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Potts models and variational autoencoders (VAEs) have recently gained popularity as gen-

erative protein sequence models (GPSMs) to explore fitness landscapes and predict mutation

effects. Despite encouraging results, current model evaluation metrics leave unclear whether

GPSMs faithfully reproduce the complex multi-residue mutational patterns observed in

natural sequences due to epistasis. Here, we develop a set of sequence statistics to assess

the “generative capacity” of three current GPSMs: the pairwise Potts Hamiltonian, the VAE,

and the site-independent model. We show that the Potts model’s generative capacity is

largest, as the higher-order mutational statistics generated by the model agree with those

observed for natural sequences, while the VAE’s lies between the Potts and site-independent

models. Importantly, our work provides a new framework for evaluating and interpreting

GPSM accuracy which emphasizes the role of higher-order covariation and epistasis, with

broader implications for probabilistic sequence models in general.
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Recent progress in decoding the patterns of mutations in
protein multiple sequence alignments (MSAs) has high-
lighted the importance of mutational covariation in deter-

mining protein function, conformations, and evolution, and has
found practical applications in protein design, drug design, drug
resistance prediction, and classification1–3. These developments
were sparked by the recognition that the pairwise covariation of
mutations observed in large MSAs of evolutionarily diverged
sequences belonging to a common protein family can be used to
fit maximum entropy “Potts” statistical models4–6. These models
contain pairwise statistical interaction parameters reflecting
epistasis7 between pairs of positions, such that the character at
one position affects the character biases at the other position.
Such models have been shown to accurately predict physical
contacts in protein structure6,8–10, and have been used to sig-
nificantly improve the prediction of the fitness effect of mutations
to a sequence compared to site-independent sequence variation
models which do not account for covariation11,12. They are
“generative” in the sense that they define the probability, p(S),
that a protein sequence S results from the evolutionary process.
Intriguingly, the probability distribution p(S) can be used to
sample unobserved, and yet viable, artificial sequences13–17. In
practice, the model distribution p(S) depends on parameters that
are found by maximizing a suitably defined likelihood function
on observations provided by the MSA of a target protein family.
As long as the model is well specified and generalizes from the
training MSA, it can then be used to generate new sequences, and
thus a new MSA whose statistics should match those of the ori-
ginal target protein family. We refer to probabilistic models that
create new protein sequences in this way as generative protein
sequence models (GPSMs).

The fact that Potts maximum entropy models are limited to
pairwise epistatic interaction terms and have a simple functional
form for p(S) raises the possibility that their functional form is
not flexible enough to describe the data, i.e., that the model is not
well specified. A model with only pairwise interaction terms can
predict complex patterns of covariation involving three or more
positions through chains of pairwise interactions, but it cannot
model certain triplet and higher patterns of covariation that
require a model with more than pairwise interaction terms18. For
example, a Potts model cannot predict patterns described by an
XOR or boolean parity function in which the nth residue is
determined by whether an odd number of the n− 1 previous
residues have a certain value (see Supplementary Information,
Supplementary Note 6). While some evidence has suggested that
in the case of protein sequence data the pairwise model is suffi-
cient and necessary to model sequence variation19–21, some of
this evidence is based on averaged properties, and there appears
to be some weak evidence for the possibility of rare “higher-order
epistasis” affecting protein evolution7,22–24, by which we mean
the possibility that subsequence frequencies of three or more
positions cannot be reproduced by a model with only pairwise
interactions. Fitting maximum entropy models with all triplet
interactions is not feasible without significant algorithmic inno-
vation, since for a protein of length 100 it would require
approximately 1B parameters and enormous MSA datasets to
overcome finite sampling error (see Supplementary Notes 4 and
6). However, recent developments in powerful machine learning
techniques applied to images, language, and other data have
shown how complex distributions p(S) can be fit with models
using more manageable parameter set sizes. Building on the
demonstrated power of incorporating pairwise epistasis into
protein sequence models, this has motivated investigation of
machine learning strategies for generative modeling of protein
sequence variation which can go beyond pairwise interactions,
including Restricted Boltzmann Machines (RBMs)3, variational

autoencoders (VAEs)25–28, Generative Adversarial Networks
(GANs)29, transformers30–35, and others36–38.

One model in particular, the VAE39,40, has been cited as being
well suited for modeling protein sequence covariation, with the
potential to detect higher order epistasis25,26. The VAE also
potentially gives insight into the topology of protein sequence
space through examination of the “latent” (hidden) parameters of
the model, which have been suggested to be related to protein
sequence phylogenetic relationships25–27,34. One implementation
of a VAE-GPSM, “DeepSequence”, found that the VAE model
was better able to predict experimental measurements of the
effect of mutations reported in deep mutational scans than a
pairwise Potts model, which was attributed to the VAE’s ability to
model higher-order epistasis11,25. However, it has also been
suggested by others that the improvement reported for DeepSe-
quence could be attributed to the use of biologically motivated
priors and engineering efforts, rather than because it truly cap-
tured higher-order epistasis26. Furthermore, while VAE-GPSMs
are generative and aim to capture the protein sequence dis-
tribution p(S), to our knowledge none of these studies have sys-
tematically tested what we will call the “generative capacity”41,42

of the VAE model, meaning the ability of the model to generate
new sequences drawn from the model distribution p(S), which are
statistically indistinguishable from those of a given “target” pro-
tein family. Testing the generative capacity, specifically higher-
order covariation, of a GPSM is a fundamental check of whether
the model is well specified and generalizes from the training set,
two prerequisites to capturing higher-order epistasis.

To fill this gap, we aim to develop systematic measures of
GPSM accuracy or generative capacity, and to use these measures
to compare the generative capacity of different GPSMs. Motivated
by questions related to the importance of pairwise and higher-
order epistasis in modeling protein datasets, we focus on the
forms of model mis-specification related to higher-order patterns
of covariation. This has not been well explored for sequence
models generally, yet may play an important role in many data-
sets other than protein sequence MSAs. We perform a series of
numerical experiments using GPSMs of current interest, includ-
ing a pairwise Potts Hamiltonian model with only pairwise
interaction terms (Mi3)43, two state-of-the-art implementations
of a variational autoencoder, and a site-independent model which
does not model covariation (Indep). One VAE implementation is
a standard VAE (sVAE) using an architecture nearly identical to
“EVOVAE”27, which closely follows the VAE inference method
as it was originally presented39,40. The second VAE imple-
mentation is DeepSequence, mentioned above, which uses a
deeper neural network and a more sophisticated optimizer25. All
of these GPSMs are applicable to sequence datasets besides pro-
tein MSAs. We note that not all protein sequence models are
strictly GPSMs in the sense we define below, meaning models
with a well-defined probability distribution p(S) describing
sequences in a single protein family. For instance, the transformer
model of ref. 31 is not strictly a GPSM of the kind we study here
(see Supplementary Note 13).

Which forms of model mis-specification can be detected by
different GPSM metrics? Current studies of GPSM accuracy often
test the correspondence of GPSM predictions with external
experimental measurements of proteins. For instance, it is com-
mon to compare model predictions of p(S) for a sequence S to
experimental fitness values from deep mutational scans25,27, or
test that generated artificial sequences appear to fold into realistic
structures according to in silico folding energy32. Although such
predictions have important applications, they are indirect mea-
sures of GPSM accuracy, and are subject to experimental error or
computational chemistry assumptions and precision limits. Fur-
ther, protein function and fitness do not depend exclusively on
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the thermodynamic stability of static native structures, but also
on the protein’s conformational dynamics44–49. This could mean
that despite generating sequences with realistic in silico folding
energy, a GPSM may still not be capturing crucial higher-order
epistatic effects. Such tests are also specific to protein sequence
datasets and are not necessarily applicable to other sequence data.

A more direct test of GPSM generative capacity would compare
the statistical properties of generated sequences to those of the
dataset MSA. A number of such measures have been used to
evaluate GPSMs. Here, we test three standard metrics, which are
the pairwise covariance correlations2,17,21,50, Hamming distance
distributions2,21,51,52, and statistical energy correlations21,25,38.
However, as explained below, these do not directly test the model’s
ability to reproduce higher-order covariation since they measure
properties of only pairs of residues or of whole sequences. In the
field of Natural Language Processing other standard metrics have
been developed, such as n-gram perplexity53,54 and BLEU55, most
notably for transformers31,32,56,57. For instance the unigram per-
plexity is the exponentiated product of the likelihoods of single
tokens (residues, in protein sequences) over all sites in generated
sequences, according to reference dataset token frequencies, thus
testing whether the model generates likely tokens. This is some-
times extended to bigrams and n-grams for small n, and k-skip-n-
grams55,58, to test that the generated groups of nearby tokens (or
residues) are likely. However, in protein datasets the informative
context of a residue includes long-range relationships with other
residues corresponding to tertiary structure, which are not probed
by short-range n-gram-based metrics. Additionally, certain
sequence motifs must appear at specific positions in protein
MSAs, while n-gram metrics are usually position-independent.
For these reasons, here we develop and test a fourth and novel
metric designed to systematically probe a GPSM’s ability to
reproduce the complex patterns of mutational covariation over
many and distant positions, which we call r2021.

Our key results are that, first, the r20 metric is a more sensitive
measure of GPSM generative capacity than the other standard
metrics, representing a powerful new method to discriminate
between GPSMs with respect to their ability to model higher-
order covariation up to the 10th order. Using this metric together
with the three standard metrics, we compare the performance of
the Mi3 model, both VAE models, and the Indep model. We find
that for all metrics tested the two VAE models perform similarly
to each other, and while they model some covariation and are
more accurate than the Indep model which cannot model cov-
ariation by definition, they are unable to reproduce MSA statistics
as accurately as Mi3. In other words, according to these metrics,
the “deep” networks used in the VAE architecture do not appear
to model protein sequence datasets as well as the Mi3 model,
which has a simpler functional form involving only pairwise
interaction terms. By quantifying and comparing GPSM perfor-
mance in our innovative epistasis-oriented approach, we hope to
better understand the challenges and limitations inherent to
generative modeling of natural protein sequence datasets, better

gauge the state of the art, and provide insight for future efforts in
terms of minimizing the confounding effects of data limitations in
generative protein sequence modeling and sequence models more
generally.

Results
Target probability distributions. Our goal is to set baseline
expectations for the generative capacity of GPSMs when fit to
synthetic or natural protein sequence data of varying training
MSA sizes. Generative models of protein MSAs define a dis-
tribution pθ(S) for the probability of a sequence S to appear in an
MSA dataset given model parameters θ. The model parameters
are fit by either exact or approximate maximum likelihood
inference of the likelihood L ¼ Q

S2MSApθðSÞ over a training
MSA, using regularization techniques to prevent overfitting. The
sequences in the training MSA are assumed to be independent
and identically distributed (i.i.d.) samples from a “target” prob-
ability distribution p0(S), which is generally unknown39. For a
model with high generative capacity, pθ(S) will closely approx-
imate p0(S)26. Each GPSM we test has a different functional form
of pθ(S).

It is not possible to measure the similarity of pθ(S) and p0(S)
directly because of the high dimensionality of sequence space,
since the number of sequence probabilities to compare is equal to
qL, where L is the sequence length (typically ~300) and q is the
alphabet size (~21). Instead, we measure how derived statistics
computed from evaluation MSAs generated by each GPSM match
those of target MSAs drawn from the target probability
distribution. Three of these are standard metrics: the pairwise
Hamming distance distribution, the pairwise covariance scores,
and the GPSM’s ability to predict p0(S) for individual sequences,
also called statistical energy and abbreviated E(S) (see “Methods”
section). We introduce a fourth metric, the averaged higher order
marginal accuracy, r20, which we argue most directly tests a
GPSM’s ability to model higher-order covariation.

GPSM error and experiments. In our experiments, we probe and
isolate three distinct forms of error which may cause pθ(S) to
deviate from p0(S) (see Table 1). The first is “specification
error”59, which occurs when the functional form of pθ(S) of a
model is not flexible enough to accurately model the target
probability distribution p0(S) for any choice of parameters. A key
motivation for choosing a VAE over a Potts model is its poten-
tially lower specification error when higher-order epistasis is
present25. Indeed, Potts models are limited to pairwise interaction
terms of a particular functional form, while VAEs presumably are
not. The second form of error is “out-of-sample error”60, caused
by a paucity of training samples, and is the consequence of
overfitting61. Even a well-specified model could fail to generalize
when fit to a small training dataset, and may mis-predict p0(S)
for test sequences, so it follows that increasing training MSA
size reduces out-of-sample error. Beyond specification and

Table 1 Glossary of error types, and the MSA datasets we use to evaluate these errors.

Error name Error definition

Specification error Occurs when the functional form pθ(S) of a GPSM is not flexible enough to accurately model the target probability distribution
p0(S) for any choice of parameters θ

Out-of-sample error Occurs when a GPSM fit to a finite training dataset fails to correctly model unseen data, and is a consequence of overfitting
Estimation error Occurs due to statistical error in the MSA evaluation metrics when computed from finite evaluation and target MSAs
MSA name MSA description
Training MSA Drawn from p0(S), used to train or parameterize a GPSM
Target MSA Drawn from p0(S) separately from the training MSA, used as a validation dataset
Evaluation MSA Drawn from pθ(S) for a parameterized GPSM, used to compare to the target MSA
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out-of-sample error, which each reflect an aspect of GPSM gen-
eralization error, there can be “estimation error”62 in our MSA
test statistics due to the finite MSA sizes we use to estimate their
values, which sets an upper bound on how well these statistics can
match their target values, depending on the metric. Finally, other
errors may arise due to implementation limitations of the infer-
ence methods, for instance due to finite precision arithmetic or to
finite sample effects when Monte Carlo methods are used.

To disentangle these three different forms of error, we divide
our tests into two analyses: one natural, in which we train the
GPSMs on a representative natural protein family MSA
(Nat10K), the kinase super family, sequestered from Uniprot/
TrEMBL63 (Fig. 1, left); and one synthetic, in which we train the
GPSMs on synthetic MSAs of varying sizes (Synth10K, Synth1M)
generated from a known distribution (Fig. 1, right). To
demonstrate the generality and robustness of our findings, we
repeat some of the synthetic experiments on three other protein
families for which large amounts of sequence data are available
(RRM, response regulator, and ABC transporter, see “Methods”
section), with comparable results to kinase (see Supplementary
Note 11).

The natural analysis (Fig. 1, left) examines GPSM performance
on natural sequence data, which could potentially contain higher-

order correlations that require a Hamiltonian model with triplet
or higher-order interaction terms to capture. On this dataset, the
VAEs could potentially outperform Mi3, depending on the
importance of higher-order epistatic terms, if present24,25.
However, unlike in the synthetic analysis described next, here
we do not know a priori the natural distribution and, most
importantly, we have only limited datasets for both training and
measurement, which is roughly ~10K sequences for the largest
protein families in Pfam64 (see Supplementary Note 12). To
distinguish the natural distribution as unknown, we denote it as
p̂0ðSÞ (Fig. 1, left). In the natural analysis, the training and target
MSAs each contain ~10K non-overlapping kinase sequences from
the Uniprot/TREMBL database after phylogenetic filtering at 50%
sequence identity. After filtering, we consider the sequences to be
i.i.d. samples of the evolutionary process, having the unknown
equilibrium distribution p̂0ðSÞ.

The synthetic analysis (Fig. 1, right) allows us to isolate
specification error by largely eliminating both out-of-sample and
estimation error, because here the target probability distribution
p0(S) is known exactly and we can generate arbitrarily large non-
overlapping training, target, and evaluation datasets. We choose
the synthetic target probability distribution p0(S) to be exactly the
Potts model distribution we inferred based on natural protein

Natural 
Distribution

Natutt rarr l
Distrtt irrbutitton

Synthetic
Distribution

Natural Analysis Synthetic Analysis

Uniprot/TREMBL

Indep sVAE Mi3

Indep sVAE Mi3

Indep sVAE Mi3

Uniprot/TREMBL

6M
Evaluation MSA

6M
Evaluation MSA

6M
Evaluation MSA

10K
Target MSA

10K 
                                                             (Nat10K)

Training MSA

6M
Target MSA Training MSA 6M

Evaluation MSA
6M

Evaluation MSA
6M

Evaluation MSA

6M
Evaluation MSA

6M
Evaluation MSA

6M
Evaluation MSA

Synth10K

Synth1M

Fig. 1 Workflow of natural and synthetic analyses. We perform two analyses, one Natural (left, purple) and the other Synthetic (right, black). In both
analyses, we train three types of GPSMs on protein MSAs, which are Indep (gray), VAEs (orange), and Mi3 (blue). Because the performance of both VAEs
tested (sVAE and DeepSequence) perform equivalently, only sVAE is included in this figure for simplicity. To compare performance across GPSMs, we
generate an evaluation MSA of 6M synthetic sequences from each GPSM after training, and test generative capacity by comparing the evaluation MSA to
the target MSA. The target MSA is non-overlapping with the training MSA, but was sampled from the same target probability distribution. Left: In the
Natural Analysis, we train the GPSMs on 10K protein sequences (Nat10K) taken from Uniprot/TREMBL. The natural target probability distribution (purple)
is unknown, so we demarcate its container with a dashed line and define it as p̂0ðSÞ to emphasize this unique property, in contrast to all other probability
distributions which we know exactly. The dashed lines leaving the Natural Distribution indicate that the non-overlapping 10K training and target MSAs are
the result of aligning and phylogenetic filtering of sequences obtained from Uniprot/TREMBL. In the Natural Analysis, we are data-limited to ~10K samples
for the non-overlapping training and target MSAs. Right: In the Synthetic Analysis, we use a known Synthetic Distribution, p0(S), from which we can
generate arbitrarily large MSAs. The dashed blue line pointing to the Synthetic Distribution is to emphasize that it is precisely the Mi3 GPSM distribution
constructed in the Natural Analysis. In one experiment (top right), we train the GPSMs on only 10K synthetic sequences (Synth10K) to mimic the Natural
Analysis. However, we perform generative capacity measurements on a target MSAs of 6M sequences, removing estimation error from the measurements.
In the second experiment (bottom right), we train the GPSMs on 1M training sequences (Synth1M), which include the 10K from the first experiment. With
these large training and target MSAs, both out-of-sample and estimation error are removed from the generative capacity measurements, leaving only
specification error, if any.
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kinase sequence data using Mi3 in our natural analysis (Fig. 1)
(see “Methods” section)43. The sequences generated from this
synthetic target probability distribution should have statistical
properties similar to real, or “natural”, protein family MSAs,
albeit constrained by the fact that the Hamiltonian model used to
generate the synthetic dataset is limited to pairwise epistatic
interaction terms only6,21,65. Whereas Indep and the VAEs may
still fail to model this known probability distribution in the
synthetic analysis, our expectation is that Mi3 will be unaffected
by specification error in the synthetic tests, since the target MSA
is sampled from the same probability distribution used to carry
out the inference. We also perform an alternate synthetic test
which does not favor Mi3 in this way, in which the target
probability distribution is instead specified by sVAE, finding that
both Mi3 and sVAE are able to fit this target sVAE distribution
accurately, and Mi3 still outperforms sVAE (see Supplementary
Note 5).

The synthetic analysis also allows us to quantify out-of-sample
error by modulating the training MSA size, and we test two
synthetic training MSA sizes: (i) 1M sequences (Synth1M), to
minimize overfitting effects and consequently out-of-sample
error, thereby isolating GPSM specification error in this
experiment; and (ii) 10K sequences (Synth10K), to illustrate the
expected GPSM performance on typical datasets, as most protein
families in Pfam have less than 10K effective sequences64. 1M
training sequences appears to be sufficient to largely eliminate
out-of-sample error, even though our Mi3 and VAE models
have more than 1M parameters (see Supplementary Note 4). We
have previously reported how out-of-sample error for GPSMs is
not simply a function of the number of sequences relative to the
number of model parameters, but also depends on the degree of
conservation, in ref. 65, and based on that analysis it is not
unexpected that only 1M sequences are sufficient to make out-of-
sample error (overfitting) negligible, even if the number of model
parameters is much larger.

Our overall experimental procedures are outlined in Fig. 1. Our
training datasets are either a natural protein sequence dataset
obtained from Uniprot/TREMBL, or a synthetic dataset generated
by a Mi3 model on natural data (or, as tested in Supplementary
Note 5, an sVAE model). In the main text we show results only
for kinase, but we present comparable results for RRM, response

regulator, and ABC transporter in Supplementary Note 11. The
experiments begin by fitting the GPSMs to the training datasets,
followed by generation of evaluation MSAs from each GPSM.
Finally, using our suite of four generative capacity metrics, we
compare statistics of the evaluation MSAs to those of “target”
MSAs, which contain sequences drawn from the target prob-
ability distributions that are non-overlapping with the training
set, and therefore represent our expectation.

Pairwise covariance correlations. We first examine the pairwise
covariance scores for pairs of amino acid residues of an MSA
defined as Cij

αβ ¼ f ijαβ � f iαf
j
β. Here, f ijαβ are the MSA bivariate

marginals, meaning the frequency of amino acid combination α, β
at positions i, j in the MSA. f iα and f jβ are the univariate mar-
ginals, or individual amino acid frequencies at positions i and j.
Each covariance term measures the difference between the joint
frequency for pairs of amino acids and the product of the single-
site residue frequencies, i.e., the expected counts in the hypothesis
of statistical independence. If Cij

αβ equal 0 for all αβ then the
positions i, j do not covary. Coevolving amino acids are an
important aspect of sequence variation in protein MSAs, and a
GPSM’s ability to reproduce the pairwise covariance scores of the
training dataset has been used in the past as a fundamental, non-
trivial measure of the GPSM’s ability to model protein sequence
covariation2,17,21,50.

For each GPSM, we compare pairwise covariance scores for all

pairs of positions and residues Ĉ
ij
αβ in their respective evaluation

MSA to the corresponding target pair Cij
αβ in the target MSA

using the Pearson correlation coefficient ρðfCij
αβg; fĈ

ij
αβgÞ (Fig. 2).

In the synthetic tests we evaluate this statistic using 500K
sequences for both the target and evaluation MSAs, while for the
natural test we compare 500K evaluation sequences to the
available 10K target sequences. Indep cannot reproduce covar-
iances by definition, so ρ is zero in all tests, as expected.

Mi3 accurately reproduces the target covariance scores in all
tests (ρ= 0.99 in Fig. 2a, ρ= 0.95 in Fig. 2b, and ρ= 0.88 in
Fig. 2c, respectively). The high accuracy of Mi3 is expected for
this measurement, because Mi3’s parameters are optimized to
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Fig. 2 Ability of GPSMs to capture pairwise covariances. Mi3 (blue), DeepSequence (green), sVAE (orange), and Indep (gray) MSA statistics are
compared to the target probability distribution values. GPSMs were trained on 1M synthetic (Synth1M, a), 10K synthetic (Synth10K, b), or 10K natural
(Nat10K, c) kinase sequences from the corresponding target probability distribution. Covariances Cij

αβ were computed from MSAs of 500K sequences
generated by each GPSM (y-axis) vs. target covariances (x-axis) computed from MSAs of 500K sequence from the target probability distribution (a, b) or
from 10K natural target sequences (c), with Pearson correlation ρ shown for each comparison. Generative capacity only slightly decreases as training
sample size is reduced for all GPSMs from panels a to b, indicating insensitivity to training sample size. Covariances around zero are omitted to simplify the
plot, but are included in the Pearson correlation.
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exactly reproduce the joint frequencies of pairs of amino acids
from the target MSA. In the natural analysis, the somewhat lower
value for Mi3 of ρ= 0.88 is accounted for entirely by the
increased estimation error in that test, as only 10K target
sequences are available for evaluation. The expected ρ due only to
estimation error is ρ ~ 0.87, which is computed by comparing the
natural 10K target sequences to the natural 10K training
sequences using this metric.

The VAEs’ inference does not include the same constraint to
reproduce the joint frequencies of pairs, but we find that even
when trained on the larger (1M) dataset of synthetic sequences to
minimize out-of-sample error, the covariances computed from
the VAEs’ evaluation MSAs are consistently smaller in magnitude
than those of the target MSA, and have smaller correlation with
the target than Mi3 (ρ= 0.9 for sVAE and ρ= 0.92 for
DeepSequence in Fig. 2a). For the VAEs, this amount of error
in ρ can primarily be attributed to specification error, since
training GPSMs on 1M sequences largely eliminates out-of-
sample error, and the large evaluation MSAs make estimation
error negligible. The VAEs’ covariances are further scaled down
slightly in magnitude when fit to the synthetic 10K dataset
(ρ= 0.87 for sVAE and ρ= 0.89 for DeepSequence in Fig. 2b).

These results are consistent between the synthetic and natural
analyses for all GPSMs, showing the behavior is not due to artificial
properties of our synthetic target model. These results confirm that
VAEs can model pairwise epistasis in protein sequence datasets,
since they generate pairwise mutational covariances that are
correlated with the target values, even in the absence of explicit
constraints for reproducing these statistics. However, they scale
down the strength of pairwise covariances in both the synthetic and
natural analyses and the correlation with the target is lower than 1.
Mi3, in contrast, is constrained by design to fit the pairwise
covariance scores and does so nearly perfectly.

Higher order marginal statistics. A more stringent test of GPSM
generative capacity is to measure the model’s ability to reproduce
sequence covariation involving more than two positions, or
higher-order covariation. We characterize these higher-order
mutational patterns in the target MSA and GPSM-generated
evaluation MSAs by computing the frequency of non-contiguous
amino acid “words” of length n, or higher-order marginals
(HOMs) corresponding to subsequences, and compare their fre-
quency in each MSA to corresponding values in the target MSAs,
as illustrated in Fig. 3a. For increasing values of n the number of
possible words increases rapidly, requiring increasingly large
evaluation MSAs to accurately estimate the frequency of indivi-
dual words. For this reason, we limit word length to n ≤ 10 and
only compute a limited subset of all possible position sets for each
n. For each n we randomly choose 3K position sets, compute the
frequencies of the top twenty most frequent words for each
corresponding position set in the target and evaluation MSAs, as
these are well sampled, and for each position-set compute the
Pearson correlation r between these top twenty frequencies. We
then average the correlation values for each n over all position-
sets. We call this metric r2021 reflecting the fact that it is com-
puted from the Pearson correlation r for the top 20 most frequent
words. Unlike our other metrics, the estimation error for r20 is
non-negligible because of the extremely large MSAs required to
compute word frequencies, particularly for high n > 5 (see Sup-
plementary Note 8). We can predict the estimation error caused
by finite sampling in the evaluation MSAs by computing the r20
scores between two non-overlapping MSAs generated by the
synthetic target model, which are of the same size as our eva-
luation MSAs. Similar computations of 3rd and sometimes 4th

order statistics have previously been reported50,66–69, but the r20
score systematizes these statistics to higher orders.

In Fig. 3, we plot the HOM r20 for varying word length n. The
expected estimation error (black line) represents an upper bound
for r20 giving the highest measurable r20 given the finite target
MSA size of 6M for the synthetic analysis and 10K for the natural
analysis. This corresponds to the case the GPSM had perfectly
modeled p0(S), with no specification or out-of-sample error,
leaving only estimation error caused by the use of finite
evaluation MSA sizes.

In the synthetic analysis, we compute this upper-bound by
generating two MSAs of size 6M from p0(S) and computing the
r20 score between them. The r20 for Mi3 fit to 1M synthetic
training sequences is very close to this validation upper-bound for
all n, suggesting it has accurately fit the synthetic target
probability distribution, and its specification error is close to 0
(Fig. 3b). This is expected since the synthetic target model in this
test is a Potts model. With 10K synthetic training sequences, Mi3
r20 scores are lower than the 1M result for all n (Fig. 3c), which
illustrates that Mi3 is affected by out-of-sample error for typical
dataset sizes65.

Indep has much lower r20 scores than Mi3, as expected, since it
does not model pairwise epistasis by design and is a poor model
of the word frequencies. Indep’s r20 scores are similar across all
experiments, suggesting that it is not strongly affected by out-of-
sample error. This is expected because its parameters are
optimized for reproducing single-site frequency statistics only,
which can be accurately estimated even from small training
MSAs65.

The r20 scores for both sVAE and DeepSequence are
approximately halfway between Mi3 and Indep, and generally
well below Mi3 at higher orders. The scores for DeepSequence are
slightly higher than sVAE’s, but both VAEs remain close to each
other for all training datasets and n. In the 1M training MSA
experiment, the VAEs’ r20 decreases to ~0.4 and ~0.5 at n= 10
for sVAE and DeepSequence respectively, reflecting high
specification error at higher orders (Fig. 3b). With 10K synthetic
training sequences, the VAEs’ r20 decreases further for all n due to
the addition of out-of-sample error (Fig. 3c).

In the natural analysis, because we do not have knowledge of
p̂0ðSÞ or access to large MSAs generated from p̂0ðSÞ, the r20 metric
is subject to much larger estimation error due to the small 10K
target MSA, and so we cannot construct the estimation upper-
limit in the same way as was done in the synthetic analysis (black
line, Fig. 3d). Despite this, we observe again that the Mi3 model
performs best, and the VAE models are intermediate between
Mi3 and Indep, although the difference between the models is
smaller than in the synthetic test as the metric is obscured by the
high estimation error. Since we cannot generate new sequences
from p̂0ðSÞ in the natural analysis, we can only approximate the
upper-bound due to the estimation error, which we do by using
the Mi3 model distribution pθ(S) as an approximation to p̂0ðSÞ,
and generate two 10K and 6M sequence MSAs from pθ(S) and
compare them using r20. This provides only an estimate of the
expected r20 if the GPSM had modeled p̂0ðSÞ exactly, since p̂0ðSÞ
will differ from pθ(S) when the training MSA is only 10K
sequences. Nevertheless, in Fig. 3d, we observe that the Mi3 r20
score is very close to this estimate, which is consistent with the
hypothesis that the Potts model is well specified to the natural
protein sequence dataset, and the small difference can arise due to
the approximation in the upper-bound.

These r20 results reinforce our findings using the pairwise
covariations Cij

αβ, which gave a preliminary indication that VAEs
capture epistasis but mispredict its strength, and extends these

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26529-9

6 NATURE COMMUNICATIONS |         (2021) 12:6302 | https://doi.org/10.1038/s41467-021-26529-9 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


initial indications into higher orders. Unlike Mi3, the VAEs show
specification error even when fit to large datasets from a model
which only contains pairwise epistatic interaction terms (Fig. 3b).
Because higher-order covariation statistics are constrained by the
pairwise statistics, and the VAEs mispredict the pairwise statistics,
we expect that the VAEs will exhibit specification error for
higher-order epistasis. We also observe that when trying to gauge
GPSM generative capacity at higher orders of covariation, the
standard pairwise statistics alone can be misleading. The relative
magnitudes of r20 between models at n= 2 are different at higher
n, and the performance decrease as n increases is more severe for
the VAEs than Mi3 (Fig. 3, bottom row).

The sensitivity of the r20 metric for detecting model mis-
specification involving higher-order covariation raises the ques-
tion of which forms of mis-specification this metric can detect,
and whether variants of this metric could be even more sensitive.
We discuss some alternatives here as well as the advantages of the
r20 formulation of the metric in Supplementary Note 7.

One type of mis-specification the r20 metric potentially fails to
detect involves low frequency words below the top 20. However, if
epistatic interactions increase the frequencies of low frequency
words, of which there are many, this necessarily reduces the
frequency of the highest frequency words since the frequencies
must sum to 1. In this way r20 indirectly measures the balance in

a       Walkthrough

b Trained on Synth1M c Trained on Synth10K d Trained on Nat10K 
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Fig. 3 Ability of GPSMs to capture higher-order covariation (r20). a Diagram of r20 calculation for n= 4. Left: For a particular set of positions, {1, 5, 6, 12}
in this case, the subsequence frequencies for all words at these positions is calculated for the target MSA and the evaluation MSA. Middle: The word
frequencies for the two MSAs are compared, and the top-20 most frequent words according to the target MSA (red points, labeled by word) are used to
compute the Pearson-r value between the two sets of values. Right: This procedure is repeated for many different position-sets. The final r20 score is the
average of the r across position-sets. Bottom row: Pearson r20 score (y-axis) as a function of Higher-Order-Marginal (HOM) word length (x-axis),
illustrating how well each GPSM predict HOMs from the target probability distribution. GPSMs were trained on 1M synthetic (Synth1M, b), 10K synthetic
(Synth10K, c), or 10K natural (Nat10K, d) sequences from the corresponding target probability distribution. r20 scores for each GPSM are computed using
GPSM-generated evaluation MSAs of 6M sequences compared to target MSAs of 6M sequences for the synthetic tests (b, c) or to a target MSA of 10K
natural sequences for the natural test (d) due to limited natural sequence data. The black dotted line denotes the upper bound for r20 due to estimation
error given the evaluation MSA size of 6M for the synthetic analysis and 10K for the natural analysis. This reflects the expected value if the GPSM had
modeled p0(S) exactly given these MSA sizes. It must be approximated for the natural test as signified using triangle markers (see text for detail). For panel
d, only lengths 2 through 7 are plotted, as the small dataset size limits HOM estimation. Insets emphasize pairwise r20. Comparing panels c and d, it
appears that the generative capacity of Mi3 and the VAEs are sensitive to decreasing synthetic training sample size for r20, whereas Indep is insensitive.
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probabilities between the low frequency words and the individual
highest 20 frequency words.

Another potential limitation is that the r20 metric does not
directly test for covariation as measured by Cij

αβ, as it instead tests
whether the GPSM accurately reproduces marginals. To account
for this, we test an alternative to r20 based on the “connected
correlations”70, which are a generalization of Cij

αβ to higher orders,
which we call cc− r20 (see Supplementary Note 7). We compute
it similarly to r20 but replace the top 20 word frequencies by the
corresponding connected correlations. These results are qualita-
tively similar to the r20 results, and Mi3 most accurately
reproduces the connected correlations (see Supplementary
Fig. S7). For cc− r20, the Indep model gives 0 by definition, so
that cc− r20 more specifically tests statistics which cannot be
predicted with any accuracy using a site-independent model,
unlike r20. However, cc− r20 is more severely affected by
estimation error than r20 and cannot be as accurately measured
for high n, making the r20 score preferable for higher orders.

Finally, because the r20 score only tests a limited sample of sets
of positions for each n, it may potentially fail to sample a
particular position-sets which a GPSM fails to model correctly,
for example if sparse higher-order interactions are necessary to
model the data at those positions. In Supplementary Note 9, we
test this by artificially introducing a single triplet interaction term
to a Potts model and treat this as the target probability
distribution. We then test whether the r20 metric is able to detect
mis-specification of a new pairwise Potts model fit to an MSA
generated from this target probability distribution. We find r20
can indeed detect this mis-specification caused by even a single
triplet interaction term. The introduction of an interaction term
at one set of positions will affect the marginals at most other
positions throughout the MSA because of the chains and
networks of interactions necessary to model protein sequence
datasets, explaining how r20 is sensitive to such an interaction.

Hamming distance distributions. We next evaluate the pairwise
Hamming distance distribution metric dðS; S0Þ. The Hamming
distance between two protein sequences is the number of amino
acids that are different between them, and we obtain a distribu-
tion for an MSA by comparing all pairs of sequences. Because it
characterizes the range of sequence diversity in an MSA, reca-
pitulation of the Hamming distance distribution has been used in
the past as a measure for GPSM performance2,21,51,52. In Fig. 4,
we compare the pairwise Hamming distance distribution for each
GPSM to that of the target probability distribution, computed
with evaluation and target MSAs of 10K sequences each. To
quantify the difference between the GPSM and target probability
distributions for this metric, we use the total variation distance
(TVD)71, which equals 1 when the distributions have no overlap
and is 0 when they are identical, defined by TVD[f, g]= 1/
2∫∣f(x)− g(x)∣dx.

All models reproduce the mode Hamming distance of ~179.
For Mi3, we report the same TVD= 0.007 when trained on either
1M (Fig. 4a) or 10K (Fig. 4b) synthetic sequences, showing
negligible specification error, as expected. When trained on 10K
natural sequences, Mi3 TVD increases to 0.012 (Fig. 4c), for
reasons discussed further below. Indep severely underestimates
the probability of both low and high Hamming distances, as
observed at the distribution tails, with TVD ~ 0.24 across all
experiments. The VAEs perform in between Mi3 and Indep, but
much closer to Mi3 than Indep with respect to TVD.
Performance differences across all GPSMs for this metric indicate
that out-of-sample error has a consistent and detectable, though
very small, effect on the fundamental sequence diversity of
artificial GPSM-generated MSAs. That Mi3 and the VAEs are

highly performant and comparable to each other, but not Indep,
corroborates our earlier findings that epistasis is relevant to
accurate modeling of protein sequence diversity (Figs. 2 and 3).
However, because Indep performs much closer to Mi3 and the
VAEs for this metric than on any other, and also because this
metric cannot discriminate well between Mi3 and the VAEs, we
suspect that reproducing the Hamming distance distribution is a
much easier hurdle for GPSMs than is reproducing higher-order
covariation. This shortcoming of the standard Hamming distance
distribution metric becomes apparent when these results are
compared to those of our novel metric, r20, which does show a
significant gap in generative capacity between Mi3 and the VAEs
at higher orders (Fig. 3, bottom row).

To emphasize the decay of the tails, we rescale all the
distributions by their maxima and re-center them around their
modes to give them the same peak, and then plot them on a log-
log scale (Fig. 4, bottom row). The relevance of the distributions’
tails lies in their power-law behavior as they approach 0, where
the function’s exponent is related to the intrinsic dimension of the
dataset and therefore to the number of informative latent factors
needed to explain the data51,52,72. A well-specified GPSM ought
to reproduce this exponent, and therefore the tail’s decay, since it
is a topological property intrinsic to the dataset and independent
from the particular choice of variables used to describe the
probability density72. There is a trend of slightly decreasing
generative capacity as training samples decrease, which is
detectable only here in the log-scaled Hamming distribution
(Fig. 4, bottom row). In this modified rendering of the Hamming
distance distribution, differences in GPSM generative capacity
can be observed at both low (left tail) and high (right tail)
sequence diversity. The Mi3 distribution closely overlaps the
target probability distribution with both 1M (Fig. 4d) and 10K
(Fig. 4e) synthetic training sequences. In the 10K natural
experiment, Mi3 deviates noticeably from the target on the left
tail (Fig. 4f), which represents less evolutionarily diverged
sequences. This could be an artifact of the phylogenetic relation-
ships between sequences present in the natural dataset, which
may have been incompletely removed by our phylogenetic
filtering step for this dataset (see “Methods” section; Supplemen-
tary Notes 11 and 12), or it could be due to estimation error in
measuring the target probability distribution, as only 10K target
sequences are available to estimate the black line in the natural
analysis. As before, Indep performance is consistently low across
all experiments. The VAEs’ performance at low sequence
diversity (Fig. 4, bottom row, left tails) decreases for smaller
training dataset size.

Statistical energy correlations. A fourth metric we use to eval-
uate generative capacity is the statistical energy E(S) of individual
sequences in the dataset, which we express using the negative
logarithm of the predicted sequence probability p(S), where
EðSÞ ¼ �log pðSÞ. E(S) can be computed analytically for Mi3 and
Indep, and estimated for VAE models by importance sampling
(see “Methods” section, Supplementary Note 2).

This statistic directly evaluates accuracy of the GPSM distribu-
tion values from pθ(S) for a limited number of individual
sequences, which has been used to validate GPSMs by comparison
to corresponding experimental fitness values21,25,30,36,38,73.
In Fig. 5, we compare artificial statistical energies from the
GPSM distribution pθ(S) to those of the target probability
distribution p0(S) for a 1K test MSA generated from p0(S). This
measurement cannot be performed for the natural 10K experi-
ment because p0(S) is unknown for the natural data, so we present
results only for the 1M and 10K synthetic experiments. We use the
1M (Fig. 5, left column) and 10K (Fig. 5, right column) synthetic
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training MSA sizes, and quantify GPSM generative capacity for
this metric by the Pearson correlation coefficient ρðfEðSÞg; fÊðSÞgÞ
between synthetic target energies E(S) and GPSM energies ÊðSÞ.
Mi3 reproduces the synthetic target probability distribution at
both training MSA sizes. Because Mi3 should have very low
specification error on the synthetic target, as it is well specified by
design, the small amount of error must be due to remaining out-
of-sample or numerical errors. As expected, Indep poorly
reproduces the target values, with ρ= 0.6 for both MSA training
sizes. The VAEs exhibit slightly larger specification error than
Mi3 on the 1M training set with correlation of ρ= 0.94, and
exhibit further out-of-sample error on the 10K training set with
ρ= 0.89.

Juxtaposing the E(S) results to the r20 results reiterates the
striking insight of our work, which is that despite the utility of
standard metrics for measuring sequence statistics, they say little
about a GPSM’s ability to capture higher-order covariation, and
therefore necessarily higher-order epistasis. If considered by itself,
the E(S) metric would indicate that both VAEs have generative
capacity close to that of Mi3, and even Indep could be said to have
a large amount of generative capacity, despite capturing no
covariation by design. But according to r20, which directly
measures the higher-order marginals, the VAEs and Indep are
comparable to Mi3 only at the pairwise level. Critically, at higher
orders, the performance difference between the VAEs to each other
remains relatively unchanged, but is significantly lower than Mi3,
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Fig. 4 Ability of GPSMs to capture Hamming distance distribution. These plots illustrate whether sequences generated from the GPSMs reproduce the
overall sequence diversity of their respective targets. Mi3 (blue), DeepSequence (green), sVAE (orange), and Indep (gray) distributions are compared to
target probability distribution (dotted black). GPSMs were trained on 1M synthetic (Synth1M, a, d), 10K synthetic (Synth10K, b, e), or 10K natural (Nat10K,
c, f) sequences from the corresponding target probability distribution. All Hamming distributions were computed from 50K-sequence MSAs, except for the
natural target, which was computed from a 10K-sequence target MSA due to data limitations (see Supplementary Note 12). Top row: Hamming distances d
(x-axis) are shown about the mode, and frequency f is normalized as a fraction of total (y-axis). Mi3 perfectly matches the target probability distribution
from a to c, whereas DeepSequence and sVAE overlap each other and share a mode with a slightly higher frequency than the target and Mi3. Indep has a
slightly lower mode than all the other GPSMs, and a much higher mode frequency. Because generative capacity for all GPSMs is unchanged from a to c,
none of them are sensitive to training or evaluation sample size for this metric. Bottom row: Re-scaled logarithmic Hamming distance distributions better
discriminate between GPSMs with respect to generative capacity than the normal Hamming distance distribution. Before being log-scaled, the Hamming
distances d are normalized by the mode dMo (x-axis), and frequencies f are normalized by the maximum Hamming distance fmax (y-axis). This
transformation highlights minute differences between distributions at low frequencies in the tails of the distributions on the left-hand and right-hand sides.
From d to e, DeepSequence and sVAE appear sensitive to training sample size for this metric at the log-log scale.
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with Indep lower still. Additionally, we explore in Supplementary
Note 10 how the E(S) metric has difficulty detecting when a triplet
interaction term is necessary to model the sequence data, in a
synthetic test. These observations suggest that E(S), just as with the
Hamming distance metric and pairwise covariance correlation,

represents an easier, and perhaps different, hurdle for GPSMs than
measuring generative capacity as the ability to capture higher-order
sequence covariation, as done uniquely by r20.

Discussion
In this study, we reveal the steep challenges and limits entailed by
current measurements of generative capacity in GPSMs trained on
either synthetic or currently available natural sequence datasets.
Recent state-of-the-art GPSM studies have benchmarked their
models by comparing pθ(S) to experimental fitness values from
deep mutational scans25,27, or by generating artificial sequences
that appear to fold into realistic structures based on in silico
folding energy32. However, these strategies for model evaluation
present their own challenges, for instance because of experimental
or modeling error, or because these measurements only probe
select components of the protein fitness landscape which do not
require epistasis to predict. This could mean that despite gen-
erating sequences with realistic in silico folding energy, a GPSM
may still not be capturing crucial higher-order epistatic effects.
Neither point mutation fitness effects, nor in silico folding energy
estimations, are directly related to mutational covariation statistics
observed in an MSA in the sense that they do not check if subsets
of covarying amino acids in specific positions present in the target
MSA are indeed present in the GPSM-generated evaluation MSA.
Our novel r20 metric uniquely delivers that functionality,
emphasizing higher-order covariation where previous studies
rarely go beyond the pairwise level2,17,21,50,74.

Benchmarking coevolution-based protein sequence models in
data rich and data poor regimes, as done here, is an effective
method for ascertaining where data-driven effects stop, and
algorithmic failure begins75. Due to the limited availability of
natural protein sequence data, this line is inherently blurred in
the natural analysis, as we demonstrate across all four of our
generative capacity metrics. But in our synthetic analysis, we have
demonstrated the extent to which VAEs, with different imple-
mentations, can capture higher-order covariation at orders
between three and ten when the target probability distribution is
known, its statistical properties are measurable with a high degree
of certainty, and major forms of error are removed, minimized, or
accounted for. When given a large number of training and target
sequences, we found both VAEs’ generative capacity to be
between that of a site-independent model (Indep) and a pairwise
Hamiltonian (Mi3) for all measurements. In the synthetic r20
tests, our results show that both VAEs’ generative capacity are
well below Mi3, raising questions about whether VAEs can cap-
ture higher-order epistasis significantly better than a pairwise
Potts model. In our synthetic analysis the target probability dis-
tribution is a Potts model, and therefore we expect Mi3 to fit the
target probability distribution well by design. However, we find
Mi3 also outperforms the VAEs where we do not have this
expectation, such as on the natural target probability distribution
and on a target probability distribution specified by sVAE (see
Supplementary Note 5), suggesting Mi3 generally outperforms
VAEs on protein sequence data with respect to generative
capacity.

The Hamming distance distributions, pairwise covariation
correlations, and statistical energy correlations are standard
metrics that have been used in the past to measure GPSM
accuracy, but we find that they can be inadequate or misleading
indicators of a GPSM’s ability to capture covariation at higher
orders. Taken together, our results suggest that, of the metrics we
tested, only r20 provides the granularity needed to discriminate
between different GPSM’s ability to model higher-order epistasis,
as it directly tests the model’s ability to capture higher-order
covariation.
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Fig. 5 Ability of GPSMs to capture statistical energy, E(S). Statistical
energies E(S) of 1K synthetic test sequences from the target probability
distribution as evaluated by Mi3 (blue, a, b), DeepSequence (green, c, d),
sVAE (orange, e, f), Indep (gray, g, h). Each GPSM was trained on 1M
(Synth1M, a, c, e, g) or 10K (Synth10K, b, d, f, h) sequences from the
synthetic target probability distribution. For each scatterplot, Pearson
correlation coefficient ρ was computed between each GPSM’s statistical
energy and that of the synthetic target probability distribution for each
sequence. Only Indep is insensitive to decreased training sample size for
this metric.
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Though third and even fourth order sequence statistics have
already been demonstrated50,66–69, the novelty of our r20 metric is
that it generalizes and systematizes the assessment of a GPSM’s
ability to model covariation into high orders, while recapitulating
previous measurements for the lowest orders. Generalizing the
measure in this way motivates comparison with current standard
measures in machine learning literature for sequence-based and
natural-language models, for instance perplexity. This provides
additional perspective, showing how current measures do not
probe higher-order covariation as directly as r20, and our results
with r20 highlight how higher-order covariation can be used to
distinguish models in ways these other measures cannot.

Although our results suggest VAE-GPSMs are less effective for
capturing higher-order epistasis than pairwise Potts models, they
have demonstrated utility in unsupervised learning and cluster-
ing. One VAE-GPSM, “BioSeqVAE”, has generated artificial
sequences that share a “hallucinated” homology to natural pro-
teins in the training set, which could mean that their folded
structures would perform similar functions to their hallucinated
natural homologs28. Another, “PEVAE”26, has shown that a
VAE-GPSM’s latent space captures phylogenetic relationships
better than PCA76 and t-SNE77. These VAE-GPSMs furnished a
latent space that immediately allowed for function-based protein
classification, a benefit unavailable to pairwise Potts models
without some effort.

The causes of VAE performance limitations are actively being
investigated in literature from multiple directions. One line of
inquiry involves a VAE phenomenon known as “posterior col-
lapse” (see Supplementary Note 3), in which some dimensions of
the VAE latent space become insensitive to the input data. Studies
of this phenomenon have led to some insights into VAE behavior,
for instance that in some situations the VAE likelihood can
contain spurious local maxima78, and many different heuristic
strategies to understand and avoid this phenomenon have been
suggested79–81. We test that sVAE, used in our main results, does
not exhibit posterior collapse, though we can trigger it for sVAE
architectures with more than seven latent dimensions in the
bottleneck layer. Another line of inquiry relates to assumptions
typically made about the metric and topology of the latent space,
suggesting that the commonly used Euclidean metric space or
Gaussian prior distribution may not best describe particular
datasets, for instance because of an effect called “manifold
mismatch”82,83. Techniques closely related to the VAE, such as
the Wasserstein Autoencoder (WAE), are also being investigated
as alternatives to the VAE, with improved performance
characteristics84,85. Additionally, other sequence models, includ-
ing transformer models and masked models31,32,56,57, can gen-
erate protein sequences, although these models are developed
with different objectives and target datasets and are often not
strictly GPSMs. In Supplementary Note 13, we test the generative
ability of one such model, the MSA Transformer31, showing it is
able to model mutational covariation to a limited degree. How-
ever, this model is not strictly a GPSM as defined above, and is
not strictly comparable to the other models we test. Among these
competing approaches, in this work we have tested VAE imple-
mentations which are currently used to generatively model pro-
tein sequences. With more nuanced latent variable models, and
with better understanding of protein sequence embeddings, per-
haps GPSM generative capacity could extend beyond what has
been demonstrated here with state-of-the-art VAEs.

Our epistasis-oriented methodology focuses on measuring
higher-order covariation, with the potential for broad applic-
ability to various sequentially ordered data. r20-like measurements
become possible when the data are sufficient in number, and the
correlation structures between elements, both within and across
samples, are statistically detectable and meaningful in some

context, be it visual, biophysical, or linguistic. The convergence
between data categories such as images, proteins, and language
with respect to generative modeling evaluation offers the exciting
opportunity of a wider, interdisciplinary audience for the work
proposed here. Conversely, further development of sophisticated,
data-intensive, and direct generative capacity metrics of GPSMs
could reveal nuances of the correlation structure of protein
sequence datasets that distinguish them from other datasets,
helping to explain why r20-like metrics can detect higher-order
covariation, whereas other metrics cannot. Our work represents
not only a revision of currently prevailing paradigms of GPSM
benchmarking, but also a challenge to generative protein
sequence modeling more broadly, to consider how epistasis and
direct higher-order covariation metrics like r20 can inform their
models and results.

Methods
Sequence dataset preparation. For the natural analysis, we create MSAs con-
taining sequences from the Uniprot/TREMBL database63 using the HHblits search
algorithm86 and HMM seeds from the Pfam database64, for the protein kinase
superfamily (PF00069), as well as the RRM (PF00076), response regulator
(PF00072), and ABC transporter (PF00005) families. We filter the MSAs so that no
sequence pair has greater than 50% identity, by iteratively selecting a random
sequence and removing all similar sequences (see Supplementary Note 12). For all
four protein families, we retain 20K sequences and randomly divide these into a
10K natural training MSA and 10K evaluation MSA. All of our natural training and
evaluation MSAs are available in supporting information. For the synthetic ana-
lysis, we treat the Mi3 model trained on this natural protein kinase MSA as the
target model or distribution, and generate MSAs from it, which serve as training
and target MSAs in our synthetic tests. Despite coming from the same probability
distribution, we are careful to ensure in each experiment that the training and
target sequences are non-overlapping sets in order to mitigate overfitting (Fig. 1).
Evaluation MSAs are generated by the GPSMs and used by our generative capacity
measurements, which compare the evaluation MSA to the appropriate target MSA.

Mi3. The Mi3 model is a pairwise Potts Hamiltonian model fit to sequence data
using the “Mi3-GPU” software we have developed previously43, which performs
“inverse Ising inference” to infer parameters of Potts models using a Markov-Chain
Monte-Carlo (MCMC) algorithm which entails very few approximations. This
software allows us to fit statistically accurate Potts models to MSA data. We have
examined Mi3’s generative capacity and out-of-sample error in earlier work43,65,
which we summarize here.

A Potts model is the maximum entropy model for p(S) constrained to
reproduce the bivariate marginals f ijαβ of an MSA, i.e., the frequency of amino acid
combination α, β, at positions i, j. The probability distribution pθ(S) for the Potts
model takes the form

pθðSÞ ¼
e�EðSÞ

Z
with EðSÞ ¼ ∑

L

i
hisi þ∑

i<j
J ijsi sj ; ð1Þ

where Z is a normalization constant, Z=∑Se−E(S), and “coupling” J ijαβ and “field”

hiα parameters are compactly denoted by the vector θ ¼ fhiα; J ijαβg. The number of
free parameters of the model (non-independent couplings and fields) is equal to the
number of non-independent bivariate marginals, which can be shown to be
LðL�1Þ

2 ðq� 1Þ2 þ Lðq� 1Þ for q amino acids19, which is ~10.7M parameters for our
model. This implies that the Potts model is well specified to reproduce the bivariate
marginals when generating sequences from pθ(S).

The Mi3 model inference procedure maximizes the log-likelihood with
regularization. Maximizing the Potts log-likelihood can be shown to be equivalent
to minimizing the difference between the dataset MSA bivariate marginals f ijαβ and
the model bivariate marginals of sequences generated from p(S). To account for
finite sampling error in the estimate of f ijαβ for an MSA of N sequences we add a
small pseudocount of size 1/N65. We also add a regularization penalty to the
likelihood affecting the coupling parameters J ijαβ to bias them towards 0, of form

λ∑SCADðJ ijαβ; λ; αÞ using the SCAD function which behaves like λjJ ijαβj for small J ijαβ
but gives no bias for large J ijαβ

87, using a small regularization strength of λ= 0.001
for all inferences which causes little model bias.

To generate synthetic MSAs from the Potts model, we use MCMC over the trial
distribution pθ(S) until the Markov-Chains reach equilibrium43. We can directly
evaluate E(S) as the negative log-probability of any sequences for the Mi3 model
using Eq. (1) up to a constant Z, and this constant can be dropped without affecting
our results.
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Indep. The Indep model is the maximum entropy model for p(S) constrained to
reproduce the univariate marginals of an MSA, and is commonly called a “site-
independent” model because the sequence variations at each site are independent
of the variation at other sites. Because it does not fit the bivariate marginals, it
cannot model covariation between positions. It takes the form

pθðSÞ ¼
e�EðSÞ

Z
with EðSÞ ¼ ∑

L

i
hisi ;

ð2Þ

where Z is a normalization constant, Z=∑Se−E(S), and “field” parameters hiα for all
positions i and amino acids residue α are compactly referred to by the vector
θ ¼ fhiαg. The fields of the Indep model generally have different values from the
fields of the Potts model. Unlike for the Potts model, maximum likelihood para-
meters can be determined analytically to be hiα ¼ �log f iα where f iα are the uni-
variate marginals of the dataset MSA. When fitting the Indep model to a dataset
MSA of N sequences, we add a pseudocount of 1/N to the univariate marginals to

give model marginals f̂
i

α , to account for finite sample error in the univariate
marginal estimates. The model distribution simplifies to a product over positions,

as pθðSÞ ¼ ∑f̂
i

si
. The number of independent field parameters is L(q− 1) which

equals ~4.6K parameters for our model.
To generate sequences from the independent model we independently generate

the residues at each position i by a weighted random sample from the marginals f iα ,
and we directly evaluate the log probability of each sequence E(S) from Eq. (2).

VAEs. The standard variational autoencoder (sVAE) is a deep, symmetrical, and
undercomplete autoencoder neural network composed of a separate encoder
qϕ(Z∣S) and decoder pθ(S∣Z)88, which map input sequences S to regions within a
low-dimensional latent space Z and back. The probability distribution for the sVAE
is defined as

pθðSÞ ¼
Z

pθðSjZÞpðZÞdZ; ð3Þ

where the latent space distribution is a unit Normal distribution,
pðZÞ ¼ N ½0; 1�ðZÞ. Training of a VAE can be understood as maximization of the
dataset log-likelihood with the addition of a Kullback–Leibler regularization term
DKL[qϕ(Z∣S), pθ(Z∣S)], where pθ(Z∣S) is the posterior of the decoder39,40.

sVAE’s architecture is “vanilla”89, meaning it is implemented in a standard way
and its behavior is meant to be representative of VAEs generally. A nearly identical
architecture was used previously as a VAE-GPSM in “EVOVAE”27. sVAE’s
encoder and decoder are implemented without advancements such as
convolutional layers25, multistage training90, disentanglement learning89,
Riemannian Brownian motion priors91, and more. This allows us to directly
interrogate the assumptions and performance of standard variational autoencoding
with respect to the training and evaluation of GPSMs in this work. As with
EVOVAE, sVAE architecture and hyperparameters were selected via grid search
hyperparameter tuning. Detailed discussions of sVAE architecture,
hyperparameters, tuning, and nuances between EVOVAE and sVAE are available
in Supplementary Note 1.

Employing standard normalization and regularization strategies as needed92,93,
our encoder and decoder have three hidden layers each, with 250 nodes per hidden
layer. sVAE’s latent bottleneck layer has seven nodes, and the model in total has
2.7M inferred parameters. The input layer of the encoder accepts one-hot encoded
sequences with a mini-batch size of 200, and the decoder’s output layer values can
be interpreted as a Bernoulli distribution of the same dimensions as a one-hot
encoded sequence. We tested various sVAE architectures and hyperparameters
with our datasets, as well as DeepSequence as described below, and found
qualitatively similar generative capacity results with sVAE.

To generate a sequence from sVAE, we generate a random sample in latent
space from the latent distribution p(Z) and then pass this value to the decoder to
obtain a Bernoulli distribution, from which we sample once. To evaluate the
negative log-probability of a sequence E(S) we use importance sampling, averaging
over 1K samples from the latent distribution qϕ(Z∣S)26. Other publications use the
evidence lower bound (ELBO) estimate as an approximation of the negative log-
probability25, and we have verified that the ELBO and the negative log-probability
are nearly identical in our tests and have equal computational complexity (see
Supplementary Note 2).

In addition to sVAE, we test the DeepSequence VAE25. We use the default
inference parameters, and use the “SVI” inference implementation which uses a
“variational Bayes” inference technique as an extension of the sVAE inference
method. Because DeepSequence is designed to output the ELBO rather than the
negative log-probability for each sequence, we use the ELBO as an approximation
of E(S), and estimate it using an average over 1K samples. To generate sequences
we use the same strategy as for sVAE.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The target and training MSAs used in the natural analysis for the four tested protein
families are available in Supporting Information. These are generated based on sequences
in the Unitprot database63, using seeds from the Pfam database PF00069, PF00076,
PF00072, PF00005. All other intermediate values are computable from these, and are also
available from the corresponding authors on reasonable request.

Code availability
The source codes required to reproduce the results in this manuscript are available at the
links listed below. Generative capacity metrics: https://github.com/alagauche/
generative_capacity_metrics v1.0. sVAE: https://github.com/ahaldane/MSA_VAE v1.0
Mi3: https://github.com/ahaldane/Mi3-GPU v1.1 r20 and cc− r20: https://github.com/
ahaldane/HOM_r20 v1.0 Sequence generator for MSA Transformer: https://github.com/
S-Hauri/MSA_Transformer_Generator v1.0. This code additionally uses the following
python packages: Numpy v1.20.194, Pandas v1.0.595, Matplotlib v3.3496, Tensorflow
v2.2.097. We use HHblits v3.1.0 for sequence search86.
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