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Abstract: The granite processing industry generates large amounts of bottom granite dust waste
every day. After the drying and heating process of concrete mixture production, the granite dust
is blown and collected in the filtering nozzle. This very fine particle granite dry fly dust, with a
particle size maximum distribution of 500 µm, can easily be blown away by wind and cause serious
environmental impacts. The use of this waste material would be an effective way to reduce such
impacts. Therefore, this paper presents an experimental study on the potential of granite dust as a
filler in enhancing the mechanical performance of a hybrid basalt/glass (WB/GCSM) composite. The
unhole and open hole tensile (UHT and OHT) properties, low velocity impact (LVI) properties, quasi-
static indentations (QSI) properties, flexural properties, interlaminar shear stress (ILSS) properties,
and morphology of the developed WB/GCSM composites were evaluated. To meet the objective of
this study, composite specimens were produced using 1.5–60 µm granite fly dust at three (3) different
loadings (1, 3 and 5 wt%). This granite fly dust was incorporated into polyurethane resin using a
mechanical stirring technique. The production of FRP laminates then completed using a hand lay-up
and vacuum bagging technique. Four types of the WB/GCSM composites systems, i.e., [WB/GCSM],
[WB/GCSM/1GD], [WB/GCSM/3GD] and [WB/GCSM/5GD] were fabricated and compared. The
analysis results for the mechanical tests revealed that the incorporation of granite dust of up to 3 wt%
had increased the UHT, OHT, LVI, QSI, flexural and ILSS properties of all WB/GCSM composites
systems. Higher levels of damage tolerance in UHT and OHT tests, and increased ductility index
in the LVI test were obtained when granite dust was added up to 5 wt%. However, a remarkable
improvement in all mechanical properties was noticed for [WB/GCSM/1GD], which recorded the
highest mechanical performance among all WB/GCSM composite systems.

Keywords: granite dust; basalt fibres; glass fibres; polymer composites; open hole tensile; low
velocity impact; quasi-static indentations; interlaminar shear stress

1. Introduction

Basalt fibres have gained great attention as a reinforcing material in polymer composite
industries because they are chemically stable, with excellent mechanical and thermal
properties. Basalt fibres are made from basalt rocks, which consist of SiO2, Al2O3, CaO,
MgO, Fe2O3, and FeO as the main components [1–5]. Thus, these mineral-based natural
fibres are non-toxic, eco-friendly, easy to recycle, and inexpensive. The main components
of basalt fibres are similar to glass fibres, but with superior mechanical strength, thermal
stability, and chemical resistance, which make them a great alternative for glass fibres.
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However, it is well-known that composite materials are vulnerable to failure due to the
inherent brittleness of both the fibres and the matrix.

In general, hybrid composites are advanced engineered materials, consisting of two or
more materials that are embedded or reinforced within a matrix. Hybrid composites are
the key in developing innovative solutions by mixing two or more materials to achieve
a synergistic effect. Subsequently, superior properties within the hybrid material can be
obtained, such as improved elastic modulus, strength, ductility, and lighter weight [6].
These hybridisation qualities are widely reported by previous researchers [6–10]. For
example, Bulut and Erklig [6] concluded that the hybridisation of two or three differ-
ent fibres can significantly affect indentation responses, i.e., force and absorbed energy.
Sapiai et al. [7,8] and Muhamad et al. [9] found that the hybridisation of kenaf fibre with
glass fibre can produce better composite properties compared to the single kenaf fibre
system. Al-Hajaj et al. [11] and Dhakal et al. [12] have proven that the hybridisation of
carbon fibres with flax can significantly improve the environmental, thermal, and mechani-
cal performance of the composite. In addition to hybridisation with different fibres, the
incorporation of fillers within a matrix have been demonstrated as being able to enhance
the elastic modulus, strength, and toughness of composites, without sacrificing the strain
to failure and thermal stability. Thermoset polymers used as a matrix in composites have
always exhibited poor crack resistance, brittle fractures, and crystalline structures, which
ultimately reduce their mechanical performance. Many researchers have overcome this
problem by adding fillers/nanofillers. The use of fillers to modify the matrix is an alter-
native method to improve mechanical, thermal, and dynamic properties without altering
the weight or processability of composites [13]. Several types of fillers can be used to
modify composites, such as metal oxides (alumina, iron oxide, magnesium hydroxide,
and titanium dioxide) [13–15], nanomaterials (nanosilica, nanoclay, graphene, and carbon
nanotubes) [7,16–18], rubber [19,20], and thermoplastic [21,22].

Granite dust is a waste material that can potentially be used as a reinforcement
due to its excellent properties, such as high modulus of elasticity and strength [23–26].
Granite dust is also classified as an industrial waste that can threaten the environment.
A large amount of granite waste can form colloidal waste in water when granite stones
undergo processing by the granite processing industry [27]. The use of granite dust is
relevant in the present time, especially for the development of innovative technology, which
would overcome problems associated with its disposal, including environmental problems.
Granite dust is primarily composed of alumina, silica, and potassium, with small amounts
of magnesium and calcium. Owing to its chemical composition (i.e., alumina, silica, and
magnesium, which are excellent fillers), granite dust has the potential of being used in
polymer composites. Awad et al. [26] investigated the effect of different granite dust weight
percentages on the flexural properties of HDPE composites. It was indicated that 50 wt%
of granite dust in HDPE can increase flexural strength, while a weight percentage of higher
than 50 wt% can lead to particle agglomeration, which would reduce the performance of
the composites. Subhash et al. [28] claimed that 40 wt% of granite dust in epoxy composites
can be unsuitable for fabrication due to improper wetting between granite particles and
epoxy resin at higher concentration. The results indicated that the Vickers hardness was
increased with up to 20 wt% of granite dust, while impact strength was increased with
up to 30 wt% of granite dust. The percentage of moisture content was also increased with
increasing granite dust content due to the porosity of the composites.

A review of the previous literature showed that no specific work has been conducted
to investigate the modifying effect of granite dust in the polyurethane matrix on the me-
chanical properties of basalt/glass composites. Most granite dust research was developed
in various construction applications and building materials using bottom fine granite
aggregate to replace natural sand and cement in concrete, filler material for roads, and
manufacturing bricks and tiles for construction, infrastructure, and building [23–27]. Most
of this research used bottom granite dust that is collected after the grinding or cutting
process of granite stone; meanwhile, in this research, the granite dust used is a fine fly dry
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granite dust that is collected from the filter after drying, blowing, and heating at an ele-
vated temperature of 200 ◦C during the preparation of concrete mixture at the quarry plant.
Therefore, in this research, the fine fly granite dust will be used as a filler in enhancing the
mechanical behaviour of basalt/glass composites to achieve the comprehensive application
of granite dust. The granite dust-filled basalt/glass composites were designed in a unique
arrangement for damaged or cracked surfaces and pipeline repair as a patch to replace
carbon fibre reinforced composite patch. The effects of the various mechanical properties,
i.e., (UHT, OHT, LVI, QSI, flexural, ILSS properties) were studied by different loading of
granite dust, while the form and types of the fibre were specified for woven-type basalt
fibre and chopped strand mat glass fibre. The addition of granite dust came at no cost
because it is a waste material from the granite processing industry and can be considered as
utilisation of waste material to solve disposal problems. This research also aims to further
develop the potential of using granite dust in natural material-based composites.

2. Experimental Procedure
2.1. Materials

Hybrid basalt/glass (WB/GCSM) composites were developed using different load-
ings of micron sized granite waste powder, a twill weave (TW) type of basalt fibres,
a chopped strand mat (CSM) type of glass fibre and polyurethane resin as the matrix.
Polyurethane (Konudur 250 OM-PL Sommerharz) was used in this study, which is a low
viscosity organic-mineral resin supplied by MC-Bauchemie, Bottrop, Germany with a ratio
of 2:1 (resin: hardener). Twill weave basalt fibres were supplied by Zhejiang GBF Basalt
Fibre Co. Ltd., Dongyang, China, while the chopped strand mat glass fibres were supplied
by Vistec Technology, Puchong, Malaysia. Granite dust was collected from Jabatan Kerja
Raya (JKR), Kelantan Branch, Malaysia. Figure 1 shows the morphology of granite dust
under a Scanning Electron Microscope (SEM, Hitachi, Tokyo, Japan). The SEM image
indicated that the granite particles have irregular shapes, with diameters ranging between
1.5–60 µm. Table 1 lists the chemical composition of granite dust obtained using an X-ray
fluorescence (XRF, Bruker, Billerica, MA, USA) spectrometer, which is mainly composed of
silica (SiO2) and alumina (Al2O3).

Figure 1. SEM image of granite dust.

Table 1. Chemical composition of granite dust obtained via XRF analysis.

Composition SiO2 Al2O3 K2O CaCo3 Fe2O3 MnO TiO2 SO3

Percentage (%) 78.91 10.52 6.07 2.07 1.73 0.18 0.10 0.08
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2.2. Fabrication of Composites

To fabricate the WB/GCSM composites, a polyurethane mixture was prepared with
different weight percentages of granite dust at 1, 3 and 5 wt% using a mechanical stirrer.
The glass and basalt fibres were cut into 300 × 300 mm2 sheets and layered up with
polyurethane/granite dust-filled polyurethane resin on top of each other to form a laminate
composite. Rolling was employed to eliminate trapped air. Each laminate composite
comprised three plies of CSM glass fibre and three plies of TW basalt fibre, as shown in
Figure 2a. The granite dust-filled basalt/glass composites comprised three plies of CSM
glass fibre and three plies of basalt fibre, whereby 4mm of thickness can be obtained from
the fibre ply arrangement. All laminate composites are prepared under vacuum bagging,
as shown in Figure 2b. This study has synthesised four types of WB/GCSM composites,
coded as [WB/GCSM], [WB/GCSM/1GD], [WB/GCSM/3GD] and [WB/GCSM/5GD]
based on different weight percentages of the added granite dust.

Figure 2. Fabrication setup of WB/GCSM composites: (a) fibre sheets arrangement; and (b) vacuum
bagging system.

2.3. Mechanical Tests
2.3.1. Unhole Tensile (UHT) and Open Hole Tensile (OHT) Test

The tensile test was conducted as per the Standard Test Method for Open-Hole Tensile
Strength of Polymer Matrix Composite Laminates (ASTM D5766). The standard specimen
size for tensile test should be followed ASTM D3039/D3039M—08. However, for the
OHT, some requirement needs to be concerned and followed as per standard ASTM D
5766. The thickness of the specimen in this study is chosen according to a hole diameter
to thickness ratio (D/h) of 1.5. The hole with 6 mm was drilled in the middle of the
specimen. Therefore, the ratio (D/h) = (6/4) = 1.5. The WB/GCSM composites, size of
300 × 36 × 4 mm3, were tested using an Instron 3382 Universal Testing Machine with a
crosshead speed of 2 mm/min. A hole measuring 6 mm in diameter was drilled into
the composites to determine the damage tolerance properties of the specimens under
tensile loading.

2.3.2. Low Velocity Impact (LVI) Test

The impact test was performed according to Standard Test Method for Measuring the
Damage Resistance of a Fiber-Reinforced Polymer Matrix Composite to a Drop-Weight
Impact (ASTM D7136). The composite specimens were cut into 50 × 50 × 4 mm3 strips
using a vertical bending machine. An Instron Dynatup 8250 Drop Weight Impact Tester,
with a 13 mm in diameter hemispherical tip impactor, was used to determine the load
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carrying capabilities, energy absorbed, deflection, ductility index and impact strength of
the composite specimens.

2.3.3. Quasi-Static Indentation (QSI) Test

The static indentation resistance properties evaluated by Standard Test Method for
Measuring the Damage Resistance of a Fiber-Reinforced Polymer-Matrix Composite to a
Concentrated Quasi-Static Indentation Force (ASTM D6264). The WB/GCSM composites
were cut into 50 × 50 × 4 mm3 strips and tested using an Instron 3382 Universal Testing
Machine. A 13 mm indenter was applied at 2 mm/min cross head speed during test-
ing. A constant force was applied until the indenter had fully penetrated the specimens.
The total energy absorption was calculated based on the area under the graph of force
versus displacement.

2.3.4. Flexural Test

The composite specimens with sizes of 80 × 13 × 4 mm3 were tested using an Instron
3382 Universal Testing Machine with a crosshead speed of 2 mm/min according to Stan-
dard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and
Electrical Insulating Materials (ASTM D790). The span length to sample thickness ratio
was maintained at 16:1. Approximately five specimens for each WB/GCSM composites
systems were tested and the average flexural strength and modulus were calculated from
the obtained values.

2.3.5. Interlaminar Shear Strength (ILSS) Test

The interlaminar shear strength test was conducted using an Instron 3382 Universal
Testing Machine according to Standard Test Method for Short-Beam Strength of Polymer
Matrix Composite Materials and Their Laminates (ASTM D2344). All the composite
specimens were cut into 36 × 12 × 4 mm3 strips. This test was conducted at a crosshead
speed of 2 mm/min and approximately five specimens for each composite laminate were
tested to obtain an average value of ILSS.

3. Results and Discussion
3.1. Unhole Tensile (UHT) and Open Hole Tensile (OHT) Properties

The variations of the UHT and OHT properties of WB/GCSM composites are char-
acterised as a function of granite dust content, as depicted in Figure 3. The values of the
tensile properties are summarised in Table 2. A slight improvement can be seen with
1.0 wt% of granite dust loading [WB/GCSM/1GD], which showed an increase of 3.72%
for UHT strength and 1.30% for UTH modulus compared to without granite dust loading
[WB/GCSM]. At 3.0 wt% of granite dust loading [WB/GCSM/3GD], the UTH strength
of the specimen was increased by 2.68%, yet the UTH modulus was deceased by 8.60%
compared to the values for [WB/GCSM]. When granite dust loading was increased to
5.0 wt% [WB/GCSM/5GD], the decreasing trend was observed for both strength and
modulus values. These results showed that the optimum interaction between basalt/glass
fibres and granite dust-filled epoxy resin occurred at the lowest granite dust loading of
1.0 wt%. The [WB/GCSM/1GD] composite was the strongest material, in terms of strength
and modulus, among all WB/GCSM composite systems. The increasing filler loading
has decreased the modulus and strength of the composites by propagating the formation
of ductile materials. Similar trends were reported by numerous researchers when they
added more fillers/nanofillers to modify the polymer matrix. The reduction in mechanical
performance would occur because of the agglomeration tendency of the fillers within the
matrix, acting as stress concentration points and inducing crack formation. The mechanical
performance of the composites can be affected by several parameters, such as the dispersion
and distribution of fillers, the compatibility between filler and matrix, and the interfacial
bonding between filler and matrix [7,13–16].
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Figure 3. UHT and OHT properties of [WB/GCSM], [WB/GCSM/1GD], [WB/GCSM/3GD] and
[WB/GCSM/5GD] composites (a) Tensile strength and (b) Tensile modulus.

As for the OHT properties of the WB/GCSM composites, different percentages
of granite dust loading have led to different tensile properties. The results showed
that OHT strength was increased with increasing granite dust loading by 25.27% for
[WB/GCSM/1GD], 21.72% for [WB/GCSM/3GD] and 11.66% for [WB/GCSM/5GD] com-
pared to the OHT strength of [WB/GCSM]. When 1.0 and 3.0 wt% of granite dust loadings
were added, the OHT modulus was increased by 9.74% and 3.08% for [WB/GCSM/1GD]
and [WB/GCSM/3GD], respectively. However, when granite dust loading was increased
to 5.0 wt%, the OHT modulus of [WB/GCSM/5GD] was decreased by 15.90% compared
to the OHT modulus of [WB/GCSM]. This uncertain trend in UHT and OHT properties
might be due to structural flaws that occurred during specimen fabrication.

As shown in Figure 4, most of the UHT composite specimens break near the grip/end
tab, which is at the lowest strength of the composite itself, while the OHT composite
specimens break at the hole area, where the hole has created localised stress in the composite
specimens. This portrayed that the appearance of a hole can lead to a higher stress
concentration in the surrounding area, which breaks the specimen. Although an uncertain
trend was observed, the results have also shown that [WB/GCSM/1GD], with 1.0 wt%
of granite dust loading, has the best tensile properties among WB/GCSM composites,
which indicated that granite dust can enhance the tensile performance of the composite
specimens. The significant ability of granite dust in modifying resin was also proven
by the increasing damage tolerance and decreasing stress reduction indexes when more
granite dusts were embedded in WB/GCSM composites. The damage tolerance indexes
for [WB/GCSM], [WB/GCSM/1GD], [WB/GCSM/3GD], and [WB/GCSM/5GD] were
69.27%, 83.65%, 82.11%, and 88.60%, respectively. Meanwhile, the stress reduction indexes
were recorded at 30.73% for [WB/GCSM], 16.35% for [WB/GCSM/1GD], 17.895% for
[WB/GCSM/3GD], and 11.40% for [WB/GCSM/5GD].
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Table 2. Summarised UHT and OHT properties of [WB/GCSM], [WB/GCSM/1GD], [WB/GCSM/3GD] and [WB/GCSM/5GD] composites.

Composites

Tensile Properties

Tensile Strength, σt (MPa) Tensile Modulus, Et (GPa) Tensile Strain at Break, εf (%) Damage Tolerance
σhole/σunhole (%)

Strength Reduction (100
− σhole/σunhole) (%)Unhole Hole Unhole Hole Unhole Hole

[WB/GCSM] 84.40 ± 5.92 58.46 ± 12.74 2.30 ± 0.06 1.95 ± 0.34 3.99 ± 0.36 3.19 ± 0.02 69.27 30.73

[WB/GCSM/1GD] 87.54 ± 6.35 73.23 ± 2.33 2.33 ± 0.14 2.14 ± 0.45 3.51 ± 0.37 3.19 ± 0.24 83.65 16.35

[WB/GCSM/3GD] 86.66 ± 10.93 71.16 ± 4.33 2.11 ± 0.11 2.01 ± 0.34 3.20 ± 0.02 2.98 ± 0.17 82.11 17.89

[WB/GCSM/5GD] 73.68 ± 22.58 65.28 ± 1.51 2.04 ± 0.24 1.64 ± 0.68 3.00 ± 0.47 3.56 ± 0.45 88.60 11.40
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Figure 4. UHT and OHT fracture analysis of [WB/GCSM], [WB/GCSM/1GD], [WB/GCSM/3GD]
and [WB/GCSM/5GD] composites after being subjected to tensile test.

Figure 4 shows the failure mechanism of the UHT and OHT properties of WB/GCSM
composites after the tensile test. It was observed that the WB/GCSM composites experi-
enced brittle fracture behaviour, whereby the delamination mode failure occurring due to
fibre breakage and matrix cracking.

3.2. Low Velocity Impact (LVI) Properties

The impact properties of the WB/GCSM composites can be characterised in terms
of the maximum load and energy absorbed, supported by damage evaluation after being
subjected to an impact test. In other words, impact properties were determined when
the composite specimens have absorbed and dissipated the strain energy through various
failure modes, such as matrix cracking, fibre breakage and delamination. Figure 5 shows the
load-time and energy–time curves, with corresponding damage images of the WB/GCSM
composites. The load–time curves of WB/GCSM composites, with and without granite
dust, showed similar behaviours, initially with a linear behaviour and sharp peak found
between 1.80 and 2.30 ms. The sharp drop in the load implied that a small amount of
initiate energy was absorbed. However, all composite specimens have absorbed more
energy during the damage propagation process. Oscillation peaks were also observed
for all composite samples, indicating the propagation of cracks before the composite
specimens completely failed. The [WB/GCSM/1GD] composite recorded the highest peak
load, followed by [WB/GCSM/5GD], [WB/GCSM/3GD], and [WB/GCSM] composites.
The highest peak is the maximum force that the material can withstand under the specific
impact energy [3]. The [WB/GCSM/1GD] composite has also shown a higher total energy
absorbed at 23.33 J, which was an increase of 14.53% compared to the energy absorbed by
[WB/GCSM]. The total energy absorbed by [WB/GCSM/3GD] and [WB/GCSM/5GD]
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was also increased by 9.67% and 2.90%, respectively. The inclusion of granite dust has also
contributed towards increasing the impact performance of the WB/GCSM composites. The
significance of granite dust addition was also interpreted using the ductility index (DI).
The ductility index is an indication of the brittle behaviour of the composite material [29].
Thus, a low DI value would indicate that the composite material has become more brittle.
In this study, WB/GCSM composites incorporated with granite dust have higher DI values
compared to [WB/GCSM]. Consequently, the [WB/GCSM] composite was more brittle
than [WB/GCSM/1GD], [WB/GCSM/3GD], and [WB/GCSM/5GD]. The brittleness of the
composites would lead to a reduction in impact energy, as lesser load energy would lead to
failure and low ductility. Therefore, it was concluded that the inclusion of granite dust will
reduce brittleness (referring to ductility index), increase stiffness (as indicated in the elastic
region), and increase energy absorbed (as calculated from the area under the graph). All
these effects are exaggerated to reduce impact damage through the resistance to damage
progression. The impact performance of the WB/GCSM composites is summarised in
Table 3.

In general, all WB/GCSM composite specimens experienced similar failure mecha-
nisms, which occurred as localised indentation on the front face and a bulge deformation at
the back face. Damage images have revealed matrix cracking, delamination of fibres, fibre
breakage, and fibre pull-out. As reported by Hajaj et al. [11], fibre breakage and pull-out
could occur at the front face of the impacted specimen due to high stress and sudden
indentation. Meanwhile, matrix cracks at the back face of the impacted specimen could
occur due to impact and bending stress. The matrix cracking initiation and propagation
would subsequently induce delamination at the fibre interfaces, and the delamination
growth depends on the interface strength between adjacent plies.

3.3. Quasi-Static Indentation (QSI) Properties

Figure 6 shows the load–displacement curves of WB/GCSM composites, which repre-
sent the QSI behaviour of the composites during tests. It is clear that all the curves showed
similar trends, in terms of indentation responses, which can be divided into three stages.
The first stage refers to the elastic bending stage, whereby the matrix would start to crack
with increasing load. The second stage is known as the damage stage, whereby the compos-
ites would reach the highest load (maximum load), which would reduce stiffness and start
to delaminate. The point of the first drop of force is the damage initiation point, regardless
of whether maximum strength has been achieved or not. After the first force drop point,
with the following displacement increase, the fluctuations of force were observed due to
fibre breakage, which occurred in every ply of composite. It was determined that the load
carrying capacity of the composites was decreased. This phenomenon was also reported
and discussed by Bulut and Erklig [6,30]. In the last stage, the composite laminates have
completely been perforated and penetrated. For QSI behaviour, the energy absorbed was
calculated from the area under the load–displacement curves. The relationship between
maximum load and energy absorbed by WB/GCSM composites when granite dust is added
as shown in Table 4. The results showed that the maximum load for [WB/GCSM/1GD]
and [WB/GCSM/3GD] was increased by 19.86% and 8.22%, respectively, while the energy
absorbed by these specimens has increased by 5.36% for [WB/GCSM/1GD] and 9.56% for
[WB/GCSM/3GD] compared to [WB/GCSM]. However, the QSI performance was reduced
with 5 wt% of granite dust within the WB/GCSM composites. The damage behaviours of
the composites when subjected to LVI and QSI loading were relatively similar to each other
as can be seen in Figures 5 and 7, respectively. Damage behaviours observed for WB/GCSM
composites, such as matrix cracking, debonding, fibre delamination, and breakage were
anticipated based on peak frequency ranges. These types of damage mechanism were also
reported elsewhere [6,31,32].
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Figure 5. Typical force–time and energy–time curves: (a) [WB/GCSM]; (b) [WB/GCSM/1GD]; (c) [WB/GCSM/3GD]; and
(d) [WB/GCSM/1GD], with corresponding images of the front and back view after the impact test.
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Table 3. Impact properties of [WB/GCSM], [WB/GCSM/1GD], [WB/GCSM/3GD] and [WB/GCSM/5GD] composites.

Composites

Impact Properties

Peak Load (N) Deflection at
Peak Load (mm)

Total Energy
Absorbed, Et (J)

Initiation Energy,
Em (J)

Propagation
Energy, Ep (J)

Ductility Index,
Ep/Em

[WB/GCSM] 2623.7 ± 221.73 5.41 ± 0.18 20.37 ± 1.26 8.63 ± 0.67 11.74 1.36

[WB/GCSM/1GD] 3010.7 ± 249.44 4.29 ± 0.18 23.33 ± 1.43 6.75 ± 0.12 16.58 2.46

[WB/GCSM/3GD] 2763.8 ± 144.20 4.12 ± 0.71 22.34 ± 1.06 6.46 ± 1.06 15.88 2.46

[WB/GCSM/5GD] 2820.6 ± 350.90 4.21 ± 0.65 20.96 ± 4.83 5.98 ± 0.62 14.98 2.51

Figure 6. Typical load–displacement of [WB/GCSM], [WB/GCSM/1GD], [WB/GCSM/3GD] and [WB/GCSM/5GD]
composites.

Table 4. Quasi-static indentation (QSI) properties of [WB/GCSM], [WB/GCSM/1GD],
[WB/GCSM/3GD], and [WB/GCSM/5GD] composites.

Composites
Quasi-static Indentation Properties

Maximum Load (kN) Displacement (mm) Energy Absorbed (J)

[WB/GCSM] 1.46 ± 0.29 3.84 ± 0.60 8.58 ± 0.31

[WB/GCSM/1GD] 1.71 ± 0.06 2.99 ± 0.22 9.04 ± 0.08

[WB/GCSM/3GD] 1.58 ± 0.03 3.64 ± 0.67 9.40 ± 0.02

[WB/GCSM/5GD] 1.37 ± 0.07 2.71 ± 0.57 8.38 ± 0.50
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Figure 7. Damage fracture of [WB/GCSM], [WB/GCSM/1GD], [WB/GCSM/3GD] and [WB/GCSM/5GD] composites
after being subjected to QSI test.

3.4. Flexural Properties

The typical flexural stress–strain responses of the WB/GCSM composites are illus-
trated in Figure 8. The flexural modulus, flexural strength and flexural strain of the
composites, as derived from the stress–strain curves, were depicted and summarised in
Table 5. Figure 8 and Table 5 show that the flexural strength and modulus of WB/GCSM
composites has significantly improved, with the addition of 1 and 3 wt% of granite dust.
The [WB/GCSM/1GD] composite, which, with the addition of 1 wt%, showed the highest
flexural properties among the WB/GCSM composite systems. The [WB/GCSM/1GD]
composite achieved 109.07 MPa for flexural strength and 6.47 GPa for flexural modulus,
which were increments of 39.42% and 12.33%, respectively, compared to the [WB/GCSM]
composite. As for the [WB/GCSM/3GD] composite, the added 3 wt% of granite dust
loading has also improved the flexural strength and modulus by 6.26% and 8.33%, re-
spectively, compared to WB/GCSM composites. However, the flexural strength and
modulus of this specimen were reduced by 23.79% and 3.55%, respectively, compared to
the [WB/GCSM/1GD] composite. Meanwhile, the flexural strength and modulus of the
[WB/GCSM/5GD] composite were shown to be the lowest among the hybrid [WB/GCSM]
composite systems, which indicated that the higher amount of granite dust has reduced
the flexural performance of the composites.

3.5. Interlaminar Shear Strength (ILSS) Properties

Figure 9 shows the typical load–defection curves of [WB/GCSM], [WB/GCSM/1GD],
[WB/GCSM/3GD], and [WB/GCSM/5GD] composites, as obtained from the ILSS test.
These curves have similar patterns as the flexural properties and QSI behaviour, whereby
linear behaviour was initiated (elastic region) and fluctuated load was carried to the middle
until the composite completely failed. As previously discussed in the QSI section, the fluc-
tuating load can be used to determine the response of the composites when load is applied,
whereby at the early stage, the matrix started to crack, followed by fibre delamination and
fibre breakage/rupture. The [WB/GCSM/1GD] composite indicated the highest maximum
load, followed by [WB/GCSM/3GD], [WB/GCSM], and [WB/GCSM/5GD] composites.
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Figure 10 shows that the ILSS is increased by 20.46% for the [WB/GCSM/1GD] composite
and 7.82% for the [WB/GCSM/3GD] composite compared to the [WB/GCSM] composite.
It was concluded that the addition of 1.0 and 3.0 wt% of granite dust has improved the
ILSS of the WB/GCSM composites. As similarly found in other properties (UHT and OHT,
flexural, and QSI), the addition of 5 wt% of granite dust has also reduced the ILSS. The
reduced mechanical performance when nanofillers modify composite materials has been
discussed by numerous researchers [13,16,26,28]. A similar reason was reported, whereby
the agglomerated structure of the modified matrix resin caused stress concentration, thus
leading to composite failure. Furthermore, the higher filler loadings could also affect the
dispersibility of fillers within the matrix resin during the fabrication process due to a higher
filler loading can increase the viscosity of modified resin. Hence, this will lead to improper
bonding and decrease wettability resulting in poor interface adhesion between the fibres,
filler, and matrix resin. In ILSS testing, various mechanisms such as tension, compression,
and shearing take place simultaneously. Higher filler loading decreases the resistance to
shear due to poor interfacial adhesion, and thus leads to composite deficiency.

Figure 8. Typical flexural stress–strain curves for [WB/GCSM], [WB/GCSM/1GD],
[WB/GCSM/3GD], and [WB/GCSM/5GD] composites.

Table 5. Flexural properties of [WB/GCSM], [WB/GCSM/1GD], [WB/GCSM/3GD], and [WB/GCSM/5GD] composites.

Composites
Flexural Properties

Flexural Modulus (GPa) Flexural Strength (MPa) Flexural Strain at Break (%)

[WB/GCSM] 5.76 ± 0.62 78.23 ± 10.95 1.57 ± 1.52

[WB/GCSM/1GD] 6.47 ± 0.51 109.07 ± 8.72 2.04 ± 0.01

[WB/GCSM/3GD] 6.24 ± 0.43 83.13 ± 11.43 2.15 ± 0.20

[WB/GCSM/5GD] 4.28 ± 0.45 65.66 ± 2.36 2.36 ± 0.41
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Figure 9. Typical ILSS load-deflection curves for [WB/GCSM], [WB/GCSM/1GD],
[WB/GCSM/3GD] and [WB/GCSM/5GD] composites.

Figure 10. Interlaminar shear strength of [WB/GCSM], [WB/GCSM/1GD], [WB/GCSM/3GD] and
[WB/GCSM/5GD] composites.

4. Conclusions

This study has strived to develop and enhance the mechanical performance of WB/GCSM
composites via modification with a waste material, i.e., granite dust. In this study, four sys-
tems of WB/GCSM composites, namely, [WB/GCSM], [WB/GCSM/1GD], [WB/GCSM/3GD],
and [WB/GCSM/5GD] were successfully fabricated and characterised. All WB/GCSM
composite systems showed similar behaviours, with and without the addition of granite
dust, based on the load–displacement curves and the damage fractures after being tested.
Based on the flexural, QSI, and ILSS results, the load–displacement of the WB/GCSM
composites started with the elastic behaviour (linear curve). Then, the matrix started
to crack with the increase of load, followed by fibre delamination and ruptures (fluctua-
tion curve) until the composite completely failed. In conclusion, the [WB/GCSM/1GD]
composite has the highest mechanical performance compared to the other WB/GCSM
composites. The addition of 1.0 wt% of granite dust [WB/GCSM/1GD] has increased the
UHT strength by 3.72%, UHT modulus by 1.30%, LVI energy absorbed by 14.53%, QSI
energy absorbed by 5.36%, flexural strength by 39.42%, flexural modulus by 12.33%, and
ILSS by 20.46% compared to the specimen without the granite dust [WB/GCSM] composite.
The addition of 3 wt% of granite dust [WB/GCSM/3GD] composite has also enhanced the
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mechanical performance, but not as well as the [WB/GCSM/1GD] composite. The higher
addition of granite dust of up to 5 wt% has reduced the mechanical performance of the
[WB/GCSM/5GD] composites. The addition of granite dust within WB/GCSM composites
has also reduced the stress reduction index, increased the damage tolerance index and
ductility index, which confirmed the granite dust’s significant contribution. The utilisation
of granite dust may have the potential to embark into other fields as a reinforcing material.
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