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Abstract The static properties of two-dimensional athermal
polymer solutions were studied by performing Monte Carlo
lattice simulations using the cooperative motion algorithm
(CMA) and taking into account the presence of explicit sol-
vent molecules. The simulations were performed for a wide
range of polymer chain lengths N (16–1024) and concentra-
tions φ (0.0156–1). The results obtained for short chains
(N < 256) were in good agreement with those given by previ-
ous simulations. For the longest chains (512 or 1024 beads),
some unexpected behavior was observed in the dilute and
semidilute regimes. A pronounced change in the concentra-
tion dependence of chain size and shape was observed below a
certain critical concentration (0.6 for the longest chains under
consideration, consisting of 1024 beads). Longer chains be-
came more extended below this concentration. The behavior
of the single-chain structure factor confirmed these changes in
the fractal dimension of the chain as a function of the concen-
tration. The observed phenomena are related to the excluded
volume of solvent molecules, which causes the chain statistics
to be modified in the vicinity of other chains; this effect is
important in strictly 2D systems.

Keywords Cooperative motion algorithm .Monte Carlo
simulations . Polymer melts . Static properties . Thin films

Introduction

The behavior of polymer chains in two-dimensional systems
has attracted considerable interest in recent years [1–19].
Elucidating this behavior is important for understanding the
properties of macromolecules that are strongly adsorbed on
surfaces, including biological systems. A two-dimensional
system containing polymer chains can also be considered a
limiting case of systems consisting of a polymer intercalated
in layered silicates. The investigation of polymer ultrathin
films has recently become one of the most interesting research
directions in materials science. This is due to the enormous
success of organic electronic devices such as OTFTs (organic
thin-film transistors), OPVDs (organic photovoltaic devices),
and OLEDs (organic light-emitting diodes), which offer
unique advantages over well-known amorphous silicon elec-
tronics [20]. These advantages include high throughput, inex-
pensive production, mechanical flexibility, light weight, effi-
cient integration with electronic circuits, and low power con-
sumption. The above advantages mean that technology based
on ultrathin organic films is very promising, although the
speed of organic electronic devices is not that high. On the
other hand, the case of a two-dimensional athermal polymer
solution is very interesting from a polymer physics perspec-
tive. This is because strong excluded-volume interactions lead
to behavior that is not observed in the three-dimensional case.
Moreover, two-dimensional systems, treated for many years
in polymer physics as strictly theoretical, have since been
obtained practically and studied in a series of experiments.
Maier and Rädler used labeled DNA molecules adsorbed on
the surfaces of charged lipid bilayers [3, 4], Lin at al. studied
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labeled DNA conformations in nanoslits [11], and Aoki et al.
used near-field optical microscopy to study ultrathin layers of
perylene-labeled poly(isobutyl methacrylate) prepared via
Langmuir–Blodgett or spin-coating techniques [8, 9]. These
experiments in which conformations of single macromole-
cules were observed directly show that, in this situation,
DNA molecules exhibit two-dimensional conformational be-
havior, in good agreement with theoretical predictions. The
polymer escape transition of tethered chains in two dimen-
sions has also been studied [10]. Granular chains confined in
a two-dimensional glass container were investigated experi-
mentally and found to show Gaussian behavior at high densi-
ties [13]. AFM studies of quasi-2D and real 2D polymers [18,
19] highlighted structural differences between single chains
and dense systems, as the single chains exhibited typical
Gaussian behavior while the dense system involved strong
mutual interpenetration.

The behavior of long chains in 2D systems has been a
rather controversial topic in the literature. De Gennes sug-
gested that, as chain interpentration was not possible in 2D,
the chains should adopt a disc-like conformation at high con-
centrations, with other chains being practically excluded from
the region on the surface occupied by a given coil [21].
However, computer simulations did not confirm this effect,
although it should be noted that the simulated chains were
not very long, ranging from 100 [22] to 256 [1, 7] beads.
Meyer et al. observed non-Gaussian behavior of a long chain
in a dense 2D polymer system using molecular dynamics sim-
ulation [14]. This kind of behavior was also seen in other
experiments concerning dense polymer 2D systems [18], but
it was not confirmed by the direct observation of granular 2D
chains [13]. On the other hand, Vlahos and Kosmas [2] ana-
lyzed the effects of interaction parameters and chain length on
phase diagrams of polymer mixtures using the Edwards-type
Hamiltonian. The results obtained by those authors indicate
that phase separation is possible in mixtures of chemically
identical linear homopolymers of different sizes within specif-
ic ranges of chain disparity and concentration. This should
also result in significant changes in the conformational prop-
erties of the chains. Studies of chemically identical homopol-
ymer blends were also carried out for the 3D bulk case; it was
shown that stability can move in either direction when shifting
from a 2D to a 3D system [23]. These studies were extended
by performingMonte Carlo simulations of the influence of the
chain architecture on the miscibility of the polymer blend [24,
25]. Experiments have also provided detailed information on
chain conformations in a dilute solution [26, 27] and in dense
systems containing long chains [13], but the polymer concen-
tration region from 0.1 to 0.9 has not been explored experi-
mentally in depth except in relation to the percolation problem
associated with polymer chains in 2D [28–32] and dynamics
[33]. Thus, computer simulation is the method of choice for
such polymer concentrations in 2D. Such studies have been

performed using various methods: the reptation method [22],
self-avoiding random walk (SAW) [5], Brownian dynamics
[34], the bond fluctuationmodel [35], off-latticeMC simulations
[1], and molecular dynamics [36], but the ranges of chain length
and polymer concentration investigated have not been wide
enough to unambiguously exclude or confirm certain effects.

In our previous paper [37], we reported the results obtained
from Monte Carlo simulations of 2D athermal polymer solu-
tions performed using the cooperative motion algorithm
(CMA) developed by T. Pakula [38–41]. This algorithm en-
ables simulations of dense systems to be realized, and is effi-
cient enough to allow long-chain systems (up to 1024 beads in
one chain in this case) to be studied. We showed that the be-
havior of concentrated solutions of long-chain polymers is
qualitatively different from that of shorter-chain polymers.
Moreover, for the longest chains considered (consisting of
512 and 1024 segments), a kind of microphase transition was
observed (domains of pure solvent of a similar size to the
chains themselves appeared in those systems). In the present
paper, we summarize the results of a detailed analysis of the
influence of concentration on polymer chain size and structure,
with the full range of polymer concentrations considered.

Methods

In simulations employing the cooperative motion algorithm
(CMA), ensembles of beads located at lattice sites are con-
nected by unbreakable bonds to form structures representing
macromolecules [38–45]. All lattice sites are occupied, so this
model represents dense systems such as polymer melts. The
results presented here were obtained by performing simula-
tions on a 2D triangular lattice. The coordination number of
the lattice was six, i.e., each monomer had six nearest neigh-
bors. The bond length was equal to 1.

Each lattice site could only be occupied by a single molec-
ular element (a polymer bead or a solvent particle), i.e., the
excluded-volume condition was applied to the system. In such
systems, strictly cooperative dynamics involving rearrange-
ments that satisfy the local continuity condition are employed
(no empty lattice sites are generated). A segment of one chain
can move only if neighboring segments of the same chain,
segments of different chains, or solvent molecules move si-
multaneously. This is realized by introducing local motions
consisting of displacements of a certain number of molecular
elements along closed loops, meaning that each element re-
places one of its neighbors in such a way that the sum of
displacements of the elements taking part in the rearrangement
is zero (continuity condition). During such rearrangements,
the model macromolecules undergo conformational transfor-
mations while preserving their identities. All conformations
that satisfy these conditions are allowed. In this model, the
relative probabilities of conformations do not have to be

63 Page 2 of 10 J Mol Model (2017) 23: 63



modified a priori. If the available conformations of a chain are
restricted by the presence of impenetrable walls or parts of
other chains, adjustments occur based on the feasibility of
closing the displacement loops involving this conformation.
This is why the CMA model has been successfully used to
simulate complex macromolecules such as multiarm stars [24]
and linear chains in a confined space [24, 25].

Quantities characterizing the system were calculated be-
tween cooperative rearrangement steps. The time step corre-
sponds to the number of simulation steps that must occur
before an average of one attempt to move each bead has been
made. Although the CMA algorithm has not been rigorously
shown to be ergodic for any polymer system, it has been
proven to be ergodic for dimers by Reiter [38–40]. The need
for a detailed balance in the athermal polymer system consid-
ered here corresponds to showing that the transition probabil-
ities between two neighboring states are equal. In this algo-
rithm, two such states are always reversible and are separated
by cooperative rearrangements along cooperative loops of the
same size and form but with different directions of motion.
Because a loop consists of vectors that can point in any direc-
tion with equal probability, this condition is satisfied.
Moreover, it remains valid for any polymer system because
the loops are independent of the structure. More details about
the algorithm used are given elsewhere [38–41]. We consid-
ered a two-dimensional system of flexible polymer chains
immersed in a solvent (in the case of a polymer melt, the
system was filled with polymer beads only). The size of a
solvent molecule was the same as that of the monomer. The
model used here consisted of 256 × 256 beads, i.e., its edge
was longer than the average end-to-end distance of the longest
simulated chain (1024 beads). Periodic boundary conditions
were employed in all directions. To be sure that the effects
observed for the longest chains (1024 beads) did not arise
because the simulated system was too small (especially at
low polymer concentrations), we also performed simulations
of these chains in a larger system of 512 × 512 beads.

The polymer concentration φ is defined as the ratio of the
sites occupied by the polymer beads to the total number of
lattice sites. Thus, φ = 1 means that all the sites are occupied
by polymer beads. The condition in which we must have an
integer number of chains in the simulation box imposes re-
strictions on the concentrations studied. For instance, when
N = 1024 and one chain is present in the box, φ = 1024/
2562 = 0.015625; for two chains, φ = 0.03125, etc. It should
be noted that this definition is different from that used in off-
lattice simulations. For instance, Yethiraj [1] defines the con-
centration as the ratio of the sum of the surface areas covered
by the circles representing polymer monomers to the total
surface area. This means that the maximum concentration
available corresponds to the close packing of circles, so it is
equal to ca. 0.9069, and therefore a related correction should
be made when comparing our results with Yethiraj’s.

At the beginning of the simulations, the polymer chains
were fully extended in the x direction (and folded if necessary).
The equilibration of the system was monitored by observing
several parameters. It was observed that all of the monitored
quantities (defined in the next section) reached their equilibri-
um values after approximately the same simulation time had
elapsed. An example of this time dependence is shown in [37]
for Rg. The equilibrated systems obtained in this way were used
as input systems in the simulations discussed below.

Results and discussion

Parameters determined

The conformational properties of the chains in the simulations
were monitored by calculating the following parameters:

– Mean square radius of gyration 〈Rg
2〉:

R2
g

D E
¼ 1

N

XN

i¼1

ri−rcmð Þ
2* +

; ð1Þ

whereN is the total number of beads constituting the chain
and rcm is the coordinate of the center of mass of the chain.

– Gyration tensor T:

Tkl ¼ 1

N

XN

i¼1

rik−rcm;k
� �

ril−rcm;l
� �* +

; ð2Þ

where k and l are the coordinates x and y, rik is the kth
coordinate of position ri, and rcm,k is the kth coordinate of
the center of mass of the chain. The tensor T has two
eigenvalues—denoted λ1 and λ2 (with the convention
λ1 ≤ λ2)—which fulfill the relation

R2
g ¼ λ1 þ λ2: ð3Þ

– Asphericity parameter A2, defined as

A2 ¼
λ2−λ1ð Þ2

D E

λ2 þ λ1ð Þ2
D E ; ð4Þ

which means that A2 = 1 for a fully extended chain and
A2 = 0 for a disk.

– Intramolecular site–site correlation function for sites sep-
arated by r = |ri − rj|:

γ rð Þ ¼ 1

N
c rið Þ⋅c r j

� �� �
; ð5Þ

where c is a contrast operator that takes a value of 1 for
sites occupied by elements of the same chain and a value
of 0 for every other site.
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– Static structure factor:

S qð Þ ¼
X
i j

γ rð Þ sin qrð Þ
qr

; ð6Þ

where q is the scattering vector and γ denotes the bead-to-
bead correlation function (Eq. 5).

– Pair center-of-mass correlation function, which character-
izes chain packing and was calculated using the following
definition:

gcm cm rð Þ ¼ 1

ϕ2

Xn

i

Xn

j

δ rið Þδ r j−r
� �

* +
; ð7Þ

where rj denotes the position of the center of mass of the
jth chain.

Chain size

Figure 1 shows the chain-length dependence of the mean
square radius of gyration Rg

2 for various polymer concentra-
tions φ. A very similar picture was obtained for the mean-
square end-to-end distance Ree

2 . In principle, these quantities
should scale with the chain length as [21, 46, 47]

R2
g

D E
∝N2ν: ð8Þ

In 2D systems, 2ν should be equal to 1 for a single ideal
chain or for a chain in a melt, and equal to 1.5 for dilute
solutions in good solvent conditions. (The exponent 2ν was
determined experimentally for single chains and found to be
1.30 in a quasi-2D system [11] and 1.58 in 2D systems [3]).

Therefore, in a good solvent, when shifting from a dilute re-
gime to a dense polymer melt, it is expected that the exponent
2ν will change from 1.5 to 1. In Fig. 1, we can see that this
relationship is generally fulfilled, but there are some signifi-
cant deviations from it. The curves forφ values of between 0.2
and 0.5 (thicker lines) have an s-like shape. The slope of the
curve is ca. 1.25 for short polymers, but aboveN = 64 the slope
decreases, becoming equal to 1 between N = 128 and 256.
2ν > 1 is observed because the solutions containing short
chains are at semidilute concentrations while the solutions
containing long chains are concentrated solutions [29]. This
effect is related to the concentration-dependent correlation
length of the chain in the semidilute regime, which can also
be described using the concept of blobs (see below) [21].What
is surprising is that the exponent 2ν increases again for the
longest chains (N > 256), slightly exceeding the theoretical
value of 1.5. This increase over the intermediate concentration
range may be explained by the microphase separation effect
[36]. However, this effect is also clearly seen for the lowest
polymer concentration studied (φ = 0.05). It seems, therefore,
that it must be related to strong excluded-volume interactions
in 2D systems [3], especially when solvent molecules are ex-
plicitly taken into account. It appears that chains tend to be
more rod-like in such polymer–solvent systems (the reasons
for this behavior will be discussed in subsequent sections).

Figure 2 shows the mean square radius of gyration Rg
2 as a

function of the polymer concentration φ for various chain
lengths. To better illustrate the conformational changes in-
volved, the results for the longer chains (N = 256, 512, and
1024) are presented in double-logarithmic coordinates in the
inset. It can be seen that in all cases, Rg

2 decreases with increas-
ing polymer concentration, as predicted by various theories
[21, 46]. The following scaling prediction has been suggested:

R2
g

D E
∝φ 1−2νð Þ= dν−1ð Þ; ð9Þ

where d is the spatial dimension of the system. In the 2D case,
we find that Rg

2 ∼ ϕ−1. This scaling behavior is valid for high
concentrations, whereas the concentration dependence levels
off for dilute systems. It is apparent that, for the longest chains,
there is a transition between the semidilute regime and the
concentrated regime, which we have interpreted [37] as being
due to a microphase separation. This transition is clearly vis-
ible in spite of the fact that the errors in the values of Rg

2 for
longer chains are considerably larger than those for shorter
chains. When we refer to a microphase separation, we mean
the temporary formation of large solvent bubbles inside the
chain contour. These domains of solvent disappear during the
simulation but others are being formed. This phenomenon
takes place in the φ range between 0.6 and 0.2 for N = 1024
and between 0.5 and 0.3 forN = 512. It is worth noting that the
chain size increases considerably in the microphase separation
region and is not constant as might be expected. This increase
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Fig. 1 Chain-length dependence of the mean square radius of gyration
Rg

2 for various polymer concentrations (φ = 0.05, …, 1.0). The thicker
lines correspond to φ = 0.2, 0.3, 0.4, and 0.5
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is related to the fact that the microdomains of the solvent are
surrounded by parts of some of the chains that must be
stretched (as can be observed in Fig. 3, where snapshots of
the systems studied are presented). The inset in Fig. 2 presents
results for longer chains on a log-log scale. The two different

regimes of the chain’s size behavior are clearly visible in this
figure. In order to check if the size of the simulation box
influences the structures of longer-chain systems at densities
where microphase separation appears to occur, we performed
additional simulations with the length of the Monte Carlo box
edge doubled (512 × 512). These results can also be viewed in
the inset in Fig. 2. The chain size in the larger box differs from
that in the smaller box only at very low concentrations, and the
differences are rather small. However, the shape of the Rg

2(ϕ)
curve does not change, so the size of the Monte Carlo box
cannot be responsible for the presence of two regimes.

To support the supposition that the difficulty encountered
by solvent molecules when attempting to pass over the top of a
long chain is an important problem in a strictly 2D system
with long chains, we also performed some additional simula-
tions for a quasi-2D system. In this case, the simulation box
contained not one but two layers of polymer beads. For quite
long chains, adding a second layer should not change the
chain size and shape—the third eigenvalue of the gyration
tensor is negligible in this case, e.g., for N = 1024 at φ = 0.8,
this eigenvalue (λ3) is less than 0.2% of λ1. Figure 4 shows a
comparison between the 2D and quasi-2D simulations per-
formed for the chain N = 1024 in terms of the concentration
dependence of the mean-square end-to-end distance Ree

2 . It is
clear that the curves split below the density (φ = 0.6) at which
the microphase separation was suggested to occur: the size of
the strictly 2-D chain increases and the difference between the
curves becomes quite pronounced at low polymer concentra-
tions. This anomalous increase in the radius of gyration is not
observed in the two-layer system. The supposed microphase
separation (the formation of solvent bubbles inside the chain
contour) does not appear here, as solvent molecules can easily
move in a relatively short time from one side of the chain to
the other via the second layer.
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Fig. 2 Concentration dependence of the mean square radius of gyration
Rg
2 for various chain lengths. The error bars are also shown for all chain

lengths. The inset shows the results for the longest chains (N = 256, 512,
and 1024) plotted in double-logarithmic coordinates. The values of Rg

2 for
the longest chains (N = 1024) in a large box (512 × 512) are indicated by
crosses

Fig. 3 Snapshots of simulated
systems for N = 512 at various
polymer concentrations. A region
of high polymer concentration for
φ = 0.2 is denoted by a dashed
ellipse. The arrows in the central
panels indicate larger domains of
pure solvent in the phase-
separated systems (for φ = 0.3 ,
0.4)
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Chain shape and packing

Figure 5 shows typical snapshots of polymer melts (φ = 1) for
various chain lengths. It can be seen that some chains adopt a
compact, disc-like form, with other chains completely exclud-
ed from the coil area (as suggested originally by de Gennes
[21]), while other chains can be found in extended configura-
tions or have a dumbbell shape with two compact domains
joined by a stretched fragment. Many long chains even pene-
trate deeply into the discs of other coils, resulting in exotic
forms such as those indicated by arrows in Fig. 5. The pres-
ence of disc-like chains and of interpenetrated discs was ob-
served for both short and long chains. Shorter chains (also
shown in the zoomed snapshot for N = 64 in Fig. 5) have
various shapes but coil interpenetration is rare. Please note
that although all of the chains in the same snapshot are the
same length, neighboring chains sometimes have practically
the same color, so two or even three chains look like one very
large coil (this effect is highlighted for three green chains
indicated by arrows in the top right panel of Fig. 5, which
shows a zoomed area of the top left panel).

Snapshots of the simulated systems for N = 512 at different
polymer concentrations are presented in Fig. 3. It is clear that
there is a big difference in chain conformation between the con-
centrated and diluted regimes. In concentrated solutions, most of
the chains adopt a compact conformation similar to that seen in
the melt (see Fig. 5) in which the surface area occupied by the
coil is densely filled by the coil. Thus, the coil size is small. On
the contrary, in the diluted regime, the chains are mostly extend-
ed, so the average coil size is much larger. The picture forφ = 0.1
closely resembles fluorescent microscopy images of adsorbed
DNA chains presented in [3, 4]. The coil contraction that occurs
with decreasing dilution is much more pronounced in the 2D
than in the 3D case due to strong excluded-volume interac-
tions—the chains cannot cross each other, so they are much
more compact in the melt. In the concentration range 0.3–0.4,

relatively large domains of pure solvent appear; this phase sep-
aration is discussed in more detail in [37]. Such domains are
usually largely surrounded by part of a chain, which acts as a
domain border. Also, for φ = 0.2, the system is not quite homo-
geneous; regions with high polymer concentrations (marked by
an ellipse in Fig. 3) are separated by domains in which the
polymer concentration is significantly lower.

Two scenarios have been suggested for chain packing in
2D. In the first, it is argued that the chains cannot interpene-
trate and therefore the polymer coils must be segregated disks
[21]. Such segregation results in a very deep correlation hole
because other chains are almost entirely excluded from a re-
gion approximately the size of a single chain. On the other
hand, in the second scenario (the scaling theory), chains inter-
penetrate in the semidilute regime [46]. Analysis of the snap-
shots in Figs. 3 and 5 indicates that interpenetration is a com-
mon phenomenon, even in the melt (φ = 1). Figure 6 shows
the chain center-of-mass correlation function gcm-cm(t) calcu-
lated according to Eq. 7 for various chain lengths and plotted
in reduced coordinates r/Rg for concentrations φ = 0.5 and
φ = 1, respectively. It is clear that in polymer melts (φ = 1),

Fig. 5 Snapshots of simulated systems at full polymer occupancy
(φ = 1.0) for selected chain lengths. The top right panel shows an
enlargement of the left-hand panel (the enlarged area is indicated by the
square). For N = 64, the arrows indicate the ends of three green chains.
The arrows for systems N = 256 and 512 indicate chains with exotic
shapes, which are generated when chains interpenetrate other coils
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Fig. 4 A comparison between 2D and quasi-2D (two-layer) simulations
for the chain N = 1024 in terms of the concentration dependence of Ree

2
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chain interpenetration increases slightly with increasing chain
length, but this correlation is weak (Fig. 6a). The values of
g(r)cm_cm for small r/Rg values are also small in all cases. This
means that, in a dense system, the exclusion of other chains is
strong and the chains are disc-shaped, although the tendency
to penetrate other chain coils increases with increasing chain
length. Experiments on real 2D systems have revealed that
interpenetration occurs in dense polymer systems [18]. For a
concentration of φ = 0.5, the correlation hole for a chain length
N of 32 (as a fraction of Rg) is definitely wider, which suggests
that short-chain coils exhibit greater separation from each oth-
er. Another striking difference is that the values of g(r) for
small r/Rg are much higher for long chains. This may be due
to the more oblate shape of long-chain coils and/or the irreg-
ular shapes of many of them, which make interpenetration
more likely (chain interpenetration is usually considered to
be penetration into a circle of a radius Rg; thus, rod-like chains
interpenetrate more than disc-like ones).

It is also interesting to examine how the chain shape chang-
es with increasing polymer concentration for short and long
chains. The average chain asphericity A2 is shown as a

function of the polymer concentration φ in Fig. 7. For
N < 256 (thin lines), there is only a small decrease in A2 with
increasing φ (ca. 10%, which is similar to the value obtained
in off-lattice Monte Carlo simulation studies [1]). Similar be-
havior is observed for long chains at φ values higher than the
critical concentration for microphase separation (φc ≅ 0.6).
Chains with N > 16 exhibit the same asphericity in both a
concentrated solution and in the melt, A2 = 0.52, which is well
below the theoretically predicted value of 0.59 [48] or the
values of 0.52–0.62 found in previous simulations [1, 31].
At low concentrations, the chain shape for 32 <N < 512 is also
in reasonable agreement with simulation data (0.63–0.64 [1])
and experimental values (0.61 for real 2D systems [5] and
0.56 for quasi-2D systems [11]). The low values of A2 for
N < 32 are probably due to the lattice effect. The values ob-
tained in off-lattice simulations [1] for short and long chains
are very similar. The concentration dependence of A2 for the
longest chains is very different. In this case, at low φ, the
asphericity is very high and decreases sharply with increasing
φ, but it increases again in the semidilute region. In the con-
centration range corresponding to phase-separated systems,
the asphericity of long chains is high, which is most probably
related to anomalous stretching of the chains at the solvent
domain boundaries, and it shows considerable scatter. Close
to the critical concentration for microphase separation, A2

drops rapidly before leveling off at higher concentrations.
Generally, at low concentrations, the longest chains have a
more oblate, rod-like shape than short chains, in contrast to
the concentrated regime, where all chains have similar A2

values and are more disk-like. The simulations performed in
the larger box reproduce the nonmonotonic asphericity behav-
ior of longer chains.

Chain structure

The structural properties of polymer chains can be analyzed
using the static structure factor. If we consider a disc of radius
r around a given bead, and there are k beads from the same
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chain inside that disc, then γ(r) ∝ k/r2, where γ(k) is the intra-
molecular site–site correlation function defined in Eq. 5. If the
mean-square end-to-end distance scales with the number of

segments as Ree
2 ∼ k2ν, then γ rð Þ∝r1ν−2. Taking the Fourier

transform and using scaling theory, we obtain the following
scaling of the structure factor [1]:

S qð Þ∝q−1
ν ; ð10Þ

where q is the scattering vector. The situation is more compli-
cated in semidilute solutions when macromolecules behave as
ideal chains of Bblobs^ [21]. In this case, the scaling exponent
should be equal to 3/4 within a correlation length ξ and equal
to 0.5 at a larger scale. Therefore, the slope should change
from ca. –4/3 to −2 around q = 2π/ξ in a plot of logS(q) vs.
logq. This effect was indeed observed for simulated chains
with lengths of up to N = 10029. Figure 8 depicts the structure
factor of a single chain as a function of the scattering vector q
for a chain length N of 512 at various concentrations. The
results shown for high and low polymer concentrations are
in agreement with the fractal scattering law (Eq. 10), i.e., the
slopes of these curves in Fig. 8 are equal to −4/3 and −2,
respectively. Note that the results obtained for a very high
concentration of chains (φ ∼ 1.0) are in perfect agreement with
those attained in a recent experiment on granular chains [13].
Moreover, there do not appear to be any of the deviations that
were reportedly obtained in other molecular dynamic simula-
tions [14], where a non-Gaussian chain shape was obtained
with slopes of S(q) approaching 11/4. We also find that the
slope at low q is indeed higher than that at large q for inter-
mediate concentrations (see the inset in Fig. 8). In other
words, at large scale, the chains behave as if they are in a
dilute solution, whereas they behave as if they are in a dense
system at short range.

Conclusions

We have presented the results of simulations of 2D polymer
solutions over a broad range of chain lengths and concentra-
tions, including polymer melts. In contrast to previous simu-
lations performed in this context, solvent molecules were ex-
plicitly taken into account. The results obtained for solutions
of short chains (N < 256) were in good agreement with rele-
vant previous simulations and theory. For the longest chains
(512 and 1024 beads), some unexpected behavior in the
semidilute and dilute regimes was observed. The radius of
gyration, the end-to-end distance, and the chain asphericity
all showed a rapid change in concentration dependence at
around φ = 0.6–0.2, and we propose that this is due to a mi-
crophase separation [31]. However, deviations from the
models were also observed for the lowest concentrations, be-
low the internal concentration φ*, as the models do not take
into account the strong effect of solvent excluded-volume in-
teractions in 2D (solvent incompressibility). The longest
chains clearly deviated from the scaling laws: the radius of
gyration and the end-to-end distance increased with N faster
than expected, and their ratio also increased. The chains be-
came more rod-like and their asphericity exceeded 0.8 for
N = 1024. The results were in agreement with the previous
simulations and with theory at high concentrations (φ > 0.6),
even for the longest chains.

The single-chain scattering structure factor showed chang-
es in the fractal dimension of the macromolecule as a function
of concentration. In the semidilute and concentrated regimes,
a crossover in the fractal dimension between low and high q
was observed, in agreement with theory and with the results of
previous simulations of shorter chains. This can be used to
determine the correlation length. It was found that, for the
longest chains, the concentration dependence of the correla-
tion length saturated in the semidilute regime, as expected in
the case of phase separation. Simulation snapshots and the
center-of-mass correlation function showed an increase in
chain interpenetration and a decrease in the correlation hole
for long chains (especially at intermediate concentrations). To
support the supposition that the observed anomalous behavior
was a result of explicit solvent treatments where the solvent
molecules could not pass over the chain in 2D, additional
simulations were performed in a two-layer simulation box
(quasi-2D system) in which the solvent molecules could easily
pass over a long chain. The chain size for concentrations
above that corresponding to phase separation was found to
be the same as the chain size seen in the 2D system, but no
anomalous increase was observed at low concentrations for
the two-layer system. We can therefore say that long polymer
chains behave in a different way in a 2D solution when the
solvent is confined in 2D and its excluded volume is taken into
account. The presence of an incompressible solvent modifies
the probability that the conformation of a chain will change in

10
-1

10
0

10
1

10
0

10
1

10
2

10
-1

10
0

10
0

10
1

10
2

slope -2

S
(
q
)

q

slope -1.775

slope -1.49

Fig. 8 a The single-chain structure factor S(q) for various polymer
concentrations (chain length N = 512). The inset shows an enlargement
of the central portion of the plot for φ = 0.5 (thicker line) to highlight the
change in the slope at q corresponding to the correlation length
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the vicinity of other chains. This effect is weaker for high
concentrations and short chains, so our results agree with the
previous findings in such cases.

Two-dimensional systems are also considered a limiting
case of confined geometry. The model considered in this work
corresponds to polymers intercalated in layered silicates, with
solvent molecules only rarely crossing the polymer chains; the
model does not correspond to chains adsorbed on a surface,
meaning that the solvent molecules can move in 3D space and
only the polymer is confined to 2D. It is also worth noting that
extrapolations of the results obtained from simulations of
short chains must be performed with care—important effects
that only become apparent for sufficiently long chains and
when considering a broad concentration range can be missed.

Open Access This article is distributed under the terms of the Creative
Commons At t r ibut ion 4 .0 In te rna t ional License (h t tp : / /
creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
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