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To investigate the dynamics of social networks and the formation and evolution of online communities in
response to extreme events, we collected three datasets from Twitter shortly before and after the 2011
earthquake and tsunami in Japan. We find that while almost all users increased their online activity after the
earthquake, Japanese speakers, who are assumed to be more directly affected by the event, expanded the
network of people they interact with to a much higher degree than English speakers or the global average. By
investigating the evolution of communities, we find that the behavior of joining or quitting a community is
far from random: users tend to stay in their current status and are less likely to join new communities from
solitary or shift to other communities from their current community. While non-Japanese speakers did not
change their conversation topics significantly after the earthquake, nearly all Japanese users changed their
conversations to earthquake-related content. This study builds a systematic framework for investigating
human behaviors under extreme events with online social network data and our findings on the dynamics of
networks and communities may provide useful insight for understanding how patterns of social interaction
are influenced by extreme events.

U
nderstanding how human social behavior changes in response to extreme events like earthquakes, tsu-
namis or terrorist attacks is key to emergency response and recovery1,2. In this paper, we consider the
subset of human behavior that is demonstrated in the patterns, context and content of interactions

between individuals, especially those mediated by internet enabled devices. Observations of this behavior during
extreme events may provide insights into general behavior patterns during times of stress because links between
unobservable decisions and the observable actions taken in response to those decisions are more likely to be
temporally close due to the time sensitive nature of many extreme events. However, the study of human behavior
during extreme events has historically been hindered due to the limitation of available information during such
scenarios1.

Studies of behavior during extreme events have primarily been made retrospectively, e.g., through field surveys
or census sampling after the event3. For example, Elliott and Pais studied Hurricane Katrina’s influences on a wide
array of survivors’ responses, including evacuation timing and emotional support to housing and employment
situations and plans to return to prestorm communities4. Souza et al examined changes in the mental health status
of vulnerable communities after the 2004 Indian Ocean earthquake and tsunami5.

While retrospective studies are critical for understanding human behavior, limitations are also obvious: first,
retrospective studies are often made long after the event and cannot provide timely support for decision making
when the need is most urgent; and second, data is collected through surveys or interviews, introducing bias due to
reporting errors, recollection bias, and challenges identifying and accessing disaster-affected populations. To
overcome these issues, researchers have recently used more objective and timely data, generated from sensor
networks such as cell phone towers, to track individual mobility and population flow for large populations in real
time, providing a unique solution for disaster response and relief management2,6,7.
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Retrospective surveys and time-location based data improves our
ability to investigate human psychological and physical behavior
under disasters. However, they do not provide insight into patterns
of human interactions and social behavior. For example, when a
disaster happens, what do people do as part of a social group?
What is the role of each individual and how do they interact with
people around them? How are patterns of interactions during
extreme events different from those during more typical conditions?
The rapid development of online social networking services has
enabled researchers to answer these questions: with internet-enabled
devices, any user can post and share news, events, thoughts, and the
like, providing not only the content of individual psychological and
physical activities, but also the context of human interactions such as
the target and topic of interaction. When the regional physical tele-
communication system still functions after an adverse event, the use
of these online tools increases enormously, demonstrating their sali-
ence for real world interactions and information sharing behavior.
Although the population that regularly uses internet-enabled devices
to communicate is not representative of the population as a whole,
the records of those interactions do represent a window into social
behavior that has not previously been observable. Thus, studies rely-
ing on real-time records of interactions complement but do not
replace existing retrospective analyses. These real-time perspectives
provide more breadth of data on patterns and content of interaction
behaviors, with the limitation that the only data available are those
interactions that are mediated by internet-enabled devices and so are
not representative of all social interactions.

Studies of online social media under adverse events were pio-
neered by utilizing data from Twitter, a leading micro-blogging ser-
vice which allows users to rapidly communicate information in up to
140 characters (tweet) on a one-to-one, specified group or global
basis8. The temporal, spatial and social dynamics of Twitter activity
have intrigued many researchers in developing applications to facil-
itate early event detection and increase situational awareness9,10. The
behavior observable through Twitter is not representative of all social
interactions but we believe that it does have the potential to show
how extreme events influence patterns of interactions, despite the
challenges in obtaining representative samples.

The US Geological Survey (USGS) has found that when an earth-
quake is felt by a population that uses Twitter, tweets reporting the
incidence of an earthquake are published online sooner than the 2 to
20 minutes it takes the USGS to publicly distribute instrumentally
derived estimates of location and magnitude11. In an evaluation
implemented by Paul et al, the authors found that tweets referencing
earthquakes may be useful information for detecting earthquakes in
poorly instrumented regions12. Instant change of user activities and
appearance of event-related keywords have been seen in a variety of
adverse events such as earthquakes, cross border attacks, and wild
fires13. For example, in the MW 4.3 earthquake in Morgan Hill, CA,
2009, the tweet frequency in the epicenter region quickly rose to
about 150 per minute, in comparison to the background level of less
than one per hour before the earthquake11. Information regarding the
location and specific details of events was reported on Twitter within
seconds following the first explosion of the April 15th, 2013 bombing
at the Boston Marathon14.

Understanding changes in patterns of user activities during
extreme events requires dynamic analysis of how individuals com-
municate with others before and during an extreme event and the
communities they interact with15. Interactions can be mapped into a
network structure where nodes are individual users and edges are
records of interaction between two users. Community structure can
be observed through patterns of coherent and sustained interactions
between groups of individuals. Despite many studies focusing on
tweeting activity and text mining, studies analyzing behavioral
interactions under extreme events have been rare. Preliminary stud-
ies have been made, for example, by Gupta et al., who proposed a

clustering algorithm in detecting user communities and applied the
method in analyzing Twitter users in three major crisis events of 2011
(Hurricane Irene, Riots in England, and Earthquake in Virginia).
They found that top users represent the topics and opinions of all
the users in the community with 81% accuracy on an average16. In the
2010 Chile earthquake, Mendoza et al. analyzed information pro-
pagation on Twitter network and found that rumors tend to be
questioned more than news by the Twitter community17. In a recent
study, Chatfield and Brajawidagda conducted a social network ana-
lysis of Twitter information flow among the central disaster warning
agency’s (BMKG) Twitter followers during the 2012 Indonesia
Earthquake and found that even with less than 0.1% of all followers
re-tweeting the initial reports, tsunami early warnings released by
BMKG could potentially reach 4 million users in 15 minutes18.

There are preliminary analyses of human interactions through
Twitter under extreme events from a network perspective in the
existing scientific literature. However, current research lacks a sys-
tematic framework to characterize the mechanisms and pattern
changes observed in social interactions during adverse events. To
investigate the dynamics of social networks and the formation and
evolution of communities in response to extreme events, we collected
three unique datasets from the weeks before and after the March 11th,
2011 Japanese earthquake: 1% of all tweets posted worldwide,
sampled approximately uniformly from Twitter using the
‘‘Spritzer’’ API, which we refer to as the Global dataset; tweets written
in Japanese that were sampled from the ‘‘Topsy’’ API, which we refer
to as the TP-JP dataset; and TP-EN: tweets written in English and
sampled from the ‘‘Topsy’’ API (See Materials and Methods for
details). Hereafter, we refer to people who communicate online in
Japanese as Japanese speakers, but they are not a representative
sample of all people who speak Japanese, or all people who were
affected by the earthquake. Nonetheless, we believe that changes in
the behavior of this Japanese speaking population in response to the
earthquake and tsunami can provide some insight about changes in
social behavior in Japan in response to the earthquake and tsunami.
We consider the TP-JP dataset to represent a treatment group,
because a larger proportion of this groups population was affected
by the earthquake than the populations of the other two datasets.
Thus, changes in the structure of the TP-JP network before and after
the earthquake that did not also occur in the TP-EN or Global dataset
are likely related to the events that influenced Japanese speakers on
twitter.

We are using a broad dataset intended to preferentially select the
population of people who are affected by the earthquake, and exam-
ine at how their social interaction patterns change for the broad
population affected by the disaster. In this sense, we are looking at
population level changes in patterns of social interactions, rather
than using records of online interactions to trace details of events,
information discovery, coordination efforts, and emergency res-
ponse19–21. The detail-oriented approach of this crisis-informatics
research is crucial for developing effective real time emergency res-
ponse strategies and planning efforts. Understanding changes in
social interaction patterns in response to an adverse event may pro-
vide insight into how patterns of interaction behaviors change in
response to stress, which could inform planning disaster response
efforts that deal with behavior at a population level; for example
evacuation procedures or information dissemination.

By comparing network and community structure before and after
the earthquake, we were able to examine the effects of the earthquake
on networks of communication in social media. We find that while
almost all users demonstrate increased activity after the earthquake,
Japanese speakers expanded their network of interactions to a much
greater degree. Japanese speakers are more likely to be directly affec-
ted by the earthquake than a person who uses another language. By
applying the community detection algorithm of information map-
ping (Infomap)22,23, we find that the behavior of joining or leaving a
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community is far from random. In the week following the earth-
quake, Japanese speakers and users globally were more likely to have
remained in the community they were in before the earthquake than
would be expected if community structure were randomly generated.
Additionally, users were much less likely to join new communities
from a solitary pre earthquake state or shift to other communities
from their current community. Additionally, we find that while non-
Japanese speakers did not significantly change the content of their
conversations relative to the pre-earthquake topics, nearly all
Japanese speakers changed their main conversation topic to earth-
quake-related content. This study builds a systematic framework for
investigating human behaviors and social interactions during
extreme events with online social network data. The findings on
network dynamics and community evolution may provide useful
insight for our understanding of collective human behavior in future
studies.

Methods
Network data. Global. Using Twitter’s 1% sampling API (‘‘spritzer’’) collected from
the same sources as Mandel et al24 and Culotta25 we sample approximately uniformly
from all messages from February 28th to March 7th, before the T̄ōhoku earthquake on
March 11th 2011, and from March 14th to March 21st, after the earthquake. On
Wednesday, March 2nd there was a server error and no data was collected. In order to
maintain day of week symmetry in the before and after dataset, we also exclude
Wednesday, March 16th. This dataset results in 14.2 million messages and is hereafter
referred to as Global. Unfortunately, the data was recorded in ASCII, which is
sufficient for content analysis when users write in the Latin alphabet, but does not
permit content analysis or language estimation when users write in language that does
not use the Latin alphabet, especially Japanese. For this reason, the following dataset is
also used for a more detailed analysis of content changes in Japanese language tweets.

Topsy. We used the API interface to the website www.topsy.com to search for the
largest possible subset of tweets in English and Japanese for the seven days before and
after the earthquake. We searched on the 6 most commonly used hiragana characters:

, , , , , and . to retrieve Japanese tweets (TP-JP) and the six most common
words in English language to retrieve English tweets (TP-EN): ‘‘the’’, ‘‘be’’, ‘‘to’’, ‘‘of’’,
‘‘and’’, and ‘‘a’’.

For the Japanese language search, this method returns between 100 and 400 tweets
per hour before the earthquake, and 300 to 1500 tweets per hour after the earthquake.
For the English language search, between 300 and 600 tweets per hour were returned
for the entire study period.

Inferring the geographic origin of individual tweets is challenging26. We rely on the
geographic concentration of Japanese speakers in Japan to develop a sample of tweets
written by people who are likely to be affected by the earthquake. Ninety-nine percent
of all people for whom Japanese is a first language live in Japan27,28, and so searching
just by the Japanese language will preferentially select people who were affected by the
earthquake, especially in comparison to people speaking English on Twitter, as in our
TP-EN control group. Those who use Japanese to communicate on Twitter are likely
to be socially connected to those in Japan, and thus influenced by the earthquake
either directly or indirectly through social ties to people in Japan. We consider the TP-
JP dataset to represent a treatment group, because a larger proportion of this groups
population was affected by the earthquake than the populations of the other two
datasets. Thus, changes in the structure of the TP-JP network before and after the
earthquake that did not also occur in the TP-EN or Global dataset may be related to
the events during the study period that influenced Japanese speakers more signifi-
cantly than people who speak other languages, especially the earthquake and tsunami.

Network formation. Each node in the network represents a single Twitter user who
sent or received tweets in the sample dataset. Each user is uniquely identified by a
Twitter handle, which must contain only Latin letters and underscores. The first

character of all Twitter usernames is the @ symbol. A directed link from A to B is
formed when user A writes user B’s username in the posted content by either
mentioning B directly or by forwarding a tweet written by B, called a retweet. The
number of times A mentions B in all tweets from the study period is used as the link
weight.

In the end, 36,893, 36,234 and 7,403,050 unique users were obtained from the TP-
JP, TPEN and Global datasets, respectively. This is shown in Table 1. Data is sampled
from posted tweets rather than from a full list of users and so it is important to follow
the behavior of each user individually to evaluate the effect of the earthquake. We
thereby focus on users who were included in the sample both before and after the
earthquake. After this filtering, we obtained 3,647, 4,037, and 87,939 nodes,
respectively. Due to the limited sampling rate in TP data, the resulting networks are
relatively sparse. For the purpose of network and community analysis, we dismiss link
direction and weight in the TP-JP and JP-EN networks, collapsing the data to an
undirected unweighted network. We maintain the weighted and directed network for
the Global dataset. In the Global dataset, outdegree refers to the number of tweets sent
by a given user that refer to another user by name.

Community detection. We apply the Infomap method22,23 to detect the underlying
community structures in the TP-JP, TP-EN networks (undirected unweighted) and
the Global networks (directed weighted). The Infomap method is built based on
optimizing the minimum description length of the random walk on the network. It
takes advantage of the duality between finding community structure and minimizing
description length of a random walker’s movements on a network. With a random
walker as a proxy for real flow, the minimization over all possible network partitions
reveals important aspects of network structure with respect to the dynamics on the
network.

Infomap has the advantage of being flexible for finding community structures on
both undirected and directed, weighted and unweighted networks, it has also shown
that it is one of the most efficient, reliable and accurate community detecting method
in comparison to a range of other models29–31. For these reasons, it has been becoming
the state of the art and has been increasingly used in the detection of network
communities in empirical studies30,32,33.

Categorize network dynamics. Community dynamics. We propose a framework for
modeling the dynamics of communities using the following five processes. In the time
between t and t 1 1, a community can dissolve, form, survive, split or merge. Let st

i be
the size of community i at time t, and stz1

ij be the number of nodes, or users, who shift
from community i to community j between time t and t 1 1. Then:

Community i survives if a sufficiently large proportion of its nodes remain in the
same community at time t 1 1. Formally, any community j (1 # j # mt11) has

survived from time t to t 1 1 if min stz1
ij

.
st

i , stz1
ij

.
stz1

j

� �
§k1, where mt11 is the total

number of communities detected at time t 1 1, and k1 is the constant threshold of the
proportion of nodes that must remain active in community j for that community to be
defined as having survived from time t to t 1 1. In this case, we define all destination
communities as having also survived.

Community j dissolves between time t and t 1 1 if only a small proportion of its
nodes remain in the same community at time t 1 1. Formally, for any community j at

time t 1 1, max stz1
ij

.
st

i , stz1
ij

.
stz1

j

� �
vk2, where k2 is the constant for setting the

threshold of the minimum proportion of nodes that must remain in community j for
that community to remain active and avoid dissolving. Thus, k2 must be less than k1.

Finally, if a community at time t does not survive or dissolve in time t 1 1, it has
split, and if a community in time t 1 1 does not survive or form, it has merged. In our
analysis, a community can dissolve, survive or split in time t, and can form, survive, or
merge in time t 1 1. To avoid including many communities with very few nodes, we
limit our analysis to communities with at least s nodes.

Node dynamics. Similarly to community dynamics, the dynamics of individual nodes
can be modeled according to their status in a community. There are five possible
behaviors for each node between time t and time t 1 1. A node may stay-solitary if it
does not belong to any community in time t or time t 1 1; a solitary node at time t may
join a community at time t 1 1; a node that belongs to a community at time t may
stay-social, by remaining in the same community at time t 1 1, jump to another

Table 1 | Data description and basic network characteristics

Data Period
Raw data Extracted network

#users #tweets #links #nodes �D s c

TP-JP before 36,893 42,678 23,444 3,647 2.8 2,791 0.06
after 36,893 114,247 112,004 3,647 5.7 3,191 0.09

TP-EN before 36,234 49,095 36,394 4,037 2.6 3,261 0.09
after 36,234 64,507 49,142 4,037 2.9 3,417 0.09

Global before 7,403,050 6,184,122 4,191,050 87,939 2.0 40,568 0.07
after 7,403,050 8,062,823 5,545,562 87,939 2.1 38,552 0.07

�D: average degree; s: size of giant connected component or giant strongly connected network; c: clustering coefficient.
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community, or leave the community and become solitary. These behaviors are shown
graphically in Fig. 1.

We investigate the distributions of the five forms of community evolution and five
forms of node behavior by varying the minimum size s for a community to be
analyzed, with k1 5 50% and k2 5 10%.

Content analysis. In order to estimate the most important and relevant
conversational topics for the largest communities in each time period, tweets were
stripped of all punctuation except Twitter relevant indicators: #, @ and _, and the

frequency of all remaining words was counted. For non-Japanese tweets (Global and
TP-EN), three categories of words are filtered out: common English words, common
Twitter phrases, and common words in non-English languages. First, the 50 most
common English language words are excluded. Second, the 25 most common words
in the TP-EN dataset are excluded, most of which are fragments of web addresses and
other meaningless words. Finally, the 50 most common words in the Global dataset
are excluded. In the Global dataset, because only ASCII characters were retained,
most of the content for users writing in a language that does not use the Latin alphabet
was lost, particularly Korean and Japanese content. Because Twitter usernames can
only contain the 26 letters of the Latin alphabet and the underscore character, the
network structure is still observable for all language groups. One consequence of this
data collection challenge is that the most frequently used words remaining in the
dataset of communities using a non-Latin alphabet are usernames.

Written Japanese does not have spaces between words. As a result, tokenization to
break sentences into words is challenging. We used Mecab34, which is a morpho-
logical analysis system for Japanese language, to parse the Japanese tweets35. After
tokenization, the 50 most common words in the TP-JP dataset were removed. This
still left a large number of word fragments and meaningless words as some of the most
frequently used words in each cluster. With assistance from a native Japanese speaker,
the top twenty most frequently used meaningful words were retained for each cluster
in time one, before the earthquake, and time two, after.

Results
Basic network characteristics. Characterizing the Japanese network
before and after the earthquake shows clear increases in Twitter use,
directed communication, and the global clustering coefficient that is
not observed to the same extent in the TP-EN or Global dataset (See
Table 1 and Fig. 2. In all metrics, changes in the TP-EN dataset
closely mirror the changes in the Global dataset, which supports
the validity of Topsy’s sampling method. The number of tweets

solitary
stay

join

in comm. A

stay

jump

in comm. A

in comm. B

leave

(a) status change for a
solitary node (b) status change for a node

belonging to a community

solitary

Figure 1 | Illustration on the dynamics of nodes.

before earthquake after earthquake

Japanese Tweets (TP-JP)

English Tweets (TP-EN)

1% of All Tweets (Global)

Figure 2 | Network visualization of Japanese and English tweets before and after the earthquake. Each node has the same x-y coordinates before and

after. Node size is proportional to its outdegree. Nodes in the five largest communities detected by Infomap are colored, in order from the largest to the

fifth largest: red, blue, green, yellow, and light blue.
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collected in the TP-JP dataset increased by 68% after the earthquake,
while the number of tweets increased by 31% and 30%, respectively,
for the TP-EN and Global datasets. While Twitter use increased for
all networks, it increased to a greater degree for Japanese speakers
than it did for English speakers and those in the Global dataset.

In addition to the simple rate of Twitter use, the rate of directed
communication (the number of links) increased by 477% in the TP-
JP dataset and only 32% and 35% for the TP-EN and Global datasets
respectively. This shows that for non-Japanese speakers, the rate of
directed tweets, those mentioning another person by name, com-
pared to all tweets stayed consistent in both the TP-EN dataset and
the Global dataset before and after the earthquake. For Japanese
speakers, the rate of tweets that are directed at a particular user,
out of all tweets, increased from 54% of all tweets to 98% of all tweets,
indicating that the number of people they were in direct contact with
expanded to a much greater extent than did their raw increase in
posts.

For all three datasets, the increase in the number of tweets and
number of links contributes to an increase in the size of the giant
connected component. However, the clustering coefficient remained
constant for the English tweets, and increased from 0.06 to 0.09 for
Japanese data. Thus, after the earthquake, the Japanese social net-
work was much more densely connected than it had been before the
earthquake even though there was no measurable change in the
density of the other two networks. This continues to suggest that

the observed changes in the Japanese social network were caused
by the earthquake and related events, and implies changes in patterns
of interacting behavior that are independent of just increased com-
munication volume.

Dynamics of online activity. We start with the degree distribution,
as shown in Fig. 3, to investigate the dynamics of users’ online
activity. We can see that on all networks the degree distributions
are skewed, with a small percentage of nodes possessing a large
number of links in the network. In both the Global and English
datasets, the change in degree distribution is very small, while the
Japanese network shows a significant increase in the degree at all
levels of the distribution: the increase occurred across all types of
nodes and included both those that were initially very connected, and
those that were less connected. The average degree increased from
2.8 to 5.7 (see Table 1).

The changes in interaction patterns at the individual node level
before and after the earthquake are presented in Fig. 4. We can see
that there is no meaningful change for the Global indegree (number
of links pointing to a node), outdegree (number of links starting from
a node), and for the TP-EN network. However, the Japanese network
shows significantly increase in degree after the earthquake. This is
consistent with the aggregate behavior demonstrated in Fig. 3. No
matter how active a Japanese user was in communicating directly
with others on twitter before the earthquake, s/he is likely to have
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Figure 3 | Cumulative degree distribution for the extracted networks.
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increased the number of people s/he communicated with after the
earthquake.

Community evolution. Dynamics of communities. The above
analysis on network density and node degree shows that
individuals in the Japanese network became more active in posting
tweets and interacting with others after the earthquake. To further
investigate these changes in social behavior, in this section we
evaluate the dynamics of communities: the social groups which are
formed among intensely interactive users and are detected by the
Infomap algorithm22,23. To identify significant patterns, we generate a
null hypothesis scenario in which the size distribution of
communities is fixed both before and after the earthquake, but
each user joins some detected community at random after the
earthquake. Based on changes in each users community between
the truly observed community in the in the before case and the
null hypothesis scenario in the after case, the number of
communities that survive, dissolve or form, and split or merge is
then plotted in Fig. 5.

We can see that in the true data, for all networks, a number of
communities survived after the earthquake, a phenomenon which
cannot be observed under the random participation assumption. In
communities that survived, users stayed in contact with a similar
group of people, despite the strong effect of earthquake. The

Japanese network had fewer communities that survived than the
English network did: In the Japanese network, only three communit-
ies survived after the earthquake under a community size threshold,
s, of 10, under a community size threshold of 60, only the largest
community survived. The relatively small number of sustained
communities in the Japanese dataset indicates that the earthquake
imposed a strong force in disrupting online user activities. It is pos-
sible that after the earthquake, users were likely to change their con-
versations towards topics that were socially universal at that time,
such as news transfer, disaster response and relief work. Additionally,
the expansion of personal networks due to highly increased volume
of mentioning and retweeting other users could also lead to the
failure of members to remain in their own isolated communities.

For all three networks, the number of communities that survived is
larger than the null model, and the number of communities that
dissolved or formed is substantially smaller than the null model.
This shows that even though interactions between users were signifi-
cantly increased under these extreme events, most users remained in
their original communities, and did not shift to other communities,
which demonstrates the coherence of online social groups.

Although the direction of difference between data and the null
model is the same for the Japanese, English, and Global datasets,
the magnitude of difference is larger for the English and Global
datasets than for the Japanese dataset. This may show that while
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online social groups do cohere during adverse events, users are more
likely to change social groups during an extreme event than they are
when the social conditions are stable.

Dynamics of individuals. Community evolution is a consequence of
the behavioral choices of many individuals. In Fig. 6, we show the
number of users whose status in a community changed. Users who
were solitary prior to the earthquake were more likely than expected
from the null model to remain in a solitary state after the earthquake,
and users who belonged to a community before the earthquake were
more likely to remain in that community after the earthquake.

This shows common patterns of community and individual
dynamics under either disastrous events or stable social conditions.
At the community level, groups of users tend to form stable social
groups. The higher number of split and merged communities also
implies that users in communities behave as sub-groups and may
shift between broad communities in smaller clusters. At the indi-
vidual level, our analysis reveals that users prefer to keep their social
status unchanged: they either stay solitary, or remain in the same
community.

Content analysis. In Fig. 7, 8 and 9 we show the user movements
among the top 10 communities detected before and after the
earthquake in each dataset with an alluvial diagram. Communities
are ordered by size, and the content of each community is shown

with a word cloud in which the size of font approximates the
frequency of appearance.

Although the sizes of communities changed between the before
and after cases, Fig. 7 shows that membership is quite stable for the
largest clusters in the Global dataset. Communities that retain a
similar population of users in the two time-steps also have consistent
topics of conversation. Further, communities with similar topics of
conversation exchanged measureable numbers of users. For example,
of the four communities that used the hashtag #teamfollowback with
high frequency, 1-1, 1-5, 2-1 and 2-4, streamlines are visible from
each of the communities in time one to each of the communities in
time two. The streamline between 1-1 and 2-1 represents more than
half of the population of both communities, as does the streamline
between community 1-5 and 2-4. The streamline from 1-1 to 2-4 is
small but observable, as is the streamline between 1-5 and 2-1.

Additionally, the likely conversational language can be identified
for each community. In cases of geographically isolated languages,
this could be used to facilitate a broad geographic identification
procedure. In Fig. 7, communities 1-3, 1-4 and 2-5 appear to be
speaking Indonesian or Malaysian. Communities 1-6 and 1-9 are
speaking Korean, while communities 1-8, 1-9, 2-8 and 2-10 are
speaking Japanese. Finally, communities 1-7, 1-10, 2-2, and 2-6 are
Portuguese speaking. Fig. 2 colors the five largest communities in
each time-step, and those colors match up with communities which
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have significantly overlapping populations in the before and after
time periods, seen in Fig. 7.

Fig. 8 shows an alluvial diagram overlaid with the most frequent
words for the TP-EN dataset. Like the Global Infomap, there is
overlap in content for communities that have overlapping popula-
tions between time one and time. This occurs in all cases except
communities 1-5 and 2-4, which share nearly all of their users, but
none of the most frequently used words. The most dramatic
change in this figure is the breakup of community 1-1 into four
separate communities. In the English row of Fig. 2, the largest
cluster in time one is colored red, and we can see that in time
two, it has split to make up three of the five largest clusters which
are colored red, green and blue. The broad topic of conversation
for cluster 1-1, and also clusters 2-1, 2-2, 2-3, and 2-6, which are
primarily composed of users who were a member of cluster 1-1 is
clearly the events of the Arab spring. However, the four com-
munities in time two have unique conversational foci. Cluster 2-
1 seems to take a current events perspective. Two major inter-
national news sources, Al Jazeera and the New York Times are
mentioned, and the Japanese Earthquake is also referenced.
Cluster 2-2 refers to many of the countries with significant polit-
ical turmoil during the Arab spring, but does not reference any
traditional media sources. Cluster 2-3 refers only to events in
Libya, and the usernames that are some of the most frequent
words are also Libya-based groups. Cluster 2-6, the last of the
clusters, refers to bloggers, activists and users based in Egypt.
This shows that the algorithm is able to pick up on changes in
interaction patterns that occur as current events change.

The TP-JP network shows very different patterns in community
stability when compared to the TP-EN and Global network (see
Fig. 9). In datasets not effected by disaster, the largest clusters in time
two were nearly completely represented by nodes from a single clus-
ter in time one. Collections of nodes that joined from another cluster
are very small, and there were only a few other source clusters, so few
of the largest communities merged or split. In the Japanese alluvial
diagram there is a great deal of mixing among the different com-
munities. Users and small groups of users appear significantly more
likely to jump from one community to another between the two
time-steps, meaning that the communities are more likely to merge
or split under disaster conditions than in normal social circum-
stances. This is consistent with our observations of community
dynamics shown in Fig. 5.

This mixing between communities is also evident in the topics of
conversation in each cluster through time. Before the earthquake, the
topics of conversation in each community varied from the Japanese
political scandal of the week, which was a potentially inappropriate
campaign donation from a South Korean person to the political
campaign of the Mr. Maehara, the Minister of Foreign Affairs- to
the events of the Arab spring, and Twitter’s typical self-reflective
discussions around obtaining more followers. After the earthquake,
the main topic of conversation in every single cluster centers around
the earthquake. A notable difference between the before conversa-
tions and the after conversations is that the after conversations con-
tain many more words that are typically related to specifics, which is
evidence that new information is being transmitted. For example, the
characters ‘‘ ’’(city) and ‘‘ ’’(prefecture), which are modifiers and
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would usually be attached to another character denoting a specific
city or prefecture are much more common in the after case than
before. Additionally, the higher rate of numerical words is also
evidence of specific pieces of information being transmitted through
the social network.

In the Global dataset, of the top 10 communities, only community
1–6 survived from time one to time two, becoming community 2–9
in time two. The members of this community are all speaking
Korean. In the 10 largest communities for the TP-EN dataset, only
community 1–4 survived into time two, become community 2–8.
The members of this community were primarily discussing Justin
Bieber. Community 1–2 was also discussing Justin Bieber, especially
his ‘‘Never Say Never’’ film and album, both of which were released in
February 2011, but there was little cross-over between members of
the two different communities. In the TP-JP dataset, two out of the
top ten communities survived from time period one to time period
two. Community 1–1, initially discussing Japanese politics and cur-
rent events was still the third largest community in time two, while
community 1–3 survived to become community 2–6, both surviving
communities switched to discussing the earthquake in the post earth-
quake period.

Conclusion and Discussion
Understanding human behavior during adverse events is critical for
disaster preparation, warning, response, and recovery. In this study,
we have built a systematic framework for the analysis of online com-
munities in response to natural disasters. By investigating and com-
paring the structure of interacting networks, the evolution of online
communities, and the content of communication before and after an
adverse event, we have shown distinctive changes in patterns of

interactions in online communities that have been affected by a
natural disaster compared to communities that were not affected.
While almost all users in all datasets increased their online commu-
nications after the Japan earthquake, the Japanese speakers, more
likely to be directly affected by the event than users in the other
two datasets, expanded their personal network of communications
to a higher degree. By applying the community detection algorithm
of information mapping, we find that the behavior of joining or
quitting a community is far from random: users tend to stay in their
current social status and are less likely to join new communities from
a solitary state or to shift to other communities from their original
community. In close relation to the evolution of communities, the
content of the information flowing within these networks has shown
distinctive differences between Japanese speakers and other users:
the topics conversation for non-Japanese speakers did not change
significantly in the two time periods, while the diversity of topics for
Japanese speakers disappeared after the earthquake, and Japanese
speakers changed their main topic of conversation to earthquake-
related content.

It is worth noting that even though we used different data sources
to increase the validity and reliability of the study, neither the Global
nor Topsy datasets are the complete datastream from Twitter, and
Topsy.com does not publish their specific methods for subsetting
and returning data. Because of the unknown sampling method, care
should be used when extrapolating conclusions from the Topsy data
to the broader Twitter community, or from Twitter use to social
interactions that are not digitally mediated. Nevertheless, the con-
sistent findings between the Topsy English tweets and the Global
tweets suggest that our findings on the community of Japanese
speaking Twitter users drawn from the Topsy dataset are represent-
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ative of Japanese speakers on Twitter generally. Future researchers
are encouraged to use a well-defined sampling strategy or integrate a
larger fraction of tweets to increase the validity of their analyses.
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