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Abstract

Piwi proteins have been implicated in germ cell proliferation, differentiation, germline stem cell maintenance and
transposon control in germline from Drosophila to mammals. The Piwi-like2 (piwil2) gene is mainly expressed in testis or
embryonic cells among normal tissues but widely expressed in tumors. However, it remains to be fully determined through
which mechanism piwil2 is involved in tumorigenesis. Here we report that Human piwil2, or Hili represses the tumor
suppressor P53 in human cancer cells. Immunoprecipitation analysis shows that Piwil2 can directly associate with Signal
Transducer and Activator of Transcription 3 (STAT3) protein via its PAZ domain and form a Piwil2/STAT3/c-Src triple protein-
protein complex. Furthermore, STAT3 is phosphorylated by c-Src and translocated to nucleus, then binds to P53 promoter
and represses its transcription. The present study demonstrated that Piwil2 plays a role in anti-apoptosis in tumor cells
possessing P53 as a positive regulator of STAT3 signaling pathway, providing novel sights into roles of Piwil2 in
tumorigenesis.
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Introduction

The Argonaute gene family which encode basic proteins that

contain both PAZ and Piwi conserved domains, have been

reported to induce histone and DNA methylation, mRNA

breakdown and inhibition of translation [1,2]. As a predominantly

germline specific clade of Argonaute gene family, Piwi subfamily

are found in all animals tested so far and play essential roles in

stem-cell self-renewal, gametogenesis and RNA silencing in diverse

organisms [3–8]. Mutations of three Piwi homologs in mice (miwi,

mili and miwi2) respectively cause arrestment of spermatogenesis

and male sterility [9–11].

The piwil2 gene, alias mili in mouse or Hili in human, is mainly

expressed in testis or embryonic cells among normal tissues but

widely expressed in tumors, suggesting that Piwil2 may disturb cell

division, inhibit apoptosis and play a role as dose-dependent

oncogenic fate determinants. However, the underlying mechanism

through which Piwil2 involved in tumorigenesis remains largely

unknown yet [12,13].

The tumor suppressor p53 which involved in a number of

cellular signaling pathways is known to play an essential role in

regulating apoptosis. Loss of P53 function is a common feature of

many human cancers [14–16]. Though deletions or mutations of

P53 have been observed in a great number of tumors, the HeLa

cell line possesses wild-type P53 alleles detectable in both mRNA

and protein level [17]. Interestingly, Lin et al. reported that in

prostate cancer cell lines wild-type but not mutant P53 can

significantly inhibit STAT3 activity, whereas it has also been

reported that STAT3 can bind to P53 promoter and inhibit the

P53 gene transcription rate [18,19].

STAT signaling pathways activated in response to cytokines and

growth factors have been reported to constitutively express in

varied tumor-derived cell lines and tumor tissues [20]. STAT3

activation can resist apoptotic machinery relied anti-tumor

therapies, and also enhance the growth of tumor cell [18].

Because its activation can mediate oncogenic transformation in

cultured cells and tumor formation in nude mice, Stat3 has been

classified as an oncogene [21]. Here we present that human piwil2

gene suppresses apoptosis by phosphorylating STAT3 along with

c-Src and initiating transcriptional silencing of P53.

Results

Piwil2 inhibits P53 involved apoptosis in HeLa Cells
Previous studies have reported that Piwil2 is expressed in

various tumors and inhibits apoptosis when transfected into

embryo fibroblast cells [13]. To investigate the role which human

piwil2 protein, alias HILI plays in tumorigenesis and apoptosis in

cancer cells, expression vectors and siRNAs were transfected into

HeLa Cells. Real-time qPCR and Western blot analysis revealed

that there was a significant decrease in P53 expression following

the over-expression of Piwil2 in both mRNA and protein level,

while its counterpart, Piwil2-knockdowned HeLa cells express a

higher level of P53 (Fig. 1A). We also examined several other
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proteins that have potential roles in tumorigenesis. The results

showed that the level of P21 significantly increased when Piwil2

was knockdowned, while slightly decreased when Piwil2 was

overexpressed (Fig. 1B).

Fluorescence activated cell sorter (FACS) analysis showed a

significant decrease of apoptosis from 31.4% to 24.8%, while its

counterpart, piwil2-knockdowned HeLa cells increased to 48.4%.

Notably, when P53 specific siRNA was co-transfected into piwil2-

knockdowned HeLa cells, apoptosis ratio significantly decreased to

33.9% (Fig. 1C), suggesting that P53 is essential for apoptosis

pathway induced by Piwil2-knockdown.

However, immunoprecipitation assay revealed that Piwil2 can

not directly associate with P53 (Fig. 1D), suggesting the existence

of a potential pathway through which Piwil2 can regulate P53 and

inhibit apoptosis in tumor cells.

Piwil2 suppresses P53 signaling by phosphorylating
STAT3

Examination revealed that STAT3 knockdown can block

inhibition of P53 expression and apoptosis induced by Piwil2

overexpression (Fig. 1C), indicating that STAT3 protein may play

a role between piwil2 and P53 suppression. To determine the

underlying mechanism, a western blot analysis was performed to

detect the phosphorylation of STAT3, which represents the

activation of this transcription factor [22]. A significant increase

was observed in Piwil2-overexpressed HeLa Cells 12 hours after

transfection. However, after 24 hours, the level of pYSTAT3

resumed its normal level approximately. In contrast, pYSTAT3

level decreased and then recovered after 24 hours in Piwil2-

knockdown HeLa cells (Fig. 2A). Immunofluorescence assay also

revealed that pYSTAT3 signal increased in cytoplasm 6 hours

after pcDNA3.1-Piwil2 transfection (Fig. 2B).

To evaluate the time-course of STAT3 activity and P53

expression, HeLa cells harvested from various time points after

transfection was analyzed by western-blotting. The pYSTAT3

level had been boosted just 3 hours after transfection of

pcDNA3.1-Piwil2 and continuously increased until 9 hours,

whereas the level of P53 showed no more than a slight change

until 9 hours. And the transfection of Piwil2-siRNA led to opposite

effects in a parallel time-course profile. (Fig. 2C) These results

demonstrated that phosphorylation of STAT3 protein occurred

earlier than P53 regulation and suggested STAT3 activity may

play as an upstream factor of P53 in Piwil2-induced anti-apoptosis.

Figure 1. Piwil2 represses P53 and inhibits apoptosis. A, P53 expression was significantly repressed by Piwil2. HeLa cells were transfected with
same amount of empty plasmid (+pcDNA3.1), pcDNA3.1-Piwil2 (+Piwil2) or Piwil2-specific siRNA (+siRNA), harvested and examined by western blot
analysis (upper) and real-time qPCR (lower). Anti-GAPDH antibody and primers were applied as internal control, respectively. B, Western blot analysis
of expression of HSP90, STAT3, P21 and MDM2 in HeLa cells, suggesting that P21 was downregulated by Piwil2. C, Apoptosis analysis of transfected
HeLa cells with Annexin V/PI double staining detected by a flow cytometer. Western blot analysis of p53 expression was also performed, suggesting
that Stat3 knockdown can rescue the expression of p53 inhibited by overexpressed Piwil2. D, Immunoprecipitation analysis showed that STAT3,
rather than P53 or HSP90, can directly associated with Piwil2.
doi:10.1371/journal.pone.0030999.g001

Piwil2 Activates STAT3 and Inhibits P53
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Furthermore, we examined the level of P53 and pYSTAT3 in

another tumor cell line HepG2, revealing that Piwil2 functioned

similarly in HepG2 in contrast to HeLa cells (Fig. 2D).

To verify this hypothesis, we determined the interaction

between STAT3 protein and P53 promoter using chromatin

immunoprecipitation (ChIP) assay followed by Real-time quanti-

tative PCR. Bioinformatic examination revealed that a potential

STAT binding site which contains a consensus sequence

TT(N4)AA or TT(N5)AA [19,23] can be located 179 bp upstream

of the noncoding first exon of human P53 (NM_000546.4)

(Fig. 3A).

In additional, overexpression of Piwil2 led to an increased level

of interaction between STAT3 and P53 promoter 12 hours after

transfection. In contrast, knockdown of Piwil2 suppressed such

interaction (Fig. 3B). To investgate whether P53 was silenced at

transcription level, methylation state of H3K4 and H3K9 in P53

promoter region were analyzed by ChIP method. The results

showed that transient transfection of Piwil2 resulted in approxi-

mately a 2-folder increase in the methylation state of H3K9 and

significant decrease in the methylation state of H3K4, both of

which represented the transcriptional silencing of P53. In contrast,

knockdown of Piwil2 resulted in significant decrease in the

methylation state of H3K9 and increase in the methylation of

H3K4 (Fig. 3C).

In order to identify the specific sequence bound by STAT3, the

indicated region of p53 gene promoter was mutated and

constructed into a pVAX-Luciferase plasmid. Dual-luciferase

analysis showed that the translation of mRNAs containing the

wildtype but not mutated STAT3 binding site was downregulated

by Piwil2 (Fig. 3D).

Src Kinase is required for STAT3 phosphorylation by
Piwil2

To search for potential upstream factors of STAT3, HeLa cells

were treated with tyrosine kinase inhibitors before transfection.

Western analysis showed that overexpression of Piwil2 still

enhanced STAT3 phosphorylation in HeLa cells pretreated with

JAK inhibitor AG490. Thus we can rule out JAK family kinases as

a phosphate giver. However, in HeLa cells pretreated with Src

inhibitor PP2, STAT3 phosphorylation was blocked after

overexpression of Piwil2 (Fig. 4A). This result indicated that Src,

rather than JAK, played a role in Piwil2-induced STAT3

phosphorylation, which was further confirmed by western blotting

using phosphorylated c-Src antibody. Analysis revealed that Y416-

Figure 2. Piwil2 induces phosporylation of STAT3. A, Western blot analysis showed that phosphorylation level of STAT3 was significantly
increased 12 hours after being transient transfected with Piwil2. However, at 24 hours after transfection, STAT3 phosphorylation level had almost
returned to normal. Similar while opposite profile was observed followed transfection of Piwil2-siRNA. Nevertheless, stable transfectants of Piwil2 (ST)
showed constantly high STAT3 activity. B, pYSTAT3 was subcellular localized in Piwil2 transfected cells by using immunofluorescence. Signal of FITC-
labeled secondary antibody was observed significantly increased in cytoplasm 6 hours after transfection, and expanded to nucleus 12 hour after
transfection. C, time-course analysis showed that STAT3 phosphorylation was notably sensitive to changes in Piwil2 level and responded rapidly, at
least 6 hours before P53 regulation. D, Western blot analysis revealed that Piwil2 induced STAT3 phosphorylation and repressed P53 in HepG2 cells.
doi:10.1371/journal.pone.0030999.g002

Piwil2 Activates STAT3 and Inhibits P53
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Figure 3. Piwil2 phosphorylated STAT3 binds to P53 promoter. A, a potential STAT3 binding site in P53 promoter, 179 bp upstream of the
first exon of P53. B&C, ChIP assays of chromatin prepared from transfected HeLa cells using the indicated antibodies followed by real-time PCR,
which amplified a 127-bp region spanning the Stat3-binding site described above. B, STAT3 binding activity to P53 promoter showed significant
changes 12 hours after transfection of pcDNA3.1-Piwil2 or siRNA. C, histone methylation level of P53 promoter was examined with anti-di-
methylation H3K4 (darker) and anti-di-methylation H3K9 (lighter) antibody, respectively. D, Piwil2 suppressed the translation of P53 by regulating its
promoter. HeLa cells were transfected with the indicated constructs. Relative luciferase activity is the ratio between firefly luciferase and renilla
luciferase, adjusted to 100%.
doi:10.1371/journal.pone.0030999.g003

Figure 4. c-Src involved in Piwil2-induced STAT3 phosphorylation. HeLa cells pretreated with JAK-inhibitor AG490 or Src-inhibitor PP2 were
transfected with same amount of empty plasmid (+pcDNA3.1), pcDNA3.1-Piwil2 (+Piwil2) or Piwil2-specific siRNA (+siRNA), harvested and examined
by western blot analysis. Non-pretreated cells were employed as negative control (NC). The results showed that PP2 rather than AG490 can deplete
the activity of c-Src and block the regulation to STAT3 phosphorylation and P53 expression by Piwil2.
doi:10.1371/journal.pone.0030999.g004

Piwil2 Activates STAT3 and Inhibits P53
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phosphorylated c-Src was enhanced 6 hour after pcDNA3.1-

Piwil2 transfection, while the level of pY416 c-Src decreased after

Piwil2-siRNA transfection (Fig. 4B).

A triple protein-protein complex is formed when Piwil2
recruits STAT3 to c-Src

The effect of Piwil2 on STAT3 phosphorylation was investi-

gated by co-immunoprecipitation (coIP) assay, revealing that the

,110 kD Piwil2 protein was physically associated with STAT3

and c-Src, while STAT3 was also observed associating with c-Src

(Fig. 5A). Meanwhile, the absence of STAT3 blocked the binding

between Piwil2 and c-Src (Fig. 5B), whereas Piwil2 knockdown led

to decreased c-Src signal detected in STAT3 immunoprecipitates

(Fig. 5C). The results suggested that Piwil2 played an essential role

in the assocaiation between STAT3 and non-receptor tyrosine

kinase c-Src. Thus they formed a triple protein-protein complex

and STAT3 was phosphorylated and activated.

To further investigate the interaction between Piwil2, STAT3

and c-Src, we constructed a series of Piwil2 deletion mutants to

identify the functional domains required for phosphorylating

STAT3. Two Piwil2 mutants, one harbored a deletion of PAZ

conserved domain while the other lacks both PAZ and PIWI

domains, failed to bind with STAT3, while other mutants retained

the ability (Fig. 6A and B). Notably, the PAZ-deleted mutants

failed to induce STAT3 phosphorylation (Fig. 6C) and inhibit cell

apoptosis (Fig. 6D), confirming the potential role of PAZ domain

of Piwil2.

Discussion

It has been reported that Piwil2 transcripts were widely detected in

various tumors or cancer cell lines, and played important roles in

tumorigenesis and apoptosis inhibition [13,24–26]. However, the

mechanism underlying piwil2-mediated tumor development re-

mained unclear yet. To investigate the signaling pathway through

which Piwil2 suppresses the apoptosis of cancer cells, we studied the

relationship between Piwil2 and its potential target genes. Our

research demonstrated that Piwil2 can efficiently activate STAT3 by

phosphorylating STAT3 at residue Tyr705 (Fig. 2), which leads to

dimerization of STAT3 and downstream targets control [18,20]. We

next examined whether Piwil2 also enhanced STAT3 DNA binding

activity. Our results indicated that induced by Piwil2 overexpression,

STAT3 DNA binding activity to P53 promoter was significantly

increased, leading to epigenetic modification and silencing of P53

gene (Fig. 3B and C). This founding was supported by previous study

on roles of STAT3 in regulating P53 by Niu et al [19].

Activation of STAT3 required tyrosine kinases activity, which

Piwi family proteins have not yet been reported to possess. JAK/

STAT3 pathway is well-known to respond extracellular signal and

regulate expression of various genes [27–29]. However, AG490, a

specific JAK/STAT3 pathway inhibitor, showed little effort in

blocking Piwil2-induced STAT3 phosphorylation (Fig. 4A), sug-

gesting that JAK family kinases may not be involved in Piwil2-

STAT3-P53 pathway. So we next analyzed another candidate Src,

a family of non-receptor tyrosine kinases that has been reported to

constitutively activate STAT3 during oncogenic transformation

[30–33]. Western blot experiments revealed that the overexpres-

sion of Piwil2 in PP2-treated HeLa cells failed to increase

pYSTAT3 level, while the knockdown of Piwil2 made no

significant decrease of pYSTAT3 compared to the control.

Further experiments revealed that overexpressed Piwil2 can

increase the phosphorylation level on Tyr416 of c-Src, which

indicates tyrosine kinase activity of the protein (Fig. 4B).

Immunoprecipitation assay demonstrated that Piwil2, STAT3

and c-Src can physically associated with each other. However,

silencing of Piwil2 or STAT3 may lead to significantly repressed

binding level between c-Src and the other protein(Fig. 5),

suggesting that Piwil2 played an essential role in the association

between STAT3 and non-receptor tyrosine kinase c-Src. Thus

they formed a triple protein-protein complex and STAT3 was

phosphorylated and activated.

Based on our results and previous finding about STAT and P53,

we demonstrated that Piwil2 inhibits P53 involved apoptosis

through Src-STAT3 pathway in HeLa cells (Fig. 7). Our

immunoprecipitation analysis shows that Piwil2 can directly

associate with STAT3 via its PAZ domain and form a Piwil2/

STAT3/c-Src triple protein-protein complex. As shown in Figure 1

and Figure 2, our present study shows that the activation of STAT3

phosphorylated by c-Src at residue Tyr705 is significantly increased

in Piwil2 overexpressed HeLa cells. The phosphorylated STAT3

proteins dimerize and translocate to nucleus as reviewed by Burdon

et al [22]. Furthermore, dimerized STAT3 proteins bind to the

promoter region of P53 gene and repress P53 expression.

To study the function of human Piwil2 gene, alias HILI in Hela

cells, we analyzed its relationship with P53 and apoptosis. As

variant deletions or mutations of P53 have been observed in a

great number of tumors, the underlying mechanism of anti-

apoptosis may differ among variant cancer cells. However, our

results demonstrated that Piwil2 functioned to induce STAT3

phosphorylation and prevent expression of P53 at least in two cell

lines (HeLa and HepG2). These investigations will provide a novel

insight into roles of Piwil2 in tumor cells.

Figure 5. Interaction between Piwil2, c-Src and STAT3. A, cell
lysates were prepared and subjected to coIP assays. TP, total protein
lysates as positive control; NC, protein A+G agarose incubated with
total protein lysate to detect nonspecific interaction (negative control,
detected with corresponding antibodies). B, In STAT3-silenced cells
(STAT32, transfected with STAT3-specific siRNA), the binding between
Piwil2 and c-Src was repressed in contrast to lysates of control cells
(STAT3+, transfected with nonspecific siRNA). C, the binding between c-
Src and STAT3 was repressed in Piwil2-silenced cells (Piwil2-, transfected
with Piwil2-specific siRNA).
doi:10.1371/journal.pone.0030999.g005

Piwil2 Activates STAT3 and Inhibits P53
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Materials and Methods

Plasmids and siRNAs
The coding sequences of Piwil2, STAT3 and c-Src were

amplified by RT-PCR and cloned into the vector pcDNA3.1

(Invitrogen, USA) with an upstreaming Myc- or HA-tag

respectively. TRIpure reagent, a gel extraction kit, and a high

purity plasmid preparation kit were purchased from Bioteke

Corporation (Beijing, China) for total RNA extraction, PCR

product purification, and plasmid preparation. The specific

siRNAs (described in Table 1) and universal negative control

dicer substrate duplex were synthesized and purchased from

RiboBio Co. Ltd (Guangzhou, China).

The putative STAT3 binding site in p53 gene promoter was

obtained and mutated through a PCR method, then cloned into a

pVAX-Luciferase plasmid (maintained in our laboratory). The

sequences of the PCR primers used are as follows: wildtype forward:

59- CGC GGA TCC AGC TCT GGC TTG CAG AAT TTT

CCA C -39; mutated forward: 59- CGC GGA TCC AGC TCT

GGC GGG CAG AAT TTT CCA C -39; universal reverse: 59-

CCG GAA TTC CCG GAG GAA GCA AAG GAA ATG G -39.

Cell culture
Cervical cancer cell line HeLa was maintained in our laboratory

[34]; hepatocellular carcinoma cell line HepG2 was obtained from

State Key Laboratory of Biotherapy and Cancer Centre of West

China Hospital [35]. Both cell lines were maintained in RPMI-

1640 medium (Gibco, USA) containing 10% heat-inactivated

FBS, 100 U/ml penicillin and 100 mg/ml streptomycin, on

25 cm2 culture dishes in a humidified atmosphere containing

5% CO2 incubator at 37uC. The cells were passaged by

trypsinization every 2–3 days. The transfection was performed

with lipofectamine 2000 solution (Invitrogen, USA) according to

the manufacturer’s protocol and transfected cells were harvested

and analyzed 24 hours after transfection, unless stated otherwise.

Empty plasmid DNA was applied to transfection as negative

control. And in some experiments, stable overexpression transfec-

tants selected by being cultured in medium containing 1 mg/ml of

G418 (Solarbio, China) for one month were also examined. To

inhibit tyrosine kinase activity, HeLa cells were pretreated with

25 mM AG490 (Sigma-Aldrich, USA) for 24 hours or 10 mM PP2

(Sigma-Aldrich, USA) for 30 minutes. All following experiments

were repeated at least three times unless stated otherwise.

Apoptosis assay
Apoptotic rates were analyzed by a COULTER EPICS XL

flow cytometer (Beckman, USA) using an Annexin V-EGFP

Apoptosis Detection Kit (Bestbio, Shanghai). Annexin V/PI

staining and fluorescence intensity measurements were performed

according to the manufacturer’s instruction.

Figure 6. The specificity and domains of Piwil2-Stat3 interaction. A, schematic of different Piwil2 deletion constructs. B, Piwil2 deletion
mutants with HA-tag were respectively co-transfected in HeLa cells with Myc-tagged STAT3, coIP assay revealed that mutants with PAZ domain
deletion (pPAZ and pP+P) failed to bind with STAT3. C, Western blot analysis showed that PAZ deletion mutants failed to induce phosphorylation of
STAT3. D, Apoptosis analysis showed that PAZ deletion mutants failed to inhibit apoptosis in transfected HeLa cells.
doi:10.1371/journal.pone.0030999.g006

Piwil2 Activates STAT3 and Inhibits P53
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Western Blot Analysis
Harvested cells were lysed in ice-cold universal protein

extraction buffer (Bioteke, Beijing) supplemented with protease

inhibitor cocktail (Roche, USA) for 30 min. Cell lysates were

separated on 4–12% SDS-page gel and transferred to a

nitrocellulose membrane. Membranes were blocked in TBS-T

Buffer (50 mM Tris-HCl, 150 mM NaCl, 0.1% Tween, PH 7.6)

supplemented with 5% nonfat dry milk. The membranes were

incubated overnight at 4uC with the indicated primary antibody:

rabbit polyclonal anti-Piwil2 (Santa Cruz, USA), rabbit polyclonal

anti-STAT3 (Abcam, UK), rabbit polyclone anti-pYSTAT3

(CST, USA), rabbit polyclonal anti-c-Src (Abcam, UK), rabbit

polyclonal anti-pY416-c-Src (CST, USA), mouse monoclonal anti-

GAPDH (Boster, China), mouse monoclonal anti-HA-tag (CST,

USA), and rabbit polyclonal anti-Myc-tag (Santa Cruz, USA),

followed by 5 minutes washes in TBS-T for three times and

incubation with HRP-labeled secondary antibody (Zhongshan

Goldenbridge, China) in TBS-T for 1 hour at RT. The

membranes were detected with chemiluminescent HRP substrate

(Millipore, USA).

Immunofluorescence
Transfected cells were fixed with 4% formaldehyde in PBS for

15 min, permeabilized with 0.5% Triton X-100 for 10 min,

blocked with 1% BSA for 30 min, incubated overnight at 4uC with

primary antibody and finally incubated with FITC-labeled

secondary antibody (Zhongshan Goldenbridge, China) for 1 hour

at RT. Each step was followed with 5 minutes washes in PBS

twice. The prepared specimens were counterstained with 5 mg/

mlDAPI for 2 min and observed with a fluoresence microscope

(Olympus, Japan).

Immunoprecipitation
Prepared cell lysates were incubated with 0.8 mg antibody

against HA-tag or Myc-tag for 2 hours at 4uC with gentle

inverting, then incubated with 20 ml of protein G&A agarose

(Beyotime, China) overnight, and precipitated by centrifugation at

12,000 g for 1 min. Complexes were washed four times in ice-cold

PBS Buffer (pH 7.4), and electrophoresed on 4–12% SDS-page

gel. Western blot detection was carried out as described earlier.

Chromatin immunoprecipitation (ChIP) assays and real-
time PCR

Preparation of chromatin-DNA and ChIP assays were per-

formed as described by the manufacturer’s protocol of EZ-Zyme

Chromatin Prep Kit (Millipore, USA) and Chromatin Immuno-

precipitation Kit (Millipore, USA). Antibody against di-methylated

H3K4 and di-methylated H3K9 were purchase from Abcam

(UK). Purified DNA was subjected to PCR using primers specific

for a 127-bp region spanning the STAT3-binding site in the P53

promoter. The sequences of the PCR primers used are as follows:

Table 1. Sequences of deployed siRNAs.

siRNAs Sequences

Piwil2 sense CUA UGA GAU UCC UCA ACU ACA GAA G [24]

Piwil2 antisense CUU CUG UAG UUG AGG AAU CUC AUA GUU [24]

c-Src sense AAC AAG AGC AAG CCC AAG GAU dTdT

c-Src antisense AUC CUU GGG CUU GCU CUU GUU dTdT

STAT3 sense CAU CUG CCU AGA UCG GCU AdTdT

STAT3 antisense UAG CCG AUC UAG GCA GAU GdTdT

P53 sense GAC UCC AGU GGU AAU CUA CdTdT

P53 antisense GUA GAU UAC CAC UGG AGU CdTdT

Nonspecific duplex siR-RiboTM Negative Control (Ribobio, China)

doi:10.1371/journal.pone.0030999.t001

Figure 7. A schematic model for the involvement of Piwil2 in anti-apoptosis in HeLa cells. 1, Piwil2 binds with monomeric STAT3 and
recruited it to c-Src. 2, STAT3 is phosphorylated by c-Src and then dimerized. 3, dimeric pYSTAT3 translocates into the nucleus and bind to P53
promoter, repress P53 transcription and thus inhibit apoptosis.
doi:10.1371/journal.pone.0030999.g007

Piwil2 Activates STAT3 and Inhibits P53
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P53 forward: 59-ATT CTG CCC TCA CAG CTC TGG CT-39;

P53 reverse: 59-CCG GAG GAA GCA AAG GAA ATG G-39;

P53 TaqMan: 59-FAM-CCG CAG TTT CTT CCC ATG CAC

CTG-TAMRA-39. Quantitative PCRs were performed in an

iCycler IQ real-time PCR Detection System (BioRad, USA), with

a first denaturation step at 94uC for 10 min, followed by 45 cycles

comprising denaturation at 94uC for 20 s, annealing at 58uC for

30 s and extension at 72uC for 40 s. Inputs removed before

applying antibody were deployed to normalize for differences in

the amount of DNA in each PCR.

Dual-Luciferase Assay
For luciferase analysis, 100 ng plasmid DNA and 100 ng renilla

control plasmid were transfected into HeLa cells. Dual luciferase-

activity assays were performed 48 hours after transfection

according to the manufacturer’s directions (Promega). Three

independent experiments were set up in every term.
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