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Abstract
Background Rhododendron delavayi is a natural shrub that is distributed at different elevations in the karst region of 
Bijie, China, and that has an important role in preventing land degradation in this region. In this study, we determined 
the soil mineral element contents and soil enzyme activities. The composition of the soil bacterial community of R. 
delavayi at three elevations (1448 m, 1643 m, and 1821 m) was analyzed by high-throughput sequencing, and the 
interrelationships among the soil bacterial communities, mineral elements, and enzyme activities were determined.

Results The Shannon index of the soil bacterial community increased and then decreased with increasing elevation 
and was highest at 1643 m. Elevations increased the number of total nodes and edges of the soil bacterial community 
network, and more positive correlations at 1821 m suggested stronger intraspecific cooperation. Acidobacteria, 
Actinobacteria and Proteobacteria were the dominant phyla at all three elevations. The Mantel test and correlation 
analysis showed that Fe and soil urease significantly affected bacterial communities at 1448 m; interestingly, 
Chloroflexi was positively related to soil urease at 1448 m, and Actinobacteria was positively correlated with Ni and 
Zn at 1821 m. Fe and soil urease significantly influenced the bacterial communities at lower elevations, and high 
elevation (1821 m) enhanced the positive interactions of the soil bacteria, which might be a strategy for R. delavayi to 
adapt to high elevation environments.

Conclusion Elevation significantly influenced the composition of soil bacterial communities by affecting the content 
of soil mineral elements and soil enzyme activity.
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Introduction
Karst rocky desertification (KRD) is a major type of karst, 
which is caused by a vulnerable natural environment and 
human activities. It is also an eco-environmental prob-
lem in Southwest China [1]. The provinces of Guizhou, 
Guangxi and Yunnan are the main distribution area of 
karst in China [2]. Among them, Guizhou is the most 
serious karst area, with an especially strong and typical 
karst landform and the largest region of exposed carbon-
ate rocks worldwide [3, 4]. The bedrock in the karst area 
of Guizhou is mainly composed of limestone, dolomite, 
and dolomitic limestone, which are hard, highly soluble 
and cannot produce a large amount of soil [1, 5]. This 
leads to shallow soil layers, severe soil erosion, sparse 
vegetation and a low vegetation coverage rate [6, 7]. With 
the growth of the economy and population, the conflict 
between humans and land has become increasingly seri-
ous, leading to the large-scale destruction of karst forests, 
and exacerbating the vulnerability of karst environments 
[8]. To prevent the continuous expansion of rocky desert-
ification, with the encouragement and support of the 
local government, people began to expand the vegetation 
coverage by planting trees, and grass and building eco-
logical nature reserves to reduce soil erosion [9].

The Baili Rhododendron scenic spot is the largest nat-
ural rhododendron forest at the same latitude and low 
altitude on Earth [10]. It is also one of the few relatively 
complete high-altitude rhododendron forests preserved 
in China [11]. The Guizhou Baili Rhododendron Scenic 
Spot is rich in species of Rhododendron, such as Rhodo-
dendron delavayi, Rhododendron agastum, and Rhodo-
dendron irroratum, which form various monodominant 
populations [12]. Among them, R. delavayi is the main 
dominant species of the Rhododendron community in 
the Baili Rhododendron Nature Reserve [13]. This spe-
cies has a wide ecological niche and is distributed in the 
altitude range of 1400–1900  m, but R. agastum and R. 
irroratum are limited to a range of 1600–1800 m [11, 14, 
15]. Due to its high ornamental value, R. delavayi attracts 
tourists from across the nation and is also utilized to 
produce medicine [16]. It can not only promote local 
economic development as an ornamental plant but also 
prevent ecological degradation [17]. At present, research 
on R. delavayi has focused mainly on flower color forma-
tion [18], reproduction and breeding [19, 20], the com-
position and diversity of the plant community [10], and 
changes in the composition of the rhizosphere microbial 
community [21]. However, the pattern in which changes 
in soil bacterial communities facilitate the adaptation of 
R. delavayi to various elevation environments remains 
largely unexplored.

Elevation, as a comprehensive environmental factor, 
causes drastic changes in water, temperature, light, oxy-
gen and ultraviolet radiation, which eventually affect the 

composition of the plant community, soil properties, soil 
heavy metal content and soil enzyme activity, resulting 
in differences in the soil microbial community structure 
[22–26]. The elevation dependence of soil enzyme activi-
ties is mainly influenced by climatic factors such as light 
and temperature, which can affect soil enzyme activities 
by regulating vegetation changes and plant root meta-
bolic activities [27–29]. Soil enzymes play an important 
role in the transformation of nutrients such as C, N and P 
[30]. Soil invertase, an index of the C cycle, can hydrolyze 
carbohydrate polymers into simpler sugars. Soil urease 
plays a vital role in the nitrogen cycle and can hydrolyze 
urea and transform organic nitrogen into inorganic nitro-
gen [31]. Esters and anhydrides of phosphoric acid can be 
hydrolyzed by phosphatase [32]. Catalase can decompose 
hydrogen peroxide into molecular oxygen and water, thus 
preventing cells from being damaged by reactive oxy-
gen species [33]. One study demonstrated that different 
elevations obviously affected plant types and heavy metal 
contents [34]. For example, the Zn content at 1250  m 
was significantly greater than that at 380 m and 820 m, 
while the Pb content at 380  m was greater than that at 
820 m and 1250 m [35]. Microorganisms are also impor-
tant indicators of soil health; they can predict changes 
in soil environmental quality because they are sensitive 
to external disturbances [36]. The soil microbial com-
munity is principally composed of bacteria and fungi, 
but bacteria are more resistant to heavy metals than are 
fungi [37]. The diversity and composition of soil bacterial 
communities change with elevation, and the response of 
soil C- and N-cycling microbial structures is complex as 
plants adapt to different elevations [38]. For example, the 
relative amount of psychrophilic heterotrophic bacteria, 
fungi and gram-negative bacteria increased with increas-
ing elevation in the Austrian Central Alps [39].

Currently, research on the rhizosphere microorgan-
isms of R. delavayi has focused mainly on the soil micro-
bial community structure at a single elevation [21, 40] or 
at different elevations [41]. However, it is unclear how 
changes in the soil bacterial community composition at 
different elevations, especially changes in soil bacteria, 
help R. delavayi adapt to the KRD environment. There-
fore, it is highly important to study the effects of soil 
enzyme activity and soil metal changes on the soil bacte-
rial community structure along an elevation gradient to 
explore the process of plant adaptation to different eleva-
tions in karst areas. The aims of our study were to under-
stand (1) the effects of various elevations on soil mineral 
elements and soil enzyme activities, (2) the effects of dif-
ferent elevations on the soil bacterial community struc-
ture of R. delavayi, and (3)  the relationships among soil 
mineral elements, soil enzyme activities and the soil bac-
terial community in R. delavayi.
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Materials and methods
Study sites and soil samples
The Baili Rhododendron Nature Reserve is located in 
Bijie city, Guizhou province. We selected three eleva-
tions representing the typical R. delavayi community, 
including 1448 m(E106°2’, N27°13’), 1643  m (E105°51’, 
N27°13’) and 1821 m (E105°53’, N27°15’). There were 15 
plots at three different elevations, each elevation had 5 
replicate plots, the size of each plot was 4 m × 4 m, and 
the distance between them was 10 m. Furthermore, three 
separate soil samples were collected from each plot of R. 
delavayi. The litter was removed, and three points were 
selected for collecting soil from each plot. The three indi-
vidual soil samples were blended into a composite of soil 
from each plot. Before collecting the soil samples, the 
litter and humus layers were removed, and the 0–10 cm 
soil layer was collected. The visible stones and roots were 
removed from the soil samples with a 2 mm sieve before 
soil analysis. A portion of each soil sample was placed 
into a 50 mL aseptic tube, frozen in liquid nitrogen, and 
stored at -80 °C until the soil DNA was extracted and the 
soil enzymes were measured. Then, another part of each 
soil sample was stored in plastic bags on ice, transported 
to the laboratory, and air dried before determining the 
soil metal content.

Determination of soil metal content and soil enzyme 
activity
The content of heavy metals measured in this study was 
the total content in the soil. The contents of soil potas-
sium (K), magnesium (Mg), iron (Fe), calcium (Ca), cad-
mium (Cd), chromium (Cr), copper (Cu), lead (Pb), zinc 

(Zn), and nickel (Ni) were determined by atomic absorp-
tion spectroscopy according to the procedure of Qin et 
al. [42]. In addition, soil invertase, phosphatase and ure-
ase activities were analyzed according to the methods 
of Hou et al. [43], and soil catalase activity was analyzed 
according to the method of Zhang et al. [44].

DNA extraction, high throughput sequencing and raw data 
analysis
DNA was extracted from 350 mg of soil via the MP BIO 
FastDNA SPIN Kit (MP Bio, Santa Ana, CA). The V5V7 
region of the 16S rRNA gene was amplified with the PCR 
primer pair 799F (5’-AACMGGATTAGATACCCKG-3’) 
and 1193R (5’- A C G T C A T C C C C A C C T T C C-3’). The 
PCR products were sent to Genesky Biotechnologies, 
Inc., Shanghai, 201, 315 (China), for to high throughput 
sequencing via the Illumina NovaSeq 6000 platform. We 
removed the primer sequences and adaptors with the cut 
adapt [45] plug-in of QIIME2 [46]. We used the DADA2 
plug-in of QIIME2 to filter the data and denoised, merged 
and removed chimeras to obtain high-quality sequences 
[47]. The clean reads were processed into amplified 
sequence variants by using QIIME2.

Significant differences between the two different eleva-
tions in terms of the soil metal elements content, soil 
enzymes activity and Shannon index were determined 
via independent t tests, and the differences were consid-
ered significant at P < 0.05. The Shannon index of the soil 
bacterial community, redundancy analysis (RDA), PCoA, 
heatmap, Mantel test, co-network analysis of the soil bac-
terial communities at the phylum level, and analysis of 
the relationships between the soil properties and the top 

Fig. 1 The effect of the different elevations on the content of soil K, Mg, Fe, Ca. a: K content, b: Mg content, c: Fe content, d: Ca content. *, **, *** indicate 
that there are significant differences at P < 0.05, P < 0.01 and P < 0.001 between two different elevations, respectively; n indicate that there is no significant 
difference between two different elevations
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10 phyla were performed with R (version 4.1.3). LEfSe 
analysis (LDA > 3, P < 0.05) was performed using Omic-
Studio tools (https://www.omicstudio.cn/tool).

Results
The contents of soil K, Mg, Fe and Ca varied awith elevation 
in the R. delavayi natural shrub forest
Mg and Fe levels clearly decreased with increasing eleva-
tion (Fig. 1b, c). The soil K content was highest at 1448 m 
and lowest at 1643 m (Fig. 1a). Interestingly, the change 
trend of the Ca content was opposite to that of the K con-
tent, but no significant difference was observed between 
elevations for either element (Fig. 1d).

Effect of elevation on the contents of soil Cr, Ni, Cu, Cd, Pb 
and Zn
The contents of soil Cr, Ni, Cu, Pb and Zn decreased with 
increasing elevation (Fig.  2a, b, c, e, f ). The contents of 
Cr, Ni, Cu, Pb and Zn in the soil did not obviously change 
between 1448 m and 1643 m, but they had significantly 
differed between 1448 m and 1821 m. The contents of Ni, 
Cu, Pb and Zn increased by 629%, 123%, 101% and 124%, 
respectively, at 1448 m compared with those at 1821 m. 
However, the soil Cd content did not significantly differ 
between the two elevations (Fig. 2d).

Differences in soil enzyme activity at different elevations
Fig. 3 shows no clear difference in invertase activ-
ity between 1448  m and 1643  m, or between 1643  m 
and 1821  m, but the invertase activity was significantly 
greater at 1821 m than at 1443 m. (Fig. 3a). The soil ure-
ase and catalase activities were significantly lower at 
1821 m than at 1448 m and 1643 m. In addition, the soil 
urease activity was highest at 1448  m, while the cata-
lase activity was highest at 1643 m (Fig. 3b, d). The soil 

phosphatase activity was highest at 1643  m and lowest 
at 1821 m, and its activity significantly differed between 
these two elevations (Fig. 3c)

Effects of elevation on the Shannon index and composition 
of soil bacterial communities
As shown in Fig. S1 the Shannon index tended to first 
increase and then decrease with elevation, but these 
changes did not reach statistical significance. Fur-
thermore, our results indicated that Acidobacteria, 
Proteobacteria, and Actinobacteria were dominant at 
all three elevations (Fig.  4a). At 1448  m, Acidobacte-
ria (55.43%), Proteobacteria (20.27%), and Actinobac-
teria (9.95%) were the main bacterial phyla (Fig.  4a). 
Similarly, at 1643 m, the dominant bacterial phyla were 
Acidobacteria (48.45%), Proteobacteria (32.35%), and 
Actinobacteria (11.56%) (Fig. 4a). At 1821 m, the abun-
dances were Acidobacteria (45.38%), Proteobacteria 
(31.96%), Actinobacteria (13.15%), (Fig. 4a).

When we investigated the bacterial communities of 
R. delavayi at the genus-level, we found that there were 
more variation patterns of classified genera between dif-
ferent elevation gradients (Fig.  4b). Our results showed 
that Rhodoplanes (20.01%), Candidatus Solibacter 
(12.76%), and Bradyrhizobium (6.61%) were the main 
bacteria genera at 1448  m. Additionally, at 1643  m, the 
dominant bacteria genera were Rhodoplanes (15.34%), 
Candidatus Solibacter (7.65%), and Burkholderia (3.2%). 
At 1821  m, the abundances were Rhodoplanes (17.2%), 
Candidatus Solibacter (8.19%), and Burkholderia 
(7.77%),, (Fig. 4b).

The results of β-diversity showed that the first prin-
cipal coordinate and the second principal coordinate 
explained 30.29% and 22.27% of the total variation of the 
soil bacterial community at all three elevations. The soil 

Fig. 2 Effect of the different elevations on the content of soil Cr, Ni, Cu, Cd, Pb, Zn. a: Cr content, b: Ni content, c: Cu content, d: Cd content, e: Pb content, 
f: Zn content. *, **, *** indicate that there are significant difference at P < 0.05, P < 0.01 and P < 0.001 between two different elevations, respectively; n 
indicate that there is no significant difference between two different elevations

 

https://www.omicstudio.cn/tool
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Fig. 4 Relative abundances of the bacteria community. a: Phylum level, b: Genus level

 

Fig. 3 Effect of the different elevations on the activity of soil enzyme. a: invertase activity, b: urease activity, c: phosphatase activity, d: catalase activity. *, 
**, *** indicate that there are significant difference at P < 0.05, P < 0.01 and P < 0.001 between two different elevations, respectively; n indicate that there 
is no significant difference between two different elevations
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bacterial communities of the three elevations were obvi-
ously dispersed, but the points at the same elevation were 
aggregated. This indicated that the structures of the soil 
bacterial communities were clearly separated at 1448 m, 
1643  m and 1821  m (Fig.  5). In addition, the heatmaps 
at the phylum and genus level also suggested patterns 
of bacteria communities at different elevations similar 
to the grouping pattern observed in PCoA (Fig. S2, S3). 
The relative abundance of the top 22 phyla at 1643 m and 
1821  m was higher compared with that at 1448  m (Fig. 
S2). However, the relative abundance of the top 45 genera 
at 1448 m, 1643 m and 1821 m was similar (Fig. S3).

Redundancy analysis of the correlation between soil 
metals and soil enzymes and soil bacterial communities at 
the phylum and genus levels
The first and second axes of the RDA explained 65.15% 
and 16.50% of the total variance at the phylum level, 
respectively, for the soil mineral elements and soil bac-
terial phyla at the three elevations (Fig. S4a). The RDA 
revealed that Mg, Fe, Zn, Cr, Cu, Ni and Pb had strong 
positive effects on Gemmatimonadetes; K was positively 
correlated with Acidobacteria, AD3 and Chloroflexi; 
Ca had a positive effect on Chlamydiae, Bacteroidetes, 
TM7 and Verrucomicrobia; and Cd had a positive effect 
on Actinobacteria (Fig. S4a). In particular, Fe (P = 0.001) 
was the factor most strongly correlated with the differ-
ences in the composition of the soil bacterial commu-
nities, explaining 22.3% of the variance in the observed 
variation among the elevations (Fig. S4a). For soil mineral 
elements and soil bacterial genera at the three elevations, 
the first and second axes of the RDA explained 43.54% 
and 21.84%, respectively, of the total variance (Fig. S4b). 
Cd, Pb, Ni and Cr were positively correlated with the 
genera Pedosphaera and Candidatus. Koribacter; K, Fe 
and Mg were positively correlated with Mycobacterium, 
Bradyrhizobium, Rhodoplanes and Candidatus. Soli-
bacter, while Ca had a positive relationship with Pheny-
lobacterium and Candidatus. Furthermore, Fe (P = 0.001) 

was also the factor most strongly correlated with the dif-
ferences in the composition of the soil bacterial commu-
nities, explaining 18.7% of the variation (Fig. S4b). The 
first and second axes of the RDA explained 78.53% and 
15.18% of the total variance at the phylum level, respec-
tively, for soil enzyme activities and soil bacterial phyla at 
the three elevations (Fig. S4c). The RDA revealed that the 
urease and catalase activities were positively correlated 
with Gemmatimonadetes and Acidobateria; phosphatase 
activity was positively correlated with Actinobacteria, 
Proteobacteria and TM7; invertase activity was positively 
correlated with Chlamydiae, Bacteroidetes and Verru-
comicrobia. Moreover, invertase (P = 0.13) explained the 
most variation, with 50.8% of the variation explained 
(Fig. S4c). The first and second axes of the RDA explained 
62.35% and 21.15% of the total variance at the genus level, 
respectively, for soil enzyme activities and soil bacterial 
genera at the three elevations (Fig. S4d). Invertase was 
positively correlated with Phenylobacterium and Candi-
datus, while phosphatase, urease and catalase were only 
positively correlated with Bradyrhizobium. In particu-
lar, urease (P = 0.029) explained the most variation, with 
29.5% of the variation explained (Fig. S4d).

Correlations between soil mineral elements and soil 
enzyme levels with soil bacterial phyla
The Mantel test and correlation analysis showed that 
Fe and urease significantly affected the bacterial com-
munity at 1448  m. However, there was no significant 
correlation between soil variables and bacterial com-
munities at 1643 m and 1821 m (Fig. 6). The response of 
bacterial phyla at different elevations to changes in soil 
mineral elements differed (Fig. S5a, b, c). At 1448 m, we 
found that the K content was negatively related to Gem-
matimonadetes, the Fe content was negatively related to 
Chloroflexi; and the Cr and Ni contents were negatively 
related to TM7. However, the contents of Mg, Ca, Cu, 
Zn, Cd and Pb had no significant relationships with the 
bacteria. At 1643  m, the Mg content had negative rela-
tionships with Bacteroidetes and Chlamydiae, the Ca 
content had a negative relation with TM7, the Ni content 
had a negative relation with Chloroflexi, and the Cu and 
Pb contents had a negative relation with Chlamydiae. 
Interestingly, the contents of K, Fe, Cr, Zn and Cd had 
no significant relationship with the type of bacteria. At 
1821 m, the K content also had a negative relation with 
Gemmatimonadetes; the Fe content had a positive rela-
tion with Acidobacteria, and the contents of Cr, Cu, Zn, 
and Pb had a negative relation with Acidobacteria but 
a positive relation with Actinobacteria. The Ni content 
had a positive relationship with Actinobacteria, while the 
contents of Mg, Ca and Cd had no significant correlation 
with the type of bacteria. (Fig. S5a, b, c). The RDA also 
revealed that at the different elevations, the contents of 

Fig. 5 Effect of different elevations on bacteria β-diversity. Principal co-
ordinate analysis (PCoA) of all bacteria communities based on Bray-Curtis
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Fe, Cr and K were the main factors affecting the soil bac-
terial communities at 1448  m, and the Ca content was 
the main factor affecting the bacterial communities at 
1643 m (Fig. S4a).

The bacterial phyla at different elevations to changes in 
soil enzyme activities differed (Fig. S5d, e, f ). At 1448 m, 
invertase had a positive relationship with Chlamydiae, 
urease had a negative effect on Chloroflexi; phosphatase 
had a positive effect on Actinobacteria; and catalase had a 
negative relationship with TM7. At 1643 m, there was no 
significant correlation between any of the soil bacterial 
communities and soil enzyme activity, except for catalase, 
which had a positive relationship with Acidobacteria. At 
1821  m, invertase was positively related to Chloroflexi, 
phosphatase was positively related to Chloroflexi, and 
was negatively related to Proteobacteria. Only urease and 
phosphatase were not significantly related to the bacte-
ria (Fig. S5d, e, f ). The RDA also revealed that urease and 

catalase activity were the main factors correlated with 
the soil bacterial communities at 1448 m, and phospha-
tase activity was the main factor correlated with the soil 
bacterial communities at 1821  m (Fig. S4c). These vari-
ables were considered potential factors affecting these 
communities.

Different biomarkers at the phylum and genus levels are 
present at three different elevations
LEfSe analysis revealed that there were different bio-
markers in the soil at different elevations. For example, 
at 1448  m, enrichment of Acidobacteria, Bradyrhizo-
bium, Gemmatimonadetes and Mycobacterium were sig-
nificant; at 1643 m, only Proteobacteria was significance 
enriched; while at 1821 m, the enrichment of Burkhold-
eria, Acidopila, Bacteroidetes, Chlamydiae, TM7, Can-
didatus Rhabdochlamydia, Desulfovlbrio, TM6 and 
Telmatospirillum were significant (Fig. 7).

Fig. 7 Linear discriminant analysis (LDA) effect size (LEfSe) showing the differential abundance of phyla and genus level at three elevations. Phyla and 
Genera listed were both significantly different (LDA > 3, P < 0.05)

 

Fig. 6 Correlation analysis among soil mineral elements, soil enzyme and soil bacteria communities (Bray-Curtis distances) in the three elevation gradi-
ents on the Mantal Mantel test. Inv: invertase, Ure: urease, Phos: phosphatase, Cat: catalase
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Co-occurrence network characteristics of soil bacterial 
communities at three elevations
Co-occurrence network analysis revealed that the total 
number of nodes in the network was 291, 317 and 345 at 
1448 m, 1643 m and 1821 m, respectively. At the bacte-
rial phylum level, the total number of edges was 2153, 
317 and 345 at 1448 m, 1643 m and 181 m, respectively. 
Positive (99.91%) and negative (0.09%) edges were identi-
fied at 1448 m and 1643 m, respectively. In addition, the 
positive edges were 100% at 1821 m (Table 1). The abun-
dances of Proteobacteria, Acidobacteria and Actinobac-
teria were high at all three elevations; 1448  m (40.55%, 
23.71%, 19.24%), 1643  m (41.64%, 22.71%, 17.98%) and 
1821 m (39.71%, 22.32%, 16.81%), respectively (Fig. 8).

Discussion
Soil mineral elements can be affected by soil parent 
material, climate and topography [48–51]. Previous stud-
ies have demonstrated that the contents of Fe, Mg, Cu, 
Zn, and Ni in soil decrease with increasing elevation 
[52–54]. Our results were consistent with these results in 
that the contents of Mg, Fe, Cr, Ni, Cu, Pb, and Zn in the 
soil gradually decreased as the elevation increased. The 
reason could be that large amounts of surface water carry 
soil heavy metals from high to low elevations [55]. In 
addition, elevation causes changes in soil organic carbon 
content, and a large amount of organic matter strongly 
adsorbs metal elements, thus contributing strongly to the 
vertical gradient of metal elements [50]. Similarly, eleva-
tion affects plant litter, altering the microbial activity and 
composition; resulting in variations in soil nutrients [56, 
57]. Our findings are consistent with the study of soil 
nutrients by Liu et al. [41]. This phenomenon is prob-
ably caused by the different degrees of soil differentiation 
at different elevations, because light and ventilation are 
greatly affected by rainfall at high elevations [58, 59]. As 
a result, the contents of soil organic matter and humus 
differ, and they contain functional groups and have che-
lating properties that limit the bioavailability of heavy 
metals and increase their concentrations [60, 61].

Elevations correspond to soil type and microbial activ-
ity. These changes have important impacts on the migra-
tion and transformation of heavy metals in soil [62]. It 
has been reported that heavy metals affect the soil C and 
N cycles via soil microorganisms and enzymes [63, 64]. 

Our results showed that between two different eleva-
tions, there were significant differences in the contents 
of Fe and Mg in the soil, which indicated that Fe and Mg 
were the dominant factors controlling soil quality. The 
Fe and Mg contents were the highest at 1448 m and the 
lowest at 1821 m, implying that the soil parent material 
aggravated the accumulation of soil mineral elements, 
which was consistent with previous studies [53, 54]. 
Moreover, we observed a significant difference in K, Cr, 
Ni, Cu, Zn and Pb between 1448 m and 1821 m, but there 
was no significant difference in these mineral elements 
between 1448 m and 1643 m. Li et al. [65] demonstrated 
that as elevation increases, temperature decreases, caus-
ing a greater degree of decomposition of litter in low ele-
vation areas than in high elevation areas, resulting in the 
release of K. In addition, all heavy metals are positively 
correlated with soil organic matter, and the organic com-
pounds produced by organic matter decomposition and 
the organic functional groups of humic acid adsorb heavy 
metals to form stable compounds [62].

In karst ecosystems, plant type [66], heavy metal con-
tent [67], temperature [68], humidity [69], and soil prop-
erties [70] affect the growth of soil microorganisms 
and soil enzyme activity. Our study showed that inver-
tase activity increased with increasing elevation, which 
was consistent with the findings of Ma et al. [71]. Most 
likely, the content of soil heavy metals decreased with 
increasing elevation, and the inhibitory effect of heavy 
metals on soil invertase activity decreased [72]. In addi-
tion, the reduction in soil temperature with increasing 
elevation hindered the breakdown of organic materials, 
resulting in their accumulation [71]. Invertase is directly 
involved in the metabolic process of soil organic matter 
[73]. Generally, the soil organic matter content is directly 
proportional to invertase activity [74]. Interestingly, the 
findings of the current study suggested that catalase 
activity decreased when the elevation increased. This 
may be due to the high concentration of heavy metals at 
1448 m, and plants also produce a substantial amount of 
H2O2 when subjected to heavy metal stress. An increase 
in catalase activity can effectively decompose H2O2 into 
H2O and O2 and reduce its toxic effect on plants [75, 76]. 
In addition, our study revealed that urease and phos-
phatase activity first increased and then decreased with 
increasing elevation. These enzyme activities were the 
lowest at 1821 m, and there was a significant difference 
between 1643  m and 1821  m between and 1448  m and 
1821  m. The activities of urease and phosphatase were 
also positively correlated with Fe. The possible reasons 
might be that elevation affects soil type and organic mat-
ter content, (1) as a substrate for enzymatic reactions, the 
content of soil organic matter affects the activity of soil 
enzymes [71]; (2) soil enzyme activity is directly related 
to climate change at different elevations [77], and the 

Table 1 The co-occurrence network properties of soil bacterial 
communities
Degree 1448 m 1643 m 1821 m
Total nodes 291 317 345
Total edges 2153 2236 2815
Average degree 14.80 14.11 16.32
Positive edges 99.91% 99.91% 100.00%
Negative edges 0.09% 0.09% 0
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Fig. 8 Characteristics of co-occurrence network of soil bacteria at 1448 m (a), 1643 m (b) and 1821 m (c)
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better water and temperature conditions at 1643 m may 
be the reason for the higher soil enzyme activity [78]; and 
(3) the weakly alkaline calcareous soil in karst mountain-
ous areas can promote the enzymatic reaction of urease 
[79].

One study showed that heavy metal pollution can 
reduce soil enzyme activity [26]. However, Ciarkowska 
et al.  [80] noted that heavy metals do not have toxic 
effects on soil enzymes in all cases. For example, Fang et 
al. [81] noted that urease contains trace transition metal 
atoms or ions, which act as auxiliary groups, coenzymes 
or active centers. The morphology and structure of ure-
ase changed under the action of Fe, which activated its 
enzyme activity. Our results were also consistent with 
these findings. The present study revealed that the Shan-
non index of the soil bacterial community decreased in 
the order of 1643 m > 1448 m > 1821 m, and the Shannon 
index did not significantly differ between the two eleva-
tion gradients, which was consistent with the findings of 
Yao et al. [82]. In line with the findings of Zhang et al. 
[83], the results showed that Acidobacteria, Actinobac-
teria and Proteobacteria were the dominant phyla in the 
soil bacterial communities at different elevations. Rho-
dodendron forests in the Baili Rhododendron scenic spot 
are heavily foliated and have large amounts of litter, and 
these bacteria have good adaptability at different eleva-
tions, mainly because they can decompose organic mat-
ter in soil [84]. In addition, Rhododendron prefers to grow 
in acidic soil, and Acidobacteria are acidophilic bacteria, 
so their relative abundance was high in this study [85]. 
Burkholderia, which are Proteobacteria and Bradyrhi-
zobium, can decompose lignin to promote soil carbon 
cycling and improve the solubility of soil fixed phospho-
rus and applied phosphorus, resulting in an increased 
plant yield [8, 86, 87]. Actinobacteria are very important 
for soil carbon and nitrogen cycling, and their relative 
abundance allows them to adapt well to various extreme 
environments, such as low-temperature, anaerobic and 
nutrient-deficient ecological environments [88]. The rela-
tive abundances of AD3, Chloroflexi, Gemmatimonade-
tes, Bacteroidetes, Chlamydiae and TM7 were low. Their 
main functions are nitrogen and carbon fixation. Chloro-
flexi are the main carbon-fixing bacteria in soil, providing 
carbon sources for heterotrophic bacteria, and helping 
them grow and reproduce [89].

The composition of soil bacterial communities is influ-
enced by elevation [82] and is also related to soil heavy 
metals and soil enzyme activity [27, 90], which confirms 
our results. Some studies have reported that soil nutri-
ent differences at different elevations can significantly 
affect soil bacterial communities [90–92]. A few studies 
have investigated the effects of different elevations on soil 
bacterial communities through differences in the content 
and composition of mineral elements. In this study, we 

found that the Fe, Cr and K contents were significantly 
related to Chloroflexi, Gemmatimonadetes and TM7, 
respectively, at 1448 m, and the contents of Mg, Ca, Ni, 
Cu and Pb were significantly correlated with the top 10 
phyla at 1643  m. Zn and Pb contents were also found 
to be important driving factors influencing soil bacte-
rial communities at 4000  m [93]. In addition, we found 
that Fe had a similar correlation with the core bacteria 
(Actinobacteria). As an essential trace element for plant 
growth, Fe participates in the electron transfer process 
in plant cells, and can promote the formation of chlo-
rophyll and the reduction of nitric acid in plant roots 
[94, 95]. However, Fe deficiency limits the absorption of 
nitrogen and phosphorus by plants [96, 97]. Soil enzymes 
are mainly secreted by microorganisms and plant roots, 
and can be affected by soil metals [26]. In our study, soil 
urease was the main factor affecting soil bacterial com-
munities at 1448 m, however, invertase, urease phospha-
tase and catalase were strongly related to Chlamydiae, 
Chloroflexi, Actinobacteria and TM7, respectively, at 
1448  m. Invertase and phosphatase were significantly 
positively related to Chloroflexi at 1821 m, and phospha-
tase was also significantly correlated with Proteobacteria 
at 1821 m. Acidobacteria, Actinobacteria, Proteobacteria 
and Chloroflexi were mostly involved in the decomposi-
tion of organic matter, and the soil bacterial communities 
formed by these groups are related to soil enzymes at dif-
ferent elevation gradients [89, 98, 99].

Soil microorganisms form a complex network of eco-
logical interactions through synergy, competition or 
antagonism to achieve material cycling, energy flow and 
information transfer in the network system [100, 101]. 
Our results were consistent with those of He et al., who 
reported that the co-network of the bacterial community 
differed with increasing elevation and that the number of 
total nodes and total edges gradually increased, indicat-
ing that the structure of the co-network became more 
complex and that the bacterial communities became 
more closely connected to each other [102]. One study 
suggested that complex networks with greater connectiv-
ity were more resilient to environmental perturbations 
than simple networks with lower connectivity, and more 
resilient in response to environmental change [103]. In 
addition, the most abundant phyla studied in the net-
work in this study were Proteobacteria, Acidobacteria, 
and Actinobacteria, which was consistent with the find-
ings of Xue et al. [104]. They are able to live in acidic soil, 
balance plant hormones, regulate root growth, promote 
nutrient absorption and prevent pathogens from invad-
ing, and play a crucial role in the structure of bacterial 
communities at different elevations [105].
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Conclusions
In our study, different elevations had significant effects 
on the soil mineral element content, soil enzyme activity 
and bacterial community. In particular, the elevation gra-
dient affected the soil K, Fe, Cr, Cu, and Zn contents and 
urease and phosphatase activities between 1448  m and 
1821 m. Acidobacteria, Actinobacteria and Proteobacte-
ria were the dominant phyla at all three elevations. Fe and 
urease had significant effects on the bacterial community 
at 1448 m, and Cr, Ni and catalase were negatively related 
to TM7. In addition, the elevation affected the complexity 
of the co-occurrence network of the soil bacterial com-
munity. This is likely due to changes in the karst region 
related to changes in the elevation, which caused the 
mineral element content and enzyme activity to change 
when the soil environmental conditions changed, and the 
microbial community assisted plants in adapting to dif-
ferent soil environments by modifying their structure and 
diversity. In addition, the number of nodes and edges in 
the soil bacterial community increased significantly with 
increasing elevation. The positive interaction observed 
at 1821 m compared to 1448 m suggested that elevation 
promoted intraspecific cooperation among bacteria as a 
strategy for R. delavayi to adapt to high altitudes. Eleva-
tion strongly influenced the soil mineral element content, 
enzyme activity, and soil bacterial communities in karst 
areas. The present study provides a theoretical basis for 
vegetation restoration in fragile karst ecosystems.
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