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Abstract: Transforming growth factor β (TGF-β) is a secreted cytokine that regulates cell proliferation,
migration, and the differentiation of a plethora of different cell types. Consistent with these findings,
TGF-β plays a key role in controlling embryogenic development, inflammation, and tissue repair,
as well as in maintaining adult tissue homeostasis. TGF-β elicits a broad range of context-dependent
cellular responses, and consequently, alterations in TGF-β signaling have been implicated in many
diseases, including cancer. During the early stages of tumorigenesis, TGF-β acts as a tumor suppressor
by inducing cytostasis and the apoptosis of normal and premalignant cells. However, at later stages,
when cancer cells have acquired oncogenic mutations and/or have lost tumor suppressor gene
function, cells are resistant to TGF-β-induced growth arrest, and TGF-β functions as a tumor
promotor by stimulating tumor cells to undergo the so-called epithelial-mesenchymal transition
(EMT). The latter leads to metastasis and chemotherapy resistance. TGF-β further supports cancer
growth and progression by activating tumor angiogenesis and cancer-associated fibroblasts and
enabling the tumor to evade inhibitory immune responses. In this review, we will consider the role of
TGF-β signaling in cell cycle arrest, apoptosis, EMT and cancer cell metastasis. In particular, we will
highlight recent insights into the multistep and dynamically controlled process of TGF-β-induced
EMT and the functions of miRNAs and long noncoding RNAs in this process. Finally, we will discuss
how these new mechanistic insights might be exploited to develop novel therapeutic interventions.
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1. Introduction

Cancer treatments have been refined over a period spanning several thousand years, culminating in
the primary modern approaches of surgery, chemotherapy and radiation therapy [1]. In recent decades,
more targeted and personalized treatments have gained prominence. The fundamental aim of these
therapies is to specifically kill tumor cells while leaving healthy tissues intact [2]. Despite demonstrable
progress, these strategies frequently deliver relatively modest improvements in disease outcomes
owing to acquired resistance and excessive toxicity [3]. These findings indicate the need for greater
optimization of current treatments as well as the identification of alternative targets for the development
of novel cancer remedies.

Cancer is a complex disease in which tumor cell heterogeneity and the reciprocal interplay between
tumor cells and surrounding stromal cells and extracellular matrix are key determinants in tumor
progression and therapy response. Tumorigenesis shows similarity to subverted normal embryogenic
developmental processes in which communication between cells is controlled by cytokines that act
in an autocrine, paracrine or juxtacrine manner. In this light, we will provide a general overview
of the established roles of one such important developmental cancer signaling pathway, namely
the transforming growth factor-β (TGF-β), in tumorigenesis [4]. In particular, we consider how
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this essential TGF-β signaling network orchestrates the epithelial to mesenchymal transition (EMT),
the mechanism by which cancer cells lose polarity and separate from each other, adopt the characteristics
of a mesenchymal phenotype, become motile and invade distant sites. Key TGF-β-induced effectors
in this process are the transcriptional repressors of E-cadherin, e.g., SNAIL1, SNAIL2 (also termed
SLUG), ZEB1/2 and TWIST. Moreover, miRNAs and long noncoding RNAs (lncRNAs) are emerging
as potentially quantifiable biomarkers of cancer status and are potential targets for anti-metastatic
therapies [5]. In this review, we will highlight the pivotal role of these molecules in regulating TGF-β
signaling and epithelial-mesenchymal transition (EMT).

2. TGF-β and Signaling Transduction across the Plasma Membrane

TGF-β1 (hereafter termed simply TGF-β) is the prototypic member of a large family of structurally
and functionally related proteins, which includes its close relatives TGF-β2 and TGF-β3 but also
activins, nodal, inhibins, Mullerian-inhibiting substance (MIS), growth and differentiation factors
(GDF) and bone morphogenetic proteins (BMPs) [6]. TGF-β was discovered in the early 1980s as a
secreted factor that, together with TGF-β or epidermal growth factor (EGF), induced the growth of
normal rat kidney (NRK) cells in soft agar. Since then, we have gained a much deeper understanding
of this multifunctional cytokine [7]. The TGF-β gene encodes a pre-pro-precursor peptide of 390 amino
acids. The pro-precursor peptide is proteolytically processed by furin proteases into an amino-terminal
fragment and the carboxy-terminal 112 amino acids, which corresponds to the mature bioactive
TGF-β [8]. The amino-terminal part is also termed the latency associated peptide (LAP) and is
noncovalently attached to the mature TGF-β [9,10]. Latent TGF-β is activated by specific proteases
that cleave the LAP and/or by mechanical forces generated by cell surface integrins, resulting in the
release of mature, active TGF-β [11,12]. Bioactive TGF-β, which is capable of binding its cell surface
receptors, is a dimeric protein linked by disulfide bonds with an apparent molecular weight of 25 kDa.

TGF-β exerts its cellular effects via cell surface TGF-β type I and type II receptors, e.g., TβRI and
TβRII, respectively [13]. TβRI and TβRII are structurally related and consist of an extracellular domain
characterized by the presence of cysteine residues that form disulfide bonds, a single transmembrane
domain and an intracellular region harboring a conserved serine/threonine kinase domain. TGF-β
initially engages the TβRII, which drives the recruitment of TβRI and the formation of a heterotetrameric
complex composed of two TβRIIs and two TβRIs. Subsequently, the active TβRII kinase domain
phosphorylates TβRI on specific serine and threonine residues in the glycine-serine (GS) juxtamembrane
region, which leads to its activation [14]. TGF-β receptors are widely expressed in human tissues/cells
and mediate various biological phenomena, such as embryonic development, tissue homeostasis,
organogenesis, immune surveillance and tissue repair.

3. Intracellular SMAD and Non-SMAD Signaling Pathways

Genetic studies designed to delineate the critical components of the dauer and decapentaplegic
pathway in Caenorhabditis elegans and Drosophila, respectively, led to the identification of Small (Sma)
and Mothers against dpp (Mad) genes [15,16]. The mammalian homologues of the proteins encoded
by these genes, termed SMADs, were found to act as intracellular transcriptional effectors of TGF-β
family receptor signaling [17]. The SMAD family can be divided into receptor-regulated (R-) SMADs
(in vertebrates: R-SMAD1, -2, -3, -5 and -8) that interact with and become phosphorylated by activated
type I receptor kinases, the common (Co-) SMADs (in vertebrates: SMAD4) that form heteromeric
complexes with activated R-SMADs and inhibitory I-SMADs (in vertebrates: I-SMAD6/7), which
antagonize canonical SMAD signaling [18] (Figure 1).
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Figure 1. TGF-β/SMAD and non-SMAD signaling. TGF-β elicits its cellular responses by forming 91 
ligand-induced complex formation of TGF-β type I and type II cell surface receptors (i.e. TβRI and 92 
TβRII) that are endowed with serine/threonine kinase activity. The extracellular signal is transduced 93 
across the plasma membrane through the action of the constitutively active TβRII kinase that 94 
phosphorylates specific serine and threonine residues in the intracellular juxtamembrane GS domain 95 
of TβRI. Intracellular signaling is then initiated when the activated TβRI kinase phosphorylates or 96 
activates intracellular signal mediators. In the case of the canonical SMAD pathway, TβRI recruits 97 
and phosphorylates specific R-SMADs, e.g., SMAD2 and SMAD3, which can form heteromeric 98 
complexes with SMAD4. These transcription factor complexes then translocate into the nucleus and 99 
cooperate with other transcription regulators to regulate target gene expression. In the non-SMAD 100 
pathway, TGF-β receptors activate other pathways, including various branches of MAPK pathways, 101 
RHO-like GTPase signaling pathways and phosphatidylinositol-3-kinase (PI3K)/AKT pathways. 102 
Inhibitory signals are indicated with inhibitory red arrows; Stimulatory signals are indicated with 103 
green arrows. 104 

The R- and Co-SMADs have two conserved domains, termed Mad homology (MH)1 and MH2 105 
domains at the amino-terminal (MH1) and carboxy-terminal (MH2) ends of the proteins. MH1 and 106 
MH2 are separated by a flexible linker region. R-SMAD phosphorylation by type I receptors occurs 107 
on two serine residues, which comprise the SXS sequence motif, at the C-termini. SMAD3 and 108 
SMAD4, but not SMAD2, bind directly to the consensus 5′-CAGA-3′ DNA motif. Heteromeric 109 
complex formation between R-SMADs and SMAD4 is mediated by MH2 domains. Heteromeric 110 
complex formation of R-SMADs and SMAD4 exposes nuclear import signals and shields nuclear 111 
export signals, resulting in their nuclear accumulation. In the nucleus, they can act as transcription 112 
factors in concert with other DNA binding transcription factors, coactivators and repressors and 113 
chromatin remodeling factors, which enable diverse transcriptional responses depending upon the 114 
particular combination of proteins [19]. I-SMAD7, which has a carboxy terminal region with 115 
homology to R-SMADs and SMAD4 MH2 domains, antagonizes the activation of TGF-β 116 
receptor/SMAD signaling. SMAD7 achieves this via multiple mechanisms, including the recruitment 117 
of the E3 ubiquitin ligase SMURF2 to the activated receptor, thereby targeting the TGF-β receptor for 118 
proteasomal and lysosomal degradation. SMAD7 can also attenuate signaling by recruiting 119 
phosphatases to the activated TGF-β receptor, which mediate receptor inactivation by the 120 
dephosphorylation of specific amino acid residues [20]. 121 

Figure 1. TGF-β/SMAD and non-SMAD signaling. TGF-β elicits its cellular responses by forming
ligand-induced complex formation of TGF-β type I and type II cell surface receptors (i.e., TβRI
and TβRII) that are endowed with serine/threonine kinase activity. The extracellular signal is
transduced across the plasma membrane through the action of the constitutively active TβRII kinase that
phosphorylates specific serine and threonine residues in the intracellular juxtamembrane GS domain
of TβRI. Intracellular signaling is then initiated when the activated TβRI kinase phosphorylates or
activates intracellular signal mediators. In the case of the canonical SMAD pathway, TβRI recruits and
phosphorylates specific R-SMADs, e.g., SMAD2 and SMAD3, which can form heteromeric complexes
with SMAD4. These transcription factor complexes then translocate into the nucleus and cooperate with
other transcription regulators to regulate target gene expression. In the non-SMAD pathway, TGF-β
receptors activate other pathways, including various branches of MAPK pathways, RHO-like GTPase
signaling pathways and phosphatidylinositol-3-kinase (PI3K)/AKT pathways. Inhibitory signals are
indicated with inhibitory red arrows; Stimulatory signals are indicated with green arrows.

The R- and Co-SMADs have two conserved domains, termed Mad homology (MH)1 and
MH2 domains at the amino-terminal (MH1) and carboxy-terminal (MH2) ends of the proteins.
MH1 and MH2 are separated by a flexible linker region. R-SMAD phosphorylation by type I receptors
occurs on two serine residues, which comprise the SXS sequence motif, at the C-termini. SMAD3 and
SMAD4, but not SMAD2, bind directly to the consensus 5′-CAGA-3′ DNA motif. Heteromeric complex
formation between R-SMADs and SMAD4 is mediated by MH2 domains. Heteromeric complex
formation of R-SMADs and SMAD4 exposes nuclear import signals and shields nuclear export signals,
resulting in their nuclear accumulation. In the nucleus, they can act as transcription factors in concert
with other DNA binding transcription factors, coactivators and repressors and chromatin remodeling
factors, which enable diverse transcriptional responses depending upon the particular combination
of proteins [19]. I-SMAD7, which has a carboxy terminal region with homology to R-SMADs and
SMAD4 MH2 domains, antagonizes the activation of TGF-β receptor/SMAD signaling. SMAD7 achieves
this via multiple mechanisms, including the recruitment of the E3 ubiquitin ligase SMURF2 to the
activated receptor, thereby targeting the TGF-β receptor for proteasomal and lysosomal degradation.
SMAD7 can also attenuate signaling by recruiting phosphatases to the activated TGF-β receptor, which
mediate receptor inactivation by the dephosphorylation of specific amino acid residues [20].
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TGF-β can also signal via non-SMAD pathways. This process can occur directly or indirectly [21].
An example of an indirect mechanism is TGF-β/SMAD-stimulated expression of growth factors, such
as platelet-derived growth factor (PDGF) and epidermal growth factor (EGF), which thereafter initiate
non-SMAD responses. Non-SMAD signaling can also be initiated directly downstream of the TGF-β
receptor by activation of various branches of the MAP kinase (MAPK) pathway, Rho-like GTPase
signaling pathways and the phosphatidylinositol-3-kinase (PI3K)/AKT pathway [22]. For example,
activated TβRI can induce tyrosine phosphorylation of SHCA, which associates with GRB2, and recruits
a GRB2/SOS complex, thereby triggering activation of the RAS/RAF/MAP kinase signaling cascade [23].
Activated TGF-β receptor complexes also induce K63-linked polyubiquitination of TRAF4/6, leading
to the recruitment of TAK1 and triggering its activation, thus allowing TAK1 to activate JNK signaling
through MKK4 or P38 MAPK signaling via MKK3/6 [18,24,25]. At tight junctions, TβRII phosphorylates
PAR6 at serine residue 345. This phosphorylated PAR6 recruits SMURF1 to the activated TβRI-TβRII
receptor complex. The PAR6-SMURF1 complex subsequently mediates localized ubiquitination
and turnover of RHOA at cellular protrusions [26]. TGF-β can promote the interaction between
CDC42 GTPase/RAC and p21-activated kinase (PAK) 2, an interaction that is dependent on SMAD7 [27].
TGF-β receptors interact with the regulatory p85 subunit of PI3K, resulting in activation of the
PI3K/AKT pathway, which controls translational responses through mammalian target of rapamycin
(mTOR) [28]. Activation of non-SMAD signaling occurs in a context-dependent manner, and these
pathways also crosstalk with the canonical SMAD pathway.

4. Tumor Suppressive Effects of TGF-β

TGF-β can act as a potent tumor suppressor in normal and premalignant epithelial cell types
(Figure 2). TGF-β triggers G1 phase cell cycle arrest by different mechanisms in different cell
types [29]. For example, this molecule can activate the translation-inhibitory protein 4E-BP1 (regulator
of eukaryotic translation initiation factor-4F (eIF4E)) promoter activity through SMAD4, thereby
suppressing translation and cell growth and proliferation [30]. TGF-β causes late G1 cell cycle arrest
by inducing the expression of cyclin-dependent kinase (CDK) inhibitors (p15INK4b, p21WAF1 and
p27KIP1) to inhibit CDK-cyclin complexes [31]. In MCF10A and MDA-MB-231 cell lines, the tumor
suppressor p53 is a critical SMAD partner, which promotes TGF-β-induced p21 expression to block cell
cycle progression [32]. In addition, TGF-β exerts growth inhibitory effects by inhibiting the expression
of CDC25a phosphatase (which is required for CDK-cyclin activation) [33] or negatively regulating
Id proteins (helix-loop-helix (HLH) proteins, which are essential for inhibition of cell differentiation
and growth arrest) [34] in the prostate epithelial cell line HPr-1. TGF-β directly inhibits c-MYC by
binding a transcriptional repression complex containing SMAD2/3, E2F4/5, p107, and C/EBPβ to the
TGF-β inhibitory element in the proximal region and thus achieving cell cycle arrest in HaCaT, COS-1,
and Mv1Lu-tet-p15 cells and human leukemia MO-91 cells [35].

In addition to cell cycle arrest, TGF-β can induce cell apoptosis in the early phase of
tumorigenesis [29]. However, the precise mechanisms by which TGF-β induces this effect in different
cell types remain unclear. The expression of some apoptotic regulators (such as growth arrest
and DNA damage (GADD) 45, Bcl-2-like protein 11 (BIM), BCL-2 interacting killer (BIK), death
associated protein kinase (DAPK), FAS, and B-cell lymphoma-extra large (BCL-XL)) was shown to
be regulated by the TGF-β/SMAD signaling pathway [36]. For example, BIM was found to be a key
mediator of TGF-β-induced apoptosis in intestinal adenoma cells [37] and in hepatocarcinoma cells [38].
TGF-β1-associated regulatory SMAD proteins bind to the BIK (also known as NBK) promoter, which
encodes a proapoptotic sensitizer protein in B cells [39]. After TGF-β1 treatment, researchers found
that TGF-β induced SMAD-dependent binding between the proapoptotic effector BIM and BCL-XL
in gastric carcinoma cell lines [40] and a decrease in BCL-XL expression followed by activation of
the apoptosis proteins caspase-9 and caspase-3 in human hepatoma cells (HuH-7) [41]. TGF-β can
activate the TAK1-p38/JNK pathway, which has been reported to lead to apoptosis in HEK 293T
cells [25]. This molecule also promoted the expression of SMAD-dependent GADD45β in hepatocytes
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and plays an important role in cell death by mediating delayed TGF-β-induced p38 MAP kinase
activation [42]. Here, the effects of TGF-β in proapoptotic signaling occur in a context-dependent
manner. Additionally, the TGF-β signaling pathway can be coupled to the cell death machinery through
the induction of reactive oxygen species (ROS) [43], apoptosis genes (SHIP and TIEG), modulation
of epigenetic regulators (DNMTs) [44], H3K79me3 and H2BK120me1 [45], and telomere shortening
through regulating human telomerase reverse transcriptase (hTERT) in the breast cancer MCF-7 cell
line [46]. These effects of TGF-β in proapoptotic signaling occur in a context-dependent manner.Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 5 of 37 
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Figure 2. TGF-β-induced growth inhibition and apoptosis. The TGF-β/SMAD pathway can arrest cells
in the G1 phase of the cell cycle by modulating the expression of specific genes, including induction of
4EBP1, p15INK4b, p16INK4A, p21WAF1 and p57KIP2 and repression of Id proteins, E2F, c-MYC and
CDC25a genes. The TGF-β/SMAD pathway can induce cell apoptosis by inducing the expression of
proapoptotic genes, such as BCL-XL, BIM, BIK, SHIP and TIEG. The TGF-β activation of TAK-1 occurs
via TRAF6 and the adaptor XIAP-mediated TAB/TAK-1 complex and GADD45β. Activation of NF-κB
by the TAK pathway stimulates p38/JNK phosphorylation, which has been reported to lead to apoptosis.
Additionally, the TGF-β signaling pathway can be coupled to the cell death machinery through ROS,
autophagy activation (ATG-5/-6/-7), induction of DAPK expression, epigenetic changes and shortening
of telomere length (regulating hTERT). Inhibitory signals are indicated with inhibitory red arrows;
Stimulatory signals are indicated with green arrows. SMAD-mediated transcriptional events are
indicated with the black arrow.

The TGF-β signaling pathway can inhibit tumor growth by multiple other mechanisms, including
activating autophagy in certain human cancer cells. For example, in human hepatocellular carcinoma
cell lines, TGF-β induced the accumulation of autophagosomes and increased the expression levels of
the autophagy markers Autophagy-related 5 (ATG5), Beclin1, ATG7 and death-associated protein kinase
(DAPK) [47]. Moreover, siRNA-mediated silencing of autophagy genes attenuated TGF-β-mediated
growth inhibition and induction of the proapoptotic genes BIM and BMF in human hepatocellular
carcinoma cells [48].

Because of its central role in tumor suppression, TGF-β signaling components were found to
be mutated and functionally inactivated in various cancers [49]. The first example was SMAD4,
which is frequently mutated in gastrointestinal cancers [50]. Subsequently, other TGF-β signaling
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components, e.g., TGF-β receptors [51] and SMADs (SMAD2 and SMAD3), were found to be mutated
in various cancers, including bladder, colon, breast, esophageal, stomach, brain, liver, and lung
cancers [52]. Loss of tumor suppressor function and epigenome and microenvironmental changes can
also affect the tumor-promoting activity of the TGF-β receptor/SMAD pathway [53]. For example,
in gastrointestinal tumors, TβR1 activity was decreased due to the methylation status of the TβR1
promoter [54]. In turn, TGF-β/SMAD can affect the epigenome of genes involved in cancer processes.
TGF-β and SMAD2/3 show oncogenic activities, such as promoting glioma cell proliferation, by affecting
the methylation status of the platelet-derived growth factor-β (PDGF-B) gene and autocrine PDGF-B
signaling within tumor microenvironments [55]. TGF-β stimulated myofibroblast percent and invasion
rate in tumor-associated fibroblasts (CAFs) that increase tumor invasion [56].

5. TGF-β-induced Tumor Promoting Effects

5.1. Cell Biology of TGF-β-induced EMT

In the late stage of cancer progression, cancer cells remain responsive to TGF-β but become resistant to
its cytostatic effects. In fact, by acting directly on cancer cells, TGF-β can promote tumorigenesis by inducing
the so-called epithelial to mesenchymal transition (EMT) [57]. Under normal physiological conditions,
EMT plays a crucial role in the context of embryogenesis and tissue damage repair [58]. This process can
be subverted and pathological, and EMT drives the development of fibrotic disease and tumorigenesis [59].
EMT is characterized by changes in the levels of three prominent biomarkers (E-cadherin, vimentin,
and N-cadherin), and these changes can lead to decreased adhesion of cells, loss of polarity and tight
junctions. At the same time, epithelial cells adopt the traits of a mesenchymal phenotype, notably motility
and susceptibility to invasion and metastasis (Figure 3) [60]. Importantly, mesenchymal cancer cells are
correlated with poor prognosis and associated with resistance to chemotherapy [61]. Interestingly, recent
studies have questioned the necessity of EMT in establishing metastasis [62]. Zheng et al. reported that
in genetically engineered mouse models of pancreatic adenocarcinoma development and spontaneous
metastasis mouse models of breast cancer, tumor cells could metastasize without activating EMT programs,
and EMT only contributed to chemoresistance [63]. Similarly, Fischer et al. also showed that EMT is not
required for lung metastasis but contributes to chemoresistance in spontaneous breast-to-lung metastasis
models [64]. However, these findings have been challenged by other researchers, who believed that Zheng
et al. failed to completely suppress the activation of EMT, and their results can only speak to the redundancy
of EMT within the transcriptional network in pancreatic carcinomas. These researchers continue to
subscribe to the notion that EMT is required for metastatic dissemination in pancreatic carcinoma cells [65].

Increasing data have shown that EMT is not a single, stereotypical program but instead has a
multistep process that passes through intermediate hybrid states (partial EMT state, P-EMT) during the
transition from epithelial to mesenchymal cells [66]. The TGF-β-induced transition from epithelial to
P-EMT is reversible, whereas the transition from P-EMT to mesenchymal cells is potentially irreversible
depending on the type of cell that is involved [59]. Studies have found that there are at least seven
tumor subpopulations associated with different EMT stages in skin and breast cancer tissues, which
contributes to intratumor heterogeneity. These EMT subpopulations displayed differences in cellular
plasticity, invasiveness, and metastatic potential, and tumor cells with an early stage of EMT were most
likely to metastasize [67]. An interesting paper reported that TGF-β activates scleroderma epithelial
cells to the P-EMT process in fibrotic skin [68]. Related to this, single cell RNA-seq showed that P-EMT
plays an important role in head and neck cancer, and further in vitro analyses suggested that TGF-β
dynamically controls the transition between P-EMT and non-P-EMT states in cells [69].
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Figure 3. TGF-β mediates EMT. TGF-β is a strong promoter of EMT, which is characterized by a loss
of epithelial and gain of mesenchymal markers. Polar epithelial cells remodel into highly migratory
mesenchymal cells, followed by decreased adhesion of cells and loss of polarity and tight junctions.
TGF-β via SMAD or non-SMAD signaling pathways can induce the expression of several EMT-TFs,
such as SNAIL1, SNAIL2, ZEB1/2 and TWIST. The migratory and invasive mesenchymal-like tumor
cells extravasate from primary lesions into blood or lymphatic vessels and then intravasate to distant
sites via, where they form metastatic colonies upon MET.

5.2. Molecular Mechanisms in TGF-β-induced EMT

SMAD levels/activities mediate TGF-β-induced EMT by inducing the expression of E-cadherin
transcriptional repressors, such as SNAIL, ZEB and TWIST, which cooperate with other transcription
regulators in the nucleus [58]. Several additional lines of evidence argue for a role of SMADs
in TGF-β-induced EMT, and some examples are provided below. Knockdown of SMAD4 in
MDA-MB-231 breast cancer cells robustly attenuated bone metastasis in nude mice and significantly
prolonged survival of the treated animals [70]. SMAD3 and SMAD4 interact to form a complex
with SNAIL1 that targets the tight-junction protein (CAR) and E-cadherin during TGF-β-driven
EMT in breast epithelial cells. Conversely, co-silencing of SNAIL1 and SMAD4 by siRNA inhibited
repression of CAR and occludin during EMT [71]. In addition, SMAD3/SMAD4-mediated SNAIL
transcription contributed to EMT during skin carcinogenesis, while SMAD2 loss significantly increased
this effect [72]. Moreover, SMAD7, the transcriptional target and negative regulator of TGF-β signaling,
upregulated TGF-β and inducing SMAD7 transcription prevented TGF-β-induced EMT and invasion
of cancer cells [73]. Additionally, ubiquitin ligases that promote poly-ubiquitination and proteasomal
degradation of SMADs affect EMT. This finding is illustrated by E3 ubiquitin ligase RNF8, which
activates TWIST via K63-linked ubiquitination to promote EMT and cancer stem cell (CSC) self-renewal,
resulting in enhanced metastasis and chemoresistance in breast cancer [74].

TGF-β can also induce EMT in a non-SMAD-dependent fashion, for example, by promoting cytoskeletal
remodeling, which leads to activation of ERK [75]. The ERK required for cytoskeletal remodeling interacts
with SHC or GRB2 to form an SHC-GRB2-ERK complex, which is a key component of TGF-β-induced
tumor invasion and metastasis [76]. ERK substrates, AP-1 family members, enhance SMAD transcriptional
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activity to regulate gene expression and TGF-β-induced EMT [77]. However, the RHO-like GTPases,
including RHOA, RAC and CDC42, are also involved in TGF-β-induced EMT. TGF-β regulates cytoskeletal
changes via mediating RHO GTPase to achieve the dissolution of tight junctions among cells. TGF-β
mediates the RHOA activity level and promotes the activation of LIM kinase (LIMK) by Rho-related kinase
(ROCK) and phosphorylated myosin light chain (MLC) to inhibit cofilin [78]. In addition, TGF-β affects
tight junctions through SMAD7-dependent CDC42-PAK1 (p21-activated kinase) and filopodia formation.
The TRAF6-TAK1-JNK/P38 pathway and PI3K-AKT-mTOR signaling are also necessary non-SMAD
pathways for TGF-β-mediated EMT [79,80]. Scientists have shown that PI3K/AKT signaling promotes
tumor metastasis by inducing TWIST1 phosphorylation, via a crosstalk between AKT/PKB and TGF-β
signaling [81]. Twist also had a significant effect on AKT signaling pathway activation by inducing
expression of miR-10b in gastric cancer cells, and the miR-10b induced by TWIST increased the expression
of a well-characterized pro-metastatic gene, RHOC [82]. Moreover, in an orthotopic syngeneic mouse tumor
model, metastasis caused by EMT was attenuated in mice treated with the p38 inhibitor SB203580 [83].
TRAF6 knockdown inhibited the migration and invasion caused by EMT of SCCHN (squamous cell
carcinoma of head and neck) cells [84].

In addition to these SMAD/non-SMAD pathways, TGF-β affects the activities of other EMT
trigger signaling pathways (NOTCH, WNT, INTEGRIN, etc.) by several complexes, such as ZEB1/2,
the SNAIL1-SMAD3/4 complex, the β-catenin-SMAD2 complex, the LEF1-SMAD3/4 complex and
the SMAD3-AP1-1 complex [85]. As early as 20 years ago, scientists discovered that SMAD4 could
form a complex with β-catenin and LEF1/TCF (lymphoid enhancer factor1), which are downstream
components of the Wnt signaling cascade in vivo [86]. SMAD signaling subsequently stimulates the
formation of β-catenin/LEF1 and SNAIL-LEF1 complexes, which promote EMT by inhibiting the
expression of E-cadherin [87,88]. TGF-β can promote EMT associated with WNT-11 signals through
the WNT-11 receptor FZD8 in prostate cancer [89]. Moreover, WNT-11 signaling mediates the nuclear
entry process of TAK1 (TGF-β-activated kinase) [90]. The TGF-β and NOTCH pathways coregulate
a large cohort of genes in human cancer, such as renal cell carcinoma [91]. R-SMAD activates the
NOTCH ligand Jagged1 to release Notch intracellular domain (ICN) and then binds to CLS (an acronym
for CBF-1/RBPJ-κ in Homo sapiens/Mus musculus respectively, Suppressor of Hairless in Drosophila
melanogaster, Lag-1 in Caenorhabditis elegans). This ICN-CLS complex induces the binding of the
transcription factor SNAIL or HEYl to the E-cadherin E-box to reduce E-cadherin expression and
initiate the EMT process [92]. Moreover, SMAD signaling and MAPK/JNK signaling converge at
AP1-binding promoter sites by SMAD3 and SMAD4, which cooperate with c-JUN/c-FOS [93], and the
RAS-ERK MAP kinase pathways are likely to act synergistically with TGF-β and contribute to multiple
aspects of the EMT, including the pro-invasive and pro-metastatic behavior of tumor cells of diverse
tissue origins [94]. TGF-β increases the level of SNAIL and promotes EMT with the cooperation of
oncogenic RAS [57] and the transcription factor nuclear factor κB (NF-κB) [95]. In addition, TGF-β
upregulates receptors and ligands of PDGF, leading to phosphorylation of PI3K and activation of the
SRC/STAT3 pathway, thereby triggering the EMT process [96].

5.3. MicroRNAs Involved in TGF-β-induced EMT

Two microRNA (a class of small noncoding RNAs approximately 22 nt in length)-dependent
negative feedback loops are at the heart TGF-β-induced EMT (Figure 4). These pathways are the
SNAIL1/miR-34 family/ZEB/miR-200 family feedback loop and the autocrine TGF-β/miR-200 feedback
loop [97].
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Figure 4. MicroRNAs in TGF-β-induced EMT. At the heart of TGF-β-induced EMT, there are two
main double-negative feedback regulatory loops of miRNAs, e.g., the SNAIL1/miR-34 family and
ZEB/miR-200 family and the autocrine TGF-β/miR-200 negative feedback loop. Specifically, TGF-β
downregulates miR-200 family members, thereby increasing ZEB1 and ZEB2 mRNA levels indirectly,
and ZEB binds to promoters of the miR-200 members to repress their expression, thus constituting a
double-negative regulatory loop. The same situation occurs in SNAIL1 and miR-34, which are directly
linked to p53 status. For the autocrine TGF-β/miR-200 system, autocrine TGF-β positively regulates the
expression of SNAIL1 and then increases ZEB mRNA and protein levels, further downregulating miR-200.
Inhibitory signals are indicated with inhibitory (dashed) red arrows; Stimulatory signals are indicated with
green arrows.

Mechanistically, TGF-β downregulates miR-200 family members, including
miR-200a/-200b/-200c/-141/-429, which augments ZEB1 and ZEB2 mRNA levels. ZEB counteracts
this mechanism through binding to the promoters of the miR-200 members and thereby repressing
their expression. Additionally, miR-200 family members maintain the epithelial phenotype not
only by targeting ZEB1/2 but also by actively repressing genes involved in cell motility and
invasion [98]. MiR-1199-5p similarly regulates ZEB1 expression [99]. A comparable mechanism
governs SNAIL1/miR-34 and the control of p53 status [100]. One study showed that in colorectal cancer,
Zinc Finger protein 281 (ZNF281) can be an intermediate regulator between SNAIL1 and miR-34 [101].
In addition to SNAIL and p53, miR-34b experiences epigenetic regulation (chromatin modifications
and DNA methylation) by directly targeting methyltransferases and deacetylases, resulting in a
positive feedback loop inducing partial demethylation and activity [102]. Silencing miR-34a promoted
liver metastases of colon cancer associated with upregulation of c-MET, SNAIL, and β-catenin
expression [103]. Transcriptome profiling studies have demonstrated that TGF-β signaling regulates
the SMAD4/miR-34a signaling network [104]. The SNAIL1/miR-34 regulatory loop was shown
to be involved in the early reversible stage of EMT (from epithelial to P-EMT), whereas the
ZEB/miR-200 system is responsible for the establishment of a mesenchymal state [105]. For the
autocrine TGF-β/miR-200 system, autocrine TGF-β positively regulates the expression of SNAIL1 and
then increases ZEB mRNA and protein levels, further affecting miR-200 [106]. This process makes the
second switch (from P-EMT to mesenchymal) irreversible, modulating the maintenance of EMT.
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High mobility group protein A2 (HMGA2) has been shown to promote lung cancer progression
in mouse and human cells by competing with TGF-β type III receptor for the let-7 microRNA (miRNA)
family [107], while decreased let-7g levels influence the TGF-β pathway by targeting TβR1 and
SMAD2 gene expression [108]. The overexpression of miR-10b induced TGF-β-driven EMT in breast
cancer [109]. In contrast, silencing of miR-10b markedly suppressed the formation of lung metastases
by inhibiting its target gene HOXD10 in a mouse mammary tumor model [110].

TGF-β upregulates certain miRNAs, such as miR-182, which prolong NF-κB activation by
directly suppressing an NF-κB negative regulator (cylindromatosis, CYLD) [111]. Overexpression of
miR-182 restrained SMAD7 expression and promoted breast tumor invasion and TGF-β-induced
osteoclastogenesis and bone metastasis [73]. MiR-181a, another miRNA upregulated by TGF-β, promoted
TGF-β-mediated EMT and metastasis in breast cancer [112] and via repression of SMAD7 in ovarian cancer
progression [113]. TGF-β activates miR-1269 by SOX4 and thereby enhances TGF-β signaling by targeting
SMAD7 and HOXD10. This positive feedback loop significantly increased the ability of colorectal cancer
cells to invade and metastasize in vivo [114]. Overexpression of miR-216a/217 activated the PI3K/AKT and
TGF-β pathways by targeting PTEN, and SMAD7 underlies hepatocarcinogenesis and tumor recurrence
of hepatocarcinoma [115]. TGF-β induces the expression and promoter activity of miR-155 through
SMAD4. This change reduces RHOA protein and disrupts tight junction formation, leading to EMT [116].
Other research has shown that miR-206 inhibits autocrine production of TGF-β as well as downstream
neuropilin-1 (NRP1) and SMAD2 expression, resulting in decreased migration, invasion, and EMT in
breast cancer cells [117]. Several other miRNAs, such as miR-373, miR-655, miR206, miR-155, miR-140-5p,
miR-494, miR-125a/b, and miR-375, have been implicated in EMT [118–122]. However, for many of these
factors, their specific functions remain to be elucidated.

5.4. LncRNAs Involved in TGF-β-induced EMT

Long non coding RNAs (LncRNAs) are a class of RNAs that do not encode proteins or have minimal
coding capacity. LncRNAs are emerging as important regulators of a variety of cellular and physiologic
functions, such as chromatin dynamics, gene expression, growth, differentiation, and development [123].
LncRNAs can be differentially expressed and localized within the cell. They play a role in chromatin
and DNA interactions, negatively or positively affecting the stability or processing of coding mRNA,
directly binding to and modulating the functions of signaling proteins, and competitively binding to
and thereby controlling the function of miRNAs [124]. Aberrant expression and mutations in lncRNAs
have been linked to tumorigenesis, metastasis, and tumor stage [125]. Moreover, they have been
detected in the circulating blood and/or urine of cancer patients. For example, plasma levels of a novel
lncRNA, p53-induced transcript (Linc-pint), were significantly lower in patients with pancreatic ductal
adenocarcinoma (PDAC) than healthy controls [126]. The expression of twenty lncRNAs linked with
breast cancer-associated genes (BCAGs) was detectable in human breast cancer cell lines with different
expression patterns [127]. LncRNAs are novel, potential therapeutic targets and biomarkers for cancer
treatment, and new functions continue to be discovered [128].

Whereas previous studies have shown the involvement of miRNAs in regulating TGF-β signaling
and EMT, only a few studies have reported a prominent role of lncRNAs in these processes. Trans-acting
lncRNA ELIT-1 induced by TGF-β1 forms a positive TGF-β/SMAD3 signaling feedback and promotes
EMT progression by acting as a SMAD3 cofactor [129]. The miR-17~92 polycistronic miRNA cluster
encoded by the lncRNA MIR17HG locus was shown to attenuate the TGF-β signaling pathway and
stimulate angiogenesis and tumor growth [65,130]. In a recent study, researchers found that a lncRNA
activated by TGF-β, lncRNA-ATB, induces EMT and invasion by competitively binding miR-200 family
members, which promoted organ-specific metastasis by binding IL-11 mRNA. This competitive binding
increased IL-11 mRNA stability, which caused autocrine induction of IL-11 and subsequent activation
of STAT3 signaling [131]. These findings suggest that lncRNA-ATB, a mediator of TGF-β signaling,
could predispose HCC patients to metastasis [132]. Another study showed that lncRNA-PNUTS,
which is highly expressed in mesenchymal breast tumor cells, competitive binds to and neutralizes the
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activity of miR-205 during EMT. Moreover, elevated expression of lncRNA-PNUTS was correlated
with upregulated levels of ZEB mRNAs [133]. LncRNA MEG3 can modulate the activity of TGF-β
genes by binding to distal regulatory elements [134]. Another lncRNA, DNM3OS, was associated with
overexpression of TWIST1 and specifically contributed to EMT in ovarian cancer [135]. Recently, a paper
showed that lncRNA-MUF can directly activate WNT/β-catenin signaling and EMT by binding to
ANNEXIN 2A. LncRNA-MUF can also indirectly promote EMT by competitively binding to miR-34a
and upregulating SNAIL1 expression [136].

Reduced lncRNA H19 expression in hepatocarcinogenesis (HCG) tissues from patients with the
epithelial TGF-β gene signature [137] but increased H19 expression promoted tumor metastasis after
TGF-β treatment in Hep3B cells [138]. In a mouse model of spontaneous metastatic breast cancer,
lncRNA H19 mediated EMT and MET by differentially binding to the microRNAs miR-200b/c and
let-7b [139]. LncRNA H19 can also interact with SLUG and/or EZH2, which regulates E-cadherin
expression [140]. Lnc-Spry1 is downregulated by TGF-β and plays a direct regulatory role in the
early stage of TGF-β-induced EMT, thus affecting cell invasion and migration. This molecule also
controls gene and protein expression levels through an interaction with the splicing factor U2AF65 [141].
LncRNA-KRTAP5-AS1 and lncRNA-TUBB2A control the function of CLAUDIN-4 and thereby influence
EMT in gastric cancer [142]. LncRNA HOTAIR (for HOX Transcript antisense intergenic RNA) acts as a
crucial player during EMT by mediating a physical interaction between SNAIL and EZH2, which form
an enzymatic subunit of the polycomb repressive complex 2, the main writer of chromatin-repressive
marks [143]. Together, these findings suggest that lncRNAs can be mediators of TGF-β signaling and
may serve as a potential target for anti-metastatic therapies. The mechanisms by which lncRNAs
regulate TGF-β signaling are largely unknown, and how they affect TGF-β pathway components in
cancer metastasis remains to be discovered (Figure 5 and Table 1).
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Table 1. LncRNAs involved in TGF-β signaling, focusing on those that impact TGF-β-induced EMT.
LncRNAs with high expression in tumor tissues (in red) and low expression in tumor tissues (in green).

Cancer Type LncRNA Function and Mechanism of Action Example of Key Findings or Experiments

Breast cancer

lncRNA-ATB [144] Functions as a sponge of miR-141-3p,
increasing ZEB1 and ZEB2 expression.

Knockdown results in a morphological change of
breast cancer cells from spindle-like to round shape
and in a remarkable inhibition of cell migration
and invasion.

AC026904.1 and UCA1 [145]

Functions as an enhancer RNA (eRNA) to
activate Slug gene transcription in the
nucleus, whereas UCA1 exerts a
competitive endogenous RNA (ceRNA) for
titrating miR-1 and miR-203a to promote
Slug expression at the post-transcriptional
level in the cytoplasm.

Knockdown of either AC026904.1 or
UCA1 prolongs survival time of the nude mice
bearing D3H2LN mammary tumors, these two
genes exert critical roles in TGF-β-induced EMT
and promote invasion in metastatic breast cancer.

NKILA [146] Suppresses TGF-β-induced EMT by
blocking NF-κB signaling

Overexpression reduces TGF-β-induced tumor
metastasis in vivo.

ANCR [147]

Functions as a downstream effector
molecule, down-regulated by TGF-β1,
and is essential for TGF-β1-induced EMT
by decreasing RUNX2 expression.

Ectopic expression partly attenuates the
TGF-β1-induced EMT and knockdown promotes
TGF-β1-induced EMT and metastasis in breast
cancer.

Lnc-Spry1 [141]

Functions as an immediate-early regulator
of EMT that is downregulated by TGF-β,
affecting the expression of TGF-β-regulated
gene targets; alternative splicing by
U2AF65 splicing factor; isoform switching
of fibroblast growth factor receptors.

Knockdown promotes a mesenchymal-like
phenotype and results in increased cell migration
and invasion.

lncRNA-HIT [148] Ectopic expression disrupts tight junction
by targeting E-cadherin.

Knockdown results in decrease of cell migration,
invasion, tumor growth, and metastasis.

linc-ROR [149,150]

Functions as a sponge of miR-145 and
therefore upregulate the expression of
ARF6, which regulates adhesion and
invasion properties of breast tumor cells
through E-cadherin.

Regulates the cancer stem cell phenotype in
Triple-negative Breast Cancer, which plays a critical
role in drug resistance and metastasis.

HOXA-AS2 [151]

Functions as an endogenous sponge of
miR-520c-3p, and controls the expression of
miR-520c-3p target genes, TβR2 and RELA,
in breast cancer cells.

Knockdown inhibits the progression of breast
cancer cells in vitro and in vivo.

CCAT2 [152]

Knockdown causes cell cycle arrested in
G0/G1 phase, promotes cell apoptosis and
downregulates the protein expression levels
of TGF-β, Smad2 and α-SMA in breast
cancer cells.

Down-regulation inhibits the proliferation,
invasion and migration in breast cancer cells.

MEG3 [134,153,154]

Regulates the TGF-β pathway genes
through formation of RNA-DNA triplex
structures, and downregulates AKT and
functions as a sponge of miR-421 to
regulate E-cadherin expression.

Ectopic expression inhibits in vivo tumorigenesis
and angiogenesis in a nude mouse xenograft
model.

Gastric cancer

LINC00978 (known as
MIR4435-2HG and
AK001796) [155]

Knockdown inhibits the activation of
TGF-β/SMAD signaling pathway and EMT
in GC cells.

Knockdown inhibits the proliferation, migration
and invasion and decreases the in vivo
tumorigenicity of GC cells in mice.

UCA1 [156]
Knockdown inhibits TGF-β1-induced-EMT
process and the effect could be partly
restored by TGF-β1 treatment.

A potential oncogenic factor by regulating GC cells
proliferation, invasion, and metastasis under
TGF-β1 induction.

lncRNA-ATB [157–159] Induced by TGF-β and functions as a
ceRNA of miR-141-3p or miR-200s.

A novel biomarker of lncRNA, correlated with
increased invasion depth, more distant metastasis
and advanced tumor-node-metastasis stage.

XIST [160]
Functions as a competing endogenous
lncRNA (ceRNA) to regulate TGF-β1 by
sponging miR-185 in GC.

sh-XIST inhibited GC development in vitro.
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Cancer Type LncRNA Function and Mechanism of Action Example of Key Findings or Experiments

Ovarian
carcinomas

LncRNA-LET [161]
Regulates EMT process and the expression
of TIMP2 and activates the Wnt/β-catenin
and Notch signaling pathways.

Overexpression inhibits cell viability, migration
and EMT process, and increases apoptosis in KGN
cells

H19 [162]
Functions by competing with miR-370-3p to
regulate TGF-β-induced EMT in ovarian
cancer.

Knockdown suppresses TGF-β-induced EMT,
while H19 overexpression promotes
TGF-β-induced EMT.

MALAT1 [163,164]

TGF-β increases its expression by inhibiting
miR-200c; MALAT1 interacts with
MARCH7, which regulates
TGF-β-smad2/3 pathway by interacting
with TβR2, via miR-200a as a ceRNA.

Interrupts the interaction between
miR-200c/MALAT1 decreases the invasive capacity
of EEC cells and EMT in vitro and inhibits EEC
growth and EMT-associated protein expression
in vivo; This LncRNA plays an important role in
TβR2-Smad2/3-MALAT1/MARCH7/ATG7 feedback
loop mediated autophagy, migration and invasion
in ovarian cancer.

LINK-A [165] cervical cancer
TGF-β1 treatment has no effects on LINK-A
expression, and there is no clear
mechanism.

Overexpression increases expression of TGF-β1 in
ovarian carcinoma cells and promotes cell
migration and invasion and this effect can be
attenuated by TGF-β1; Plasma levels are correlated
with distant tumor metastasis but not tumor size.

lncRNA-ATB [166] No clear mechanism.
A promising prognostic marker that correlates with
the malignant phenotypes and poor prognosis of
cervical cancer

PTAF [167]

Functions by competing with miR-25 and
affecting SNAI2 to regulate the expression
of many EMT-related protein-coding genes
in OvCa.

A mediator of TGF-β signaling.
Upregulation induces elevated SNAI2, which in
turn promoted OvCa cell EMT and invasion;
knockdown inhibits tumor progression and
metastasis in an orthotopic mouse model of OvCa.

Bladder cancer

lncRNA-ZEB2NAT [168] Induced by TGF-β, and can regulate EMT
process by affecting ZEB2 protein level.

Knockdown reverses CAF-CM-induced EMT and
invasion of cancer cells, as well as reduces the
ZEB2 protein level.

MALAT1 [169]

Induced by TGF-β and regulates EMT by
negatively correlated E-cadherin,
N-cadherin and fibronectin expression by
zeste 12 (suz12) in vitro and in vivo.

Overexpression is significantly correlated with
poor survival in patients with bladder cancer.
Inhibition of malat1 or suz12 suppresses the
migratory and invasive properties induced by
TGF-β and inhibits tumor metastasis in animal
models.

UCA1 [170] Induced by BMP9 through phosphorylated
AKT and there are no clear mechanism.

Its BMP-9-induced expression associates with
increased proliferation and migration of bladder
cancer cells. The promoting effect of BMP9 is
rescued after interfering with UCA1 in
BMP9 overexpressed bladder cancer cells both
in vitro and in vivo.

lncRNA-ATB [171]
Is upregulated by TGF-β, acting as a
molecular sponge of miR-126 and regulate
the direct target of miR-126 (KRAS).

Its overexpression significantly promotes cell
viability, migration, and invasion in T24 cells.

PlncRNA-1 [172]
Regulates the cell cycle, cyclin-D1 and EMT
in prostate cancer cells through the
TGF-β1 pathway.

Functions as an oncogene.

ROR [173]

Knockdown can reverse
TGF-β1-induced-EMT phenotype in
SGC-996 and Noz cells. However, there are
no clear mechanism.

High expression is associated with poor prognosis
in gallbladder cancer patients and knockdown
inhibits cell proliferation, migration, and invasion.

Prostate cancer

ANRIL [174] Regulates let-7a/TGF-β1/Smad signaling
pathway.

Overexpression promotes the proliferation and
migration of prostate cancer cells.

lncRNA-ATB [175]

Upregulated by TGF-β, stimulates EMT
associated with ZEB1 and
ZNF217 expression levels via ERK and
PI3K/AKT signaling pathways.

Overexpression promotes, and knockdown of
lncRNA-ATB inhibits the growth of prostate cancer
cells via regulations of cell cycle regulatory protein
expression levels.

Brain tumor

lnc-SNHG1 [176]

Activates the TGFBR2/SMAD3 and
RAB11A/Wnt/β-catenin pathways in
pituitary tumor cells via sponging
miR-302/372/373/520.

Promotes the progression of pituitary tumors,
ectopic expression of lnc-SNHG1 promotes cell
proliferation, migration, and invasion, as well as
the EMT, by affecting the cell cycle and cell
apoptosis in vitro and tumor growth in vivo.

UCA1 [177]

Functions as a ceRNA of miR-1 and
miR-203a to promote Slug expression,
which underlies TGF-β-induced EMT and
stemness of glioma cells.

Knockdown attenuates EMT and stemness
processes and their enhancement by TGF-β.
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Cancer Type LncRNA Function and Mechanism of Action Example of Key Findings or Experiments

Lung cancer

lncRNA-LINP1 [178] TGF-β1 inhibits its transcription in a
SMAD4-dependent manner.

Inhibits TGF-β-induced EMT and thereby
controlling cancer cell migration, invasion,
and stemless in lung cancer cells.

TBILA [179]
Induced by TGF-β and functions via
cis-regulating HGAL and activating
S100A7/JAB1 signaling.

Promotes non-small cell lung cancer progression
in vitro and in vivo.

XIST [180,181]

Functions as an endogenous sponge by
directly binding to miR-137, negatively
regulating its expression and regulating
Notch gene expression.

Overexpression inhibits proliferation and
TGF-β1-induced EMT in A549 and H1299 cells,
regulating proliferation and TGF-β1-induced EMT
in NSCLC, which could be involved in NSCLC
progression.

NORAD [182]

Affects the physical interaction of its
binding partner (importin β1) with Smad3,
and then inhibits the nuclear accumulation
of Smad complexes in response to TGF-β.

Stimulates TGF-β signaling and regulates
TGF-β-induced EMT-like phenotype in A549 cells.

lncRNA-ATB [183]

Regulates EMT by down-regulating
miR-494 in A549 cells, which in turn
increases phosphorylated levels of AKT,
JAK1, and STAT3.

Overexpression promotes proliferation, migration,
and invasion of A549 cells. In contract, ATB silence
shows the opposite influence.

linc00673 [184]
Functions as a sponge of miR-150-5p and
indirectly modulates the expression of key
EMT regulator ZEB1.

Inhibition attenuates the tumorigenesis ability of
A549 cells in vivo.

NKILA [185]

Expression is regulated by TGF-β and
regulates EMT process by inhibiting the
phosphorylation of IκBα and NF-κB
activation to attenuate Snail expression.

Inhibits migration, invasion and viability of
NSCLC cells. Lower NKILA expression are
correlated with lymph node metastasis and
advanced TNM stage.

MEG3 [186]

Associates with JARID2 and the regulatory
regions of target genes to recruit the
complex by epigenetic regulation
(PRC2/JARID2/ H3K27 axis).

Knockdown inhibits TGF-β-mediated changes in
cell morphology and cell motility characteristic of
EMT and counteracts TGF-β-dependent changes in
the expression of EMT-related genes; In contrast,
overexpression enhances these effects.

lnc-MMP2-2 [187]

ls highly enriched in TGF-β-mediated
exosomes and might function by increasing
the expression of MMP2 through its
enhancer activity.

Knockdown affects lung cancer invasion and
vascular permeability.

ANCR [188]

Inhibits NSCLC cell migration and invasion
by downregulating TGF-β1 expression,
however TGF-β1 treatment shows no
significant effects on ANCR expression but
promotes NSCLC cell migration and
invasion.

Low expression level indicates shorter
postoperative survival time of NSCLC patients,
whereas, ectopic expression inhibits NSCLC cell
migration, invasion and downregulated
TGF-β1 expression, and this effect can be
attenuated by TGF- β1.

LINC01186 [189]
Functions as a mediator of TGF-β signaling,
is down-regulated by TGF-β1 regulating
EMT by Smad3

Knockdown promotes cell migration and invasion,
whereas, overexpression prevents cell metastasis.

HOXA11-AS [190]

Regulates the expression of various
pathways and genes, especially
DOCK8 and TGF-β pathway, however,
there is no clear mechanism.

Its expression may determine the overall survival
and disease-free survival of lung adenocarcinoma
patients in TCGA.

Liver cancer

lncRNA SBF2-AS1 [191] Functions as a ceRNA of miR-140-5p and
regulates the expression of TβR1.

Knockdown inhibits the proliferation, migration
and invasion of HCC cells and attenuate the
development of HCC tumor in vivo.

SNHG6-003 [166]

Functions as a ceRNA of miR-26a/b and
thereby modulates the expression of
transforming growth factor-β-activated
kinase 1 (TAK1).

Ectopic expression in HCC cells promotes cell
proliferation and induces drug resistance, whereas
knockdown promotes apoptosis. High expression
of SNHG6-003 closely correlated with tumor
progression and shorter survival in HCC patients.

LINC00974 [192]
Interacts with KRT19, as a sponge of
miR-642, activating the Notch and TGF-β
pathways.

Knockdown inhibits cell proliferation and invasion
with an activation of apoptosis and cell cycle arrest
both in vitro and in vitro.

lncRNA-ATB [132]

Upregulated by TGF-b and can induce EMT
and invasion by acting as ceRNA of
miR-200 family and increasing ZEB1/2;
promotes organ colonization by binding
IL-11 mRNA, autocrine induction of IL-11,
and triggering STAT3 signaling.

Promotes the invasion-metastasis cascade in
hepatocellular carcinoma.
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Table 1. Cont.

Cancer Type LncRNA Function and Mechanism of Action Example of Key Findings or Experiments

Pancreatic
cancer

PVT1 [193] Regulates EMT process via TGF-β1/Smad
signaling.

Acts as an oncogene in pancreatic cancer,
knockdown of PVT1 inhibits viability, adhesion,
migration and invasion.

MEG8 [194]

MEG8, which shares the DLK1-DIO3 locus
with MEG3, can induce the recruitment of
EZH2 protein to miR-34a and
miR-203 genes for histone H3 methylation
and transcriptional repression, inducing
EMT-related cell morphological changes
and increases cell motility in the absence of
TGF-β by activating the gene expression
program required for EMT.

Plays critical role in TGF-β-induced EMT in
A549 lung cancer and Panc1 pancreatic cancer cells.

TUG1 [195] Regulates EMT process though
TGF-β/Smad pathway

Overexpression increases cell proliferation and
migration capacities, enhancing the proliferation
and migration of pancreatic cancer cells

MIR100HG [196]

Induced by TGF-β, and this gene contains
miR-100, miR-125b and let-7a in its intron,
through SMAD2/3. These miRNAs regulate
a multitude of genes involved in the
inhibition of p53 and DNA damage
response pathways.

Plays prominent role in metastasis of pancreatic
cancer.

lncRNA-ATB [197] No clear mechanism.
Low expression levels are correlated with lymph
node metastases neural invasion, and clinical stage
and worse overall survival prognoses of patients.

Renal cancer

BX357664 [197,198] Blocks the TGF-β1/p38/HSP27 pathway. Upregulation reduces migration, invasion,
and proliferation capabilities in RCC cells.

lncRNA-ATB [199] No clear mechanism.

Its expression is correlated with metastases and
promotes cell migration and invasion in renal cell
carcinoma. Knockdown could inhibit cell
proliferation, trigger apoptosis, reduce
epithelial-to-mesenchymal transition program and
suppress cell migration and invasion.

Colorectal
cancer

lncRNA-ATB [199–201]
Upregulated by TGF-β, and suppresses
E-cadherin expression and promoting EMT
process.

High expression is significantly associated with
greater tumor size, depth of tumor invasion,
lymphatic invasion, vascular invasion, and lymph
node metastasis.

LINC01133 [202]

Downregulated by TGF-β and its
expression is positively correlated with
E-cadherin, and negatively correlated with
Vimentin. Directly interacting with SRSF6,
which promotes EMT and metastasis in
CRC cells.

Inhibits EMT and metastasis in colorectal cancer
(CRC) cells and low LIINC01133 expression in
tumors with poor survival in CRC samples.

Bone tumor

MEG3 [203]

Represses Notch and TGF-β signaling
pathway by inhibiting Notch1, Hes1,
TGF-β and N-cadherin expression,
and increasing E-cadherin.

Overexpression represses cell proliferation and
migration ability.

MALAT1 [204]

Induced by TGF-β and its overexpression
decreases E-cadherin level, however, this
effect was partially reversed by
EZH2 knockdown.

Overexpression promotes cell metastasis,
a potential diagnostic and prognostic factor in
osteosarcoma.

SNHG7 [205]

Inhibits tumor suppressor miR-34s signals
and the targets of miR-34a, including
proliferation-related Notch1,
apoptosis-related BCL-2, cell cycle-related
CDK6, and EMT-related SMAD4.

Knockdown delays the tumor growth in
osteosarcoma tissues.

Thyroid cancer

MALAT1 [206] Induced by TGF-β and supports a role for
MALAT1 in EMT in thyroid tumors.

Functions as an oncogene and as a tumor
suppressor in different types of thyroid tumors.

ROR [207] Functions as a competing endogenous RNA
(ceRNA) of sponging miR-145.

Expression is induced by TGF-β in cells
undergoing EMT.

SPRY4-IT1 [208]
Knockdown increases the levels of
TGF-β1 and p-Smad2/3 and this effect could
be rescued by the interference of TGF-β1.

A novel prognostic factor, which correlates with
poor prognosis and exhibits that silenced
SPRY4-IT1 inhibited the proliferative and
migratory abilities of TC cells.

ANRIL [209] Reduces p15INK4B expression through
inhibiting TGF-β/Smad signaling pathway.

Promotes invasion and metastasis of TC cells,
and the silencing of ANRIL inhibits the invasion
and metastasis of TPC-1 cells.
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6. TGF-β and Metastasis

6.1. TGF-β-induced Metastasis in Tissues

Tumor metastasis is the primary cause of cancer lethality; it is a progressive, multifactorial and
multistep dynamic process, including detachment from a primary tumor, invasion into surrounding
tissues, invasion into blood circulation/lymphatic circulation, survival in the circulatory system,
extravasation from blood vessels, distal colonization, etc. [210]. The migration of cancer cells is pivotal
to early metastasis, and changes in tumor cells (acquired by EMT) and the microenvironment are
the two main factors that help cancer stem cells (CSCs) to escape from the primary site [211]. In the
tumor microenvironment, TGF-β, Chemokine 4/12 (CXCL4/12), interleukin-6 (IL-6) and tumor necrosis
factor-α (TNF-α), etc. can enhance EMT. At the same time, tumor cells secrete more epithelial growth
factors, fibroblast growth factor (FGF) and insulin-like growth factor (IGF), leading to a hypoxic,
acidic, high interstitial fluid pressure (IFP) state in the microenvironment, which activates cancer
associated fibroblasts (CAFs) to produce more matrix metalloproteinases (MMPs) and remodel the
tumor extracellular matrices (ECM) [212].

TGF-β induces metastasis to bone, liver, lung and other tissues of specific cancer types, such as
breast, lung, gastric and prostate cancers (Figure 6A) [213]. Metastatic cancer cells have been shown to
disturb the tight balance of bone transformation by osteoblasts and osteoclasts, conferring a receptive
outgrowth microenvironment [214]. Tumor cells secrete cytokines and parathyroid hormone-related
protein (PTHrP), which is the main inducer of osteoclast formation (also interleukin (IL)-1/-6/-11, etc.),
and its expression is specific to the bone metastasis microenvironment [215]. TGF-β released in the
active form upon osteoclastic bone resorption enhances PTHrP signaling in osteoblasts, resulting in
osteoblasts expressing receptor activator of NFκB ligand (RANKL) while reducing osteoprotegerin
(OPG) expression [216]. The high RANKL/OPG ratio enhances the osteolytic activity, which is
associated with the release of high levels of active TGF-β. This TGF-β can further upregulate PTHrP
expression by cancer cells, thereby forming a positive feedback loop called a “vicious cycle” [217].

Many specific studies have analyzed the role of TGF-β in lung and liver metastases. In a previous
study, increased TGF-β levels were shown to lead to lung metastases in the MMTV/PyVmT transgenic
model of metastatic breast cancer [218]. In addition, in breast cancer cells, TGF-β induced ANGPTL4 via
the SMAD signaling pathway, and this cytokine could disrupt lung capillary walls and seed pulmonary
metastases [219]. Because there are inherent differences in the microvasculature of these two tissues,
lung metastasis requires robust extravasation functions provided by ANGPTl4 and other factors and
additional lung colonizing functions achieved by ID1/ID3 [220]. Therefore, the vasculature disruptive
mechanism provides a selective invasive advantage in the lung but not bone. Another study showed
that the WNT signaling inhibitor Dickkopf 1 (DKK1) is a key factor for this metastatic preference; it
reduces the recruitment of macrophages and neutrophils by the WNT/PCP-RAC1-JNK pathway and
inhibits the level of tumor-derived TGF-β to inhibit lung metastasis. Thus, tumor cells that highly
secrete DKK1 tend to metastasize to bone, while those with low DKK1 secretion tend to metastasize to
the lung [221].

Statistical analysis of gene expression profiles revealed that TGF-β signaling is the most significant
gene pathway in liver metastases of colorectal cancer [222]. Exosomes (small membrane vesicles with
a size ranging from 40 to 100 nm) from pancreatic cancer induce Kupffer cells to release more TGF-β,
which in turn activates the fibrotic pathway and forms a proinflammatory environment that supports
pancreatic cancer metastasis [223].
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Figure 6. TGF-β mediates metastasis. TGF-β produced by cancer cells can alter the bone
microenvironment by inducing the expression of osteolytic factors like PTHrP and IL11. The osteoclast
bone resorption via RANKL production by osteoblasts results in more release of TGF-β, which in turn
acts on tumor cells thereby creating a positive feedback loop called a “vicious cycle”. Chemokine receptor
CXCL4 and angiogenesis inducer connective tissue growth factor (CTGF) are also key modulators
induced by TGF-β in this process. Another important factor of this metastatic preference is the Wnt
antagonist Dickkopf 1 (DKK1); cells that highly secrete DKK1 tend to metastasize to bone, while low
DKK1-secreting tumor cells tend to metastasize to the lung. TGF-β leads to transcriptional upregulation
of proangiogenic factors, including CTGF, matrix metalloprotease (MMP)2, MMP-9, and MMP10,
or inhibition of TIMP to mediate the formation of new blood vessels. TGF-β inhibits the proliferation
of T cells and B cells and inhibits the production of immune factors by B lymphocytes. In addition,
TGF-β-induced angiopoietin-like 4 (ANGPTL4) via the SMAD signaling pathway is proangiogenic and
can disrupt lung capillary walls and seed pulmonary metastases. Inhibitory signals are indicated with
inhibitory red arrows; Stimulatory signals are indicated with green arrows.

6.2. TGF-β Promotes Angiogenesis

Regardless of the primary or secondary tumor, angiogenesis occurs once the tumor is more than
1–2 mm in diameter; therefore, a rich blood supply is necessary to provide nutrients and oxygen for
tumor growth and metastasis [224]. Tumor cells secrete a variety of growth factors, including TGF-β,
to accelerate the development of cancer by inducing angiogenesis (Figure 6B) [225].

On endothelial cells TGF-β can bind to the type I receptor, activin receptor-like kinase 1 (ALK-1),
prompting downstream signaling involving intracellular and nuclear proteins (SMADs and Id1) and
leading to a proangiogenic response [226]. Furthermore, TGF-β1 and hypoxia are potent inducers
of vascular endothelial growth factor (VEGF) expression in tumor cells, and oncogenes, especially
RAS, can also combine with the tumor microenvironment, providing the foundation for tumor cell
invasion and angiogenesis [227]. Using a mouse mammary carcinoma model, researchers confirmed
that VEGF expression in peri-necrotic areas is synergized by both hypoxia and TGF-β1, further showing
that this cooperation is achieved through hypoxia-inducible factor (HIF)-1α physically associating
with SMAD3 [228]. For example, TGF-β increases the expression of VEGF-C by coordinating with
sine oculis homeobox homolog 1 (SIX1) in tumor cells, promoting tumor lymph angiogenesis and
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lymph node metastasis [229]. Likewise, TGF-β1 could promote macrophages to secrete more VEGF
via the TβRII/SMAD3 signaling pathway in oral squamous cell carcinoma [230]. TGF-β and VEGF
form a feedback loop through the Semaphorin3A/NEM axis; in general, abrogated VEGF inhibits
the endothelial cell paracrine TGF-β1 and endothelial SMAD2/3 activation; in turn, TGF-β1 further
stimulates endothelial Semaphorin3A expression [231]. Studies have shown that in RAS-transformed
epithelial tumors, TGF-β significantly increases the expression of VEGF/VEGF-R, which has a powerful
effect on capillary formation and migration of endothelial cells, thereby promoting angiogenesis in
tumor cells [232]. TGF-β mediates the formation of new blood vessels by promoting connective tissue
growth factor (CTGF) and angiogenic regulatory enzymes, such as matrix metalloproteinases (MMP-2,
MMP-9, MMP-10, etc.) or by inhibiting tissue inhibitor of metalloproteinases (TIMP) [233].

6.3. TGF-β Promotes Immune Evasion

Under physiological conditions, the immune system is the most important element of human
defense against cancer, and T lymphocytes and natural killer cells can recognize and specifically clear
tumor cells [4,234]. However, tumor cells evade this immune surveillance through immune evasion
of TGF-β, but the cellular mechanism by which TGF-β induces T cell dysfunction remains unclear.
TGF-β may inhibit the proliferation of T cells and B cells and inhibit the production of immune factors
by B lymphocytes (Figure 6C). In transgenic mouse studies, CD4+ and CD8+ T lymphocytes showed
that expression of dominant-negative TβR2 was more effective in clearing thymoma and melanoma
cells than in wild-type mice, which indicates that T lymphocytes are central targets for the negative
regulation of TGF-β [235]. Interestingly, T cell production of TGF-β1 was shown to be a requirement
for tumors to evade immune surveillance independent of TGF-β produced by tumors [236].

For example, regulation of tumor metastasis by TGF-β/SMAD signaling was found to be achieved
by impairing the activity of tumor-infiltrating T cells [237,238], i.e., the infiltration level of CD3+,
CD4+ and CD8+ cells and the proliferation and activity of T cells (such as the secretion of granzyme,
FAS ligand (FASL), perforin and interferon (IFN)-γ) [239,240]. Regulatory T-cells (Tregs), whose
excessive function inhibit antitumor immune responses, are another vital factor for TGF-β-mediated
immune evasion by suppressing the proliferation and activation of CD8+ cytotoxic T-cells [241].
Effector Treg cells express high amounts of integrin αvβ8, which enables them to activate latent
TGF-β, and tumor-derived TGF-β, in turn, induces FoxP3 expression and generates induced Treg
cells [242]. Tregs can produce cell surface docking receptors for latent TGF-β, called glycoprotein A
repetitions predominant (GARP). Further experiments revealed that overexpression of GARP leads
to more TGF-β-releasing Treg cells and enhanced TGF-β signaling, tumor growth and metastasis in
immunodeficient mice [243].

Additionally, TGF-β blocks immune surveillance by inhibiting migration and inducing apoptosis
of antigen-presenting cells, such as dendritic cells (DCs), whose function is to mature and stimulate T
cells during the immune response. Studies have shown that tumor-derived TGF-β significantly inhibits
the proliferation of human CD4+ T cells activated by dendritic cells [244–246]. TGF-β also has an
impact on myeloid cell functions. TGF-β in the tumor microenvironment polarizes tumor-associated
macrophages (TAMs) from the pretumor (M2) phenotype to the antitumor (M1) phenotype. TGF-β
inhibits neutrophil activity (i.e., degranulation) [247]. Furthermore, tumor-derived TGF-β polarizes the
tumor-associated neutrophil (TAN) phenotype from N1 to N2 and induces a population of protumor
TANs [248].

Moreover, the development of natural killer (NK) cells and T helper 1 (Th1) differentiation depend
on TGF-β signaling. Functional studies have demonstrated that selective deletion of SMAD4 in
NK cells impedes NK cell homeostasis and maturation, thereby reducing murine cytomegalovirus
clearance [249]. A TGF-β-regulated transcription factor, T-bet, is responsible for Th1 differentiation and
survival of activated CD4+ T cells via mediating CD122 expression and IL-15 signaling in Th1 cells [250].
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7. Targeting the TGF-β Signaling Pathway in Cancer

Several TGF-β signaling inhibitors have been developed to curtail the aberrant TGF-β signaling
characteristics of tumors. There are several types of TGF-β drugs in (pre)clinical development: ligand
traps, antisense oligonucleotides (AONs), neutralizing antibodies, receptor domain-immunoglobulin
fusions and receptor kinase inhibitors (Figure 7) [251]. While these agents have shown promise in the
clinic, the complexity and pleiotropic nature of TGF-β tumor regulation render TGF-β targeted therapy
a challenge. Related to this, careful administration/dosing of TGF-β therapies as well as judicious
patient selection is needed to overcome on-target and off-target toxic side-effects [252].

Antisense oligonucleotides have been incorporated into immune cells to block translation or to
degrade TGF-β mRNA. Belagenpumatucel-L (Lucanix) is a therapeutic vaccine for non-small cell lung
cancer (NSCLC), which inhibits the expression of TGF-β2, thereby reducing the immunosuppressive
effect of TGF-β2 and thus enhancing its antitumor effect [253]. Trabedersen (AP 12009) is an antisense
oligonucleotide that specifically targets human TGF-β2 mRNA and has been used in the treatment
of metastatic melanoma and pancreatic cancer [254]. Its clinical development has been put on hold
(Clinical Trials: NCT00761280).

Multiple TβRI kinase inhibitors have been developed for the treatment of cancer and are under
clinical trials. For example, a phase I study of Galunisertib (LY2157299), a TβR1 kinase inhibitor, showed
an acceptable tolerability and safety profile in Japanese patients with advanced solid tumors [255] and
is currently under clinical development in combination with immunotherapy, anti-PD-1 antibodies,
including nivolumab and durvalumab (Clinical Trials: NCT02423343). SM16 (a TβRI kinase inhibitor)
and 1D11 (a TGF-β neutralizing antibody) synergistically inhibited metastasis in combination with
the agonistic OX40 antibody [256]. SD208, an inhibitor of TβR1, blocks the TGF-β/SMAD pathway,
Matrigel invasion and expression of TGF-β target genes (PTHrP, IL-11, CTGF, and RUNX2, etc.) and
was effective at preventing the development of bone metastases and decreasing the progression of
established osteolytic lesions in melanoma and glioma models [257,258]. However, another study
showed that SD-208 could not significantly reduce tumor growth and angiogenesis in SW-48 cells,
a human colorectal cancer model, and thus, its efficiency still needs to be assessed [259].

Blockade of TGF-β ligand and receptor binding is a crucial mechanism for TGF-β inhibitory
targeting agents. In a clinical phase I trial, PF-03446962, an anti-ALK1 antibody that displays
(dose-dependent) antiangiogenic activity, was tested. This antibody was administered to patients
who were resistant to anti-VEGF/VEGFR therapy [260]. However, in phase II, trials were stopped due
to ineffectiveness (NCT01620970). Another TGF-β monoclonal antibody, Fresolimumab (GC-1008),
was demonstrated to be safe and well tolerated in Phase I and Phase II trials [261]. Fresolimumab is an
anti-TGF-β neutralizing antibody capable of neutralizing all human isoforms of TGF-β [262]. John et
al. have shown that some melanoma or renal cancer patients with multiple doses of fresolimumab
treatment experienced cutaneous lesions during phase 1 clinical trials [195]. Moreover, a phase I study
noted that the maximum tolerated dose for the anti-TβRII monoclonal antibody LY3022859 could not
be determined, but dose escalation beyond 25 mg was considered unsafe in patients with advanced
solid tumors [263].

Finally, an interesting paper showed that a TGF-β inhibitor in combination with a PD-L1 inhibitor
(Atezolizumab) may be able to remodel the matrix microenvironment and allow T cells to enter the
interior of the tumor [237]. Furthermore, for chimeric antigen receptor (CAR) T cell therapies, CAR-T
cells can reverse the immunosuppressive effect of TGF-β [264]. This finding suggests that combination
therapies rather than mono-TGF-β therapies could prove to be the most effective approach in the future.
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Figure 7. Targeting the TGF-β signaling pathway in cancer. Various molecular mechanisms by
which TGF-β signaling is targeted for therapeutic gain are depicted. TGF-β inhibitory targeting
agents (Table 1), including TβRI kinase inhibitors, AON targeting ligand or receptor gene expression,
and antibodies interfering with ligand-receptor interactions, have been developed to curtail excessive
TGF-β pathway activation. Inhibitory signals are indicated with inhibitory red arrows; Stimulatory
signals are indicated with green arrows.

8. Concluding Remarks

TGF-β acts as a tumor suppressor during the early phase of cancer progression and as a tumor
promotor in advanced stages. The latter role, in particular, has been targeted as a potential therapeutic
approach to inhibiting tumor growth and dissemination. However, developing effective treatments
is severely hampered by the biphasic role of TGF-β in cancer and its function in many physiological
processes, including the cardiovascular system. There has been some progress in the treatment of
liver cancer and other types of cancer, but there is a pressing need for a greater understanding of
pathological TGF-β mechanisms as well as greater clarity regarding protocols of therapy administration
and patient selection.

With the success of immune checkpoint inhibitors for cancer therapy and considering the potent
immune suppressive effects of TGF-β, it may be of particular interest to see whether TGF-β targeting
agents can increase the efficiency and range of immune therapeutic agents. Such trials are underway,
and the results are eagerly awaited. As highlighted in this review, other approaches could include the
targeting of E3 ubiquitin ligases and deubiquitinating enzymes and miRNAs and lncRNAs, which
control the stability of TGF-β receptors and SMAD proteins.
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