaying bullet points indicate bidirectional communication channels. The Communication Module (CM) receives incoming data from
several sources and communication protocols. It transmits the data to the Main Controller (MC), which coordinates the signal processing
and eventually provides the classification result to the Communication Module. The Signal Processing Module is exchangeable, thereby
contributing to the flexibility of SCALA.

(MC).TheMC coordinates the signal processing. It features a
bidirectional communication channel to the Signal Processing
Module (SPM) which contains a filter and a classification
submodule. Both submodules are exchangeable and can be
adapted to the specific paradigm. Raw data are handed over
to the filter and preprocessed data are given back to the
MC. The filter type and parameters as well as information
about the trial structure can be defined in the settings. The
data are preprocessed according to these specifications and
are forwarded to the classifier, which extracts one or several
features. The classifier in this version of SCALA is a template
matching procedure which is described in more detail in
the online analysis section. Since SCALA is structured in
a modular manner and all communication interfaces are
standardized, the signal processing procedure can be different
for every paradigm. The classification result is given back to
the MC and passed on to the CM. The CM broadcasts the
result of the processing pipeline over the local network.

The central coordination of all signal processing steps in
the MC has several advantages. Firstly, the single modules
do not form any dependencies to external applications or
proprietary communication protocols. As a result, SCALA
is fully independent of the specific acquisition software
and the stimulus presentation software, and therefore, it is
independent of the EEG hardware as well. Secondly, the
modular architecture facilitates the adaptation to new BCI
paradigms and use cases. Further, new Signal Processing
Modules can be easily added or replace existing ones. One
important module will be an online artefact detection and
removal algorithm to deal with nonbrain signals like eye-
blinks, muscle artefacts, or heartbeats. Thirdly, any kind
of time series data (e.g., EKG or EMG) transmitted as an
LSL stream can be received and processed by SCALA. The
processing modules are unaware of the type and origin of the
data stream since they only receive data from the MC. Only
theCM is involved in external andfile-based communication.
Finally, the CM is the only module with dependencies to
Android (GUI, file communication). The other modules can
also be used on different platforms and have been tested
and validated throughout the development on Linux and
Windows systems.

SCALA was developed in Java 1.8 using the Eclipse
IDE, release 4.6.1, the Android development tools, and
the Android software development kit, revision 25.2.5.
SCALA uses a third party open source library [28] for
the calculation of a cross-correlation. SCALA is freely
available on Github (https://github.com/s4rify/SCALA)
under the Apache Commons Free Software License
(http://www.apache.org/licenses/LICENSE-2.0).

2.3. Timing Test of the Stimulus Presentation. Event-related
processing of EEG data requires good temporal precision
of event markers. Preferably, markers, for example, indicat-
ing the onset of a sound, should be accurate at sampling
rate precision. This requirement also holds for online EEG
applications such as most BCI paradigms. For the multiapp
solution to work well, a reliable communication between the
different applications is essential. During the development
of SCALA we tested several Android devices and software
versions, focusing on the temporal precision between phys-
ical stimulus presentation and the recorded event marker.
Here we report temporal precision for the hardware/software
combination that was finally used for this study (Xperia Z1
smartphone (model: C6903; OS: Android 5.1.1, presentation
mobile version 1.0.2)). Since Android is not a real-time
operating system, some lag (i.e., a delay between initiating an
event and its execution) and jitter (i.e., trial-to-trial variability
of the delay) can be expected, in particular in the audio
domain. It is known that the audio delay varies between
devices and operating system version [29]. By using the
EEG acquisition device as an oscilloscope we implemented
a simple, easy to replicate, and efficient protocol that allowed
us to evaluate and quantify the temporal precision of audio
events for different devices and operating systems. The same
strategy could be adapted to timing tests in the visual and
haptic domain with only minor modifications. The core part
of the audio timing test protocol is that the signal on the
audio jack is fed directly into the EEG amplifier (to prevent
possible damage to the amplifier and a clipped signal, the
volume should be set to a medium level) and recorded by
the corresponding smartphone app. This setup can measure
the time between the programmatic start of the playback

https://github.com/s4rify/SCALA
http://www.apache.org/licenses/LICENSE-2.0
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Figure 3: Timing test setup. (a)The varying delay between the programmatic start of a sound playback and the actual onset is evaluated with
a smartphone running the Smarting application and the presentation mobile application. A marker sent by presentation indicates the onset
of the sound playback and is recorded by the amplifier alongside with the voltage fluctuations fed from the audio jack into the EEG amplifier.
The EEG time series is then transmitted wirelessly via Bluetooth to the receiving app on the same smartphone. (b) The difference between
the marker (set as reference to 0ms) and the sound signal (here: the filtered square wave) varies from trial to trial. The single trial latency is
defined as the time between marker onset and the amplitude exceeding the half-maximum of the trial averaged response. We define latency
jitter as the standard deviation of those single trial latencies. In addition to the jitter properties, the system can also be characterized by its
lag, defined as the mean of the single trial latency measures.

of a sound, marked by a stimulus event marker, and the
actual playback onset of the sound, as indicated by the audio
jack voltage fluctuations, with EEG sampling rate precision
(here: 250Hz sampling rate, resulting in 4ms precision).This
temporal precision is sufficient for most applications.

The stimulus presentation application plays a sound and
sends out an LSL marker indicating the intended playback
time, which is recorded into the EEG acquisition file. The
sound signal is picked up from the headphone jack and is
recorded on a single EEG channel using a cable connection
(see Figure 3). Since most audio events have a frequency
resolution far above the Nyquist frequency of many EEG
amplifiers, we used a square wave audio signal for timing
tests. This setup allowed us to quantify the timing of the
entire system, while all other experimental details in the
stimulus presentation application and the signal processing
application were kept constant between timing tests and
physiological validation studies. During the timing tests, the
EEG amplifier communicates with the Smarting application
via Bluetooth, identical to the online usage.

2.4. Physiological Validation. We validated the system using a
simple auditory attention paradigm that has previously been
successfully used to identify selective attention effects on a
single trial level. Choi et al. [22] and Bleichner et al. [30]

provide a detailed description of this auditory selective atten-
tion paradigm. Briefly, three concurrent auditory streams are
presented to the subject. Each stream contains a melody,
which is composed of single tones.The streams differ in pitch
and number of tones (4, 5, and 3 tones) as well as in sound
origin (left, right, and centre). Each trial starts with a visual
cue, instructing participants to attend either to the left or the
right stream; the third, centre stream, is never task relevant
(Figure 4). The task is to identify the pitch pattern in the
attended stream.

Choi et al. found that auditory attentional modulation
is robust enough to be detected on a single trial basis, and
this finding was independently replicated in our laboratory
[23]. Here we extended the paradigm into an online BCI
application, by providing single trial classification outcome
feedback to the participants after each trial.

2.5. EEG Recording Procedure. Nine participants, which were
affiliated to the Neuropsychology Lab Oldenburg, completed
the task (6 females; mean age 32 years). The study was
approved by the local ethics committee of the University
of Oldenburg; informed consent was obtained from all
participants. EEG signals were recorded with a wireless
amplifier (Smarting, mBrainTrain, Belgrade, Serbia) attached
to an electrode cap (EasyCap, Herrsching, Germany). The
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Figure 4: Trial structure of the selective auditory attention paradigm. The upper time axis corresponds to the timing during training trials;
the lower time axis corresponds to the timing during feedback trials. Each trial begins with a fixation cross which is shown for either 600ms
during the training or 400ms during the feedback trials. Then, an arrow tip is presented for 500ms, pointing to the left or right, indicating
the sound direction to be attended. During the sound playback, which lasts 3000ms, a fixation cross is shown. After the sound playback a
break interval of 2400ms is added. In the feedback trials, the classification outcome is fed back to the user by displaying the word left or right.

cap included 24 Ag/AgCl electrodes (international 10/20:
Fp1, Fp2, F7, Fz, F8, FC1, FC2, C3, Cz, C4, T7, T8, TP9,
TP10, CP5, CP1, CPz, CP2, CP6, P3, Pz, P4, O1, and O2,
reference: FCz, ground: AFz). The smartphone was used for
recording, stimulus presentation, and online data processing.
Recordings were digitized with a sampling rate of 250Hz and
a resolution of 24 bit. Electrode impedances were kept below
10 kΩ.The smartphone was rebooted prior to every session to
ensure a minimum of background processes and amaximum
of free working memory. Additionally, the phone was kept
in Flight Mode to prevent background processes to demand
processing time. EEG was recorded in sessions of two blocks
with every participant. The first block served as a calibration
block to detect the best individual parameters for the online
classification. In the second block, consisting of a training and
a feedback part, these parameters were then applied online.
40 trials were each presented in the calibration and training
block; 120 trials were presented in the feedback block.

2.6. Online Analysis. For this paradigm, SCALA recorded
EEGdata from all 24 channels in the time range of−500ms to
3500ms around the stimulus onset. Incoming samples were
checked for their timestamps to ensure the corresponding
samples for the current trial. Raw data were baseline cor-
rected to the mean of the epoch and bandpass filtered from
1Hz to 11Hz. The current filter implementation is a Direct
Form II Transposed Filter with coefficients from a 4th-order
bandpass Butterworth design. For all further steps in the
analysis, only one EEG channel, rereferenced to a mastoid
position, was used. Per subject, the most appropriate channel
was selected based on the results of a calibration data block
prior to the online analysis and the result of a leave-one-out
cross validation procedure. Although a multichannel, spatial
filter approach should be more effective, a single bipolar
channel consisting of a frontocentral electrode and a near

mastoid reference site may be sufficiently sensitive to capture
auditory evoked potentials [30–32]. Preprocessed channel
data were then classified by using a template matching
approach [22, 33]. During the training trials, data from
all attend-left trials were averaged to form a left-attention
template, and data from all attend-right trials were averaged
to form a right-attention template. During the feedback trials,
a lagged cross-correlation between the current single trial
data and both templates was calculated. To compensate for
a possible jitter in the stimulus onset, a maximum lag of
32ms (see timing test results below) was given to the cross-
correlation function. The highest correlation indicates the
attended side, which is the result of the classification process.
The classification procedure used for the online classification
was kept deliberately simple as it showed sufficiently good
results in prior studies. We refrained from implementing
online artefact detection or correction procedures, since our
key goal was to evaluate the robustness and quality of the
general multiapp framework.

2.7. Offline Analysis. Offline analysis of the data was per-
formed using Matlab (Version 2016a, The Mathworks Inc.,
Natick, MA, United States), EEGLAB Version 13.65b [34]
and custom scripts. First, an artefact attenuation proce-
dure based on independent component analysis (ICA) was
performed to correct for eye-blinks, eye-movements, and
heartbeat artefacts. To this end, the data were 1Hz high-
pass filtered, 60Hz low-pass filtered (FIR, Hann, −6 dB),
and epoched into consecutive segments of 1-second length.
Epochs containing nonstereotypical signals were rejected
(2 standard deviations criterion, using pop jointprob) and
extended infomax ICA was applied to the remaining data.
The resulting ICA weights were applied to the original,
unfiltered data and components representing artefacts were
automatically detected using the EyeCatch algorithm [35].



BioMed Research International 7

0

10

20

30

2 3 4 5 61
Run

La
te

nc
y 

(m
s)

−10

+

+

+

+

+

+

+

+

+

+

+

+

Figure 5: Timing test results for six timing test sessions. Each run consisted of 200 trials, for which the difference between the event marker
and the sound onset was recorded (see Figure 3). Each dataset shows the spread of the actual sound onsets after the marker. The tops and
bottoms of each box show the 25th and 75th percentiles, respectively; outliers are marked by a cross (>1.5 IQR). Dataset 2 shows the result of
one session during which the estimated event markers were placed after the sound onset, leading to a negative deviation from the marker.

The authors of EyeCatch successfully validated their tool
against the semiautomatic CORRMAP approach developed
in our laboratory [36]. The EyeCatch component selection
was confirmed by visual inspection. Finally, artefact attenu-
ation was implemented by back-projection of the remaining,
nonartefactual components to the continuous data.

Event-related potentials (ERP) were analysed for the
offline artefact-corrected EEG data. We focused on two
different events, sound onset responses, which are further
referred to as auditory evoked potentials (AEPs), and event-
related responses to visual feedback signals. Regarding the
former we tested whether an AEP N100 was evident. A poor
temporal precision of sound events may result in a small and
widespread N100 response with a low signal-to-noise ratio
(SNR) and no meaningful topographic distribution. A 𝑡-test
for the vertex (Cz) channel AEPs was used to statistically
test whether the N100 amplitude significantly deviated from
zero. It is known that negative (i.e., wrong) feedback signals
generate the feedback-related negativity (FRN). The FRN is
evident as a negative deflection that accompanies feedback
indicating negative (compared to favourable) performance
outcomes, typically at frontocentral scalp sites [37]. In the
present selective attention paradigm, we expected a more
negative, FRN-like ERP deflection for incorrect compared
to correct classification outcome feedback signals. Note that
FRN is typically identified as a difference waveform signal, as
it is rarely of absolute negative amplitude, probably due to a
larger, overlapping P300-like positive deflection (e.g., [38]).

To determine the offline classification accuracy, a leave-
one-out cross validation was implemented. Templates from
𝑛 − 1 trials were calculated and cross-correlated with the left
out individual trial. Offline, this was done for each individual
EEG channel using as much information for the classification
as possible, hence the template of 𝑛−1 trials.The classification
accuracy per channel is the number of correctly classified
trials, divided by the total number of trials. The statistical
chance level chance level was calculated after [39].

2.8. Post Hoc Online Analysis. Since EEG artefacts can pro-
duce spurious classification results, we limited our analysis to

an online simulation (fromhere on: post hoc online) scenario
and subsequent offline evaluation. For the post hoc online
simulation, we streamed the ICA-cleaned datasets along with
corresponding event markers from a computer to the SCALA
application on the smartphone. In this online simulation
setup, the online processing was identical to the actual online
evaluation.The only difference was that the data input stream
consisted of artefact-corrected signals.

3. Results

3.1. System Properties. SCALA performed solidly without
crashing once. It found data streams reliably and performed
the signal processing fast enough for the given task, and
with a deterministic outcome; that is, it always produced
the same output for a given initial state or input. SCALA
runs on any device running Android (target: Android 6.0,
minimum support: Android 4.4.2), as it has no additional
hardware requirements (we advise using separate Bluetooth-
and Wi-Fi-chips, though). We confirmed the portability of
parts of SCALA to different operating systems. Since SCALA’s
signal processingmodules do not have any dependency to the
Android OS, they should function properly on any hardware
supporting a network communication.

3.2. Event Timing Precision. The delay and jitter of the
auditory playback was measured using the setup depicted
in Figure 3. The results of repeated timing tests are shown
in Figure 5. The boxplot shows the distribution based on
200 presented stimuli per session in six typical measurement
sessions. The data reflect the onset latency, that is, the delay
of a sound stimulus event relative to the event marker sent
out by the stimulus presentation application. Across all six
runs, the average median lag was 12.67ms (range: −4 to
20ms). The average within-session jitter was modest, with a
mean standard deviation of 2.87ms (range: 2.31 to 3.23ms).
It is important to notice the difference between within-
session and across session event timing precision. Whereas
the within-session jitter was rather modest (<3ms standard
deviation), themedian lag across sessions varied considerably
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Figure 6: Auditory evoked potentials. (a) Single subject topographic maps, plotted at individual N100 peak latency. Color bar as shown in
(b) applies. (b) Single subject (black traces) and group mean AEPs (red trace) at channel Cz, which is indicated as white circle in topographic
maps. Topographic map inset shows the group mean N100 topography.

(average session to session lag difference 14ms). Moreover,
for five out of six datasets the sound started shortly after
the marker was sent out, whereas in one dataset the sound
onset occurred shortly before the marker was sent out. Since
normative data cannot be provided, as they may not gener-
alize to other hardware/software combinations, we refrained
from reporting more testing results. The results demonstrate
that, whereas the within-session jitter is small and robust, the
median lag across sessions may differ significantly.

3.3. Event-Related Potentials. N1 AEP analysis revealed a
group mean onset latency of 177ms (range: 156 to 200ms),
which appears too late for a traditionalN100AEP,which often
peaks at around 100ms (e.g., [32]). However, very similar
latencies were reported by Bleichner et al. [30] and Choi
et al. [22] who used the identical complex musical sounds.
The late N100 latency in this paradigm simply reflects the
slowly rising sound onset energy (100ms cosine squared
onset ramp). At electrode Cz, the N100 had a group average
amplitude of −2.6 𝜇V (range: −0.6 to −4.6 𝜇V) and differed
significantly fromzero (𝑡(8) =−6.1;𝑝 < .001). As illustrated in
Figure 6, N100 topographies had a frontocentral maximum,
with the group mean N100 voltage peaked just anterior to
electrode Cz, as could be expected. Moreover, we observed
the typical P1-N100-P200 morphology, and N100 amplitude
adapted over repeated within-stimulus sound onsets (not
shown). Taken together, these results confirm thatN100AEPs
could be reliably recorded in this multiapp setup.

The feedback-related negativity (FRN) was analysed as
the mean amplitude in the interval from 250 to 300ms for
a frontocentral region of interest (ROI). The ROI amplitude
was obtained by averaging signals from channels Fz, Fc1,
Fc2, and Cz. As can be seen in Figure 7, ERPs to those
feedback trials where the classification outcome conformed

to the cue (correct condition) differed from those where
this was not the case (incorrect condition). On average 49.9
trials were available per subject for the correct condition
ERPs (range: 27 to 60 trials) and 48.8 trials were available
for the incorrect ERPs (range: 21 to 55 trials), and the
difference between both was not significant (𝑡(8) = 0.69,
n.s.). On the other hand, statistical evaluation of the FRN
amplitude revealed a significant difference between incorrect
and correct conditions, 𝑡(8) = −2.43 and 𝑝 = .041, in the
direction of the predicted effect (Figure 7). As can be seen,
the expected frontocentral topography of the FRNwas visible
in at least five individuals and clearly evident in the group
average map. Moreover, the morphology of the difference
wave, with a peak at approximately 300ms conformed to
previous FRN reports, which led us to conclude that the FRN
was captured in the present dataset.

3.4. Classification Performance. While the online classifica-
tion on uncorrected data yielded results around the empirical
chance level of 57.5% for all participants, the simulated online
analysis and the offline analysis on corrected data showed a
performance above chance level for all participants but one.
The mean decoding accuracy was 60.46% in the post hoc
online and 65.51% for the offline analysis. The best subject
reached a classification accuracy of 71.43% in the offline
analysis; the lowest accuracy was at 50.85% (Figure 8). The
different accuracies in the offline and the post hoc online
analysis are caused by the different template generation
procedures. During the offline analysis, a template of 𝑛 − 1
trials was used to determine the maximal potential of the
given channel with as much data as possible. During the post
hoc online analysis, a template of 20 trials for each attended
side was used to simulate the situation during the online
analysis.
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Figure 7: Feedback-related negativity. (a) Single subject topographic maps, plotted as the mean activity in the 250 to 300ms time interval.
Color bar as shown in (b) applies. (b) Group mean FRN at the frontocentral ROI, which is indicated as white circle in the topographic maps
in (a). Black trace refers to the difference wave, blue trace to the correct condition, and red trace to the incorrect condition. Topographic map
inset shows the group mean FRN topography.
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Figure 8: Performance of the classification in the post hoc online analysis and the offline analysis. The empirical chance level of 57.5% for 120
feedback trials is depicted with a dashed line. The subject labels describe the channel pair which was used for the simulated online and the
offline analysis. The last two bars show the group mean which show accuracies above chance level for both analysis procedures.

4. Discussion

Aim of this project was to foster the development of BCI
applications for Android smartphones. To this end we
developed and evaluated SCALA, a modular BCI software
solution for the processing of physiological time series data.
We implemented a multiapp approach. This design was
chosen because, with the growing needs of multisensor
measurements, a modular software approach should provide
a higher flexibility than a fully integrated solution. We
relied on well-established communication protocols such as
LSL. The possibility of streaming any kind of data through
LSL offers great flexibility and allows for completely new
paradigms, running reliably outside of the lab and on low-
cost hardware. We see the decision to develop the signal

processing application for an out-of-the-box Android phone
as an important step towards ubiquitous computing where
computing occurs at any given time at any given place. The
development of Android EEG will foster the development of
physiological healthcare monitoring applications.

It has been frequently shown that EEG signals can be
classified on a trial-by-trial basis, but due to the highly
complex nature of the data, and the typically poor SNR,
sophisticated machine learning procedures are needed to
optimize decoding performance [3, 40]. Here we imple-
mented a rather simple, univariate single channel signal
processing pipeline which is conceivable for hearing-aid
developments with only a few integrated EEG sensors. The
cross-correlation template matching procedure was inspired
by Choi et al. [22] and Bleichner et al. [30]. Both groups
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used a similar approach and reported above chance level
classification accuracies. Compared to these studies, which
reported a median classification accuracy of approximately
70%, our average classification performance was a little bit
lower, yet still above chance level. Several factors may help
to explain this modest decline in performance, such as the
sample size, the number of trials, modifications in the exper-
imental paradigm, recording conditions, or the hardware.
Without a direct comparison approach employing a repeated
measurements design it seems impossible to tell whether
hardware differences alone are responsible for this decline
in performance. In any case, future Android applications
would benefit from implementing state-of-the-art machine
learning procedures and advanced feature extraction and
spatial filter procedures. While this comes with a higher
computational demand and thus longer processing time,
many BCI paradigms easily tolerate a 100ms delay or more
before feedback is presented. Hence, more complex signal
processing appears feasible on Android.

Regarding the ERP signal quality, we observed the
typical sound onset AEP N100, replicating our previous
smartphone ERP study [8]. Moreover, we found an ERP
difference for correct versus incorrect classification feedback.
This difference ERP is well known as the FRN and often
reported for feedback about negative performance in choice
reaction tasks. Others have found that the FRN also follows
feedback in a simulated BCI interface [41], with a similar
morphology and topography as reported in the present study.
Hence we conclude that ERPs can be reliably obtained on
smartphone.Moreover, error potentials such as the FRN have
clear potential as input features for cognitive or passive BCI
paradigms (see [42] for discussion) and can be captured on
smartphone as well. A classifier focusing on error-processing
brain signals could receive information about its performance
during the running session and could adapt its underlying
model of classification. Learning classifiers could adapt to
the individual user as well as to changing recording environ-
ments.

Most ERP studies, and those single trial BCI paradigms
making use of time-domain features, benefit from highly
accurate event timing. As revealed by our timing test results,
our Android setup clearly did not provide perfect precision.
However, compared to our previous Android study [8], the
latency jitter in the present study was down by at least 50%,
to less than 3ms standard deviation. We speculate that this
improvement may be mostly due to the use of a different
application solution for stimulus presentation (presentation
instead of OpenSesame). Future studies employing direct
timing tests using the timing test approach presented here
and applied to different stimulus modalities (auditory, visual,
and haptic) could reveal whether the presentation app offered
by Neurobehavioral Systems and used in the present study
indeed provides better event timing than the OpenSesame
software environment [43] as used in [8]. Our ERP and BCI
results demonstrate that the timing may be sufficient for
many applications.

Nevertheless, achieving a better timing on low-cost hard-
ware is still desirable, in particular regarding sporadically
occurring outliers, and, more importantly, variations in the
mean lag across runs (cf. Figure 5).

Recently, several groups have identified the digital rev-
olution in healthcare delivery (e.g., [44]). Due to the high
usability and the large number of integrated sensors, smart-
phones used as medical devices (e.g., [45]) and as scientific
instruments [46, 47] will play a crucial role in the future.
While EEG still requires extra hardware, it may soon become
part of the increasing family of consumer health wearables
[48]. EEG hardware is available for low cost and, in the
near future, it may be sufficiently user-friendly and small
enough to be taken out of the lab and into real-life situations
[8, 12]. In addition, wearable EEG sensor technology seems
within reach. In the future, a stable online EEG BCI solution,
requiring little more hardware than already available may
support several use cases in the growing field of healthcare.

We used the Android platform for our development as it
is widely available and allows for flexible app development,
despite persisting Android problems in delivering precise
audio timing. Our decision for the multiapp architecture
required a focus on reliable and widely popular commu-
nication standards for achieving between app data flows.
This is a worthwhile approach, since the result is a highly
flexible solution that can be easily used in combination
with other hardware, more advanced signal processing, or
different input signals. It should be clearly noted that, in
terms of BCI performance, the first closed-loop smartphone
BCI application presented by Wang et al. [19, 20] was more
powerful than our approach. Yet we provide here an open and
flexible platform others can modify to adapt to their needs.
Indeed, we regard our solution as a proof-of-concept study,
not as a ready-to-goBCI solution for daily life applications. To
achieve this long-term goal, further advances in EEG signal
processing on the smartphone have to go hand in hand with
improvements in the field of EEG hardware and EEG sensor
technology (cf. Bleichner & Debener [12] for more details).
Smartphone EEG technology has to mature further to play
a role in the digital revolution of healthcare that is currently
taking place.

In its current state of development, SCALA is an adap-
tive, stand-alone Android application, which can easily be
enhanced by additional modules such as artefact correction.
Supplementary modules could then be called consecutively
to advance the signal processing. A further approach which
would be worthwhile investigating is the use of parts of
SCALA as background services, which would not only
facilitate the interfacing with different applications, but also
save computing time and battery power and thereby facilitate
long-term recordings. The authors are currently working on
a Java library for artefact detection on Android smartphones.
By making the source code freely available to the community
(https://github.com/s4rify/SCALA), we hope to foster the
development of additions to SCALA to support new use cases
in this interesting field of research.
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