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ABSTRACT

Stroke is a leading cause of death worldwide,
and about a quarter of stroke patients are dead
within 1 month. The prognosis is even worse for
those with hemorrhagic stroke because the
1-month mortality approaches 50%. Besides,
most patients who survive experience compli-
cations such as nausea, vomiting, and chronic
pain. These adverse experiences, especially the
existence of chronic pain, can lead to a decline
in the patient’s quality of life. In order to
improve the treatment and prognosis of hem-
orrhagic stroke, there is an urgent need to
understand its pathophysiological mechanism
as well as the chronic pain it induces. This paper
reviews studies of the molecular mechanisms of
hemorrhagic stroke, especially the activation of
microglia and the relationship between micro-
glia and pain after stroke, which could shed new
light on hemorrhagic stroke treatment.
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Key Summary Points

Chronic pain is one of the most
troublesome sequelae of stroke. It is
reported that about 11–55% of stroke
patients will suffer chronic pain.

Pain after stroke is related to the activation
of microglia; there is an urgent need to
understand the associated
pathophysiological mechanism.

This paper reviews studies of the
molecular mechanisms of hemorrhagic
stroke (HS), especially the activation of
microglia and the relationship between
microglia and pain after stroke.

Microglia are a therapeutic target for
hemorrhagic stroke and HS-related pain.

INTRODUCTION

Hemorrhagic stroke (HS) has the second highest
incidence of any type of acute stroke, account-
ing for 10–20% of all strokes [1]. Every year,
more than a million people around the world
are affected by this disease, and this number will
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increase greatly due to the aging of populations.
Hemorrhagic stroke can induce vomiting,
dizziness, impaired consciousness, and even
hemiplegia. In addition to the abovementioned
acute symptoms, most patients will suffer
paraesthesia, in which the most unbearable
feeling is chronic pain, which affects the prog-
nosis and quality of life of those patients.

Pain is one of the most troublesome sequelae
of stroke. It is reported that about 11–55% of
stroke patients suffer chronic pain, which is
mostly related to anxiety caused by long-term
illness [2, 3]. The most common manifestations
of chronic pain after stroke are shoulder pain,
central post-stroke pain, cramps, and tension-
type headaches [4]. The pathogenesis of post-
stroke pain (PSP) remains unknown, but it has
been suggested that the underlying causes
include hyperexcitation in the damaged sensory
pathways, central nervous system lesions, or a
combination of the two. For central nervous
system lesions, the most important factor is
microglia dysregulation.

In this review, we provide an overview of
microglial function after hemorrhagic stroke
and in the process of PSP, especially microglial
polarization, modulators, and interactions with
other cells. We also address clinical observations
and highlight new therapeutic directions relat-
ing to microglia for hemorrhagic stroke and
PSP.

This article is based on previously conducted
studies and does not contain any new studies
with human participants or animals performed
by any of the authors.

ACTIVATION OF MICROGLIA
FOLLOWING HEMORRHAGIC
STROKE

When hemorrhage occurs, brain damage, which
is mainly caused by edema or hematoma, will
develop rapidly within the first few hours. Brain
edema and hematoma increase the intracranial
pressure sharply, which induces herniation and
death [5]. Later on, microglia act as intracranial
phagocytes, protecting the brain tissue by
eliminating blood cells and other small mole-
cules. In the middle and late stages, microglia

transform into inflammatory cells and secrete
large amounts of proinflammatory factors to
destroy the vascular endothelium. The direct
phagocytosis and the indirect effects of proin-
flammatory factors will aggravate the hemor-
rhagic injury. Activation and modulation of the
microglial phenotype not only help to absorb
the hematoma or edema but they also improve
white matter integrity, brain repair, and func-
tional recovery [6].

MOLECULAR MECHANISMS
UNDERLYING MICROGLIAL
ACTIVATION FOLLOWING
HEMORRHAGIC STROKE

Phenotypic Polarization of Microglia
and Markers

In response to CNS inflammation and brain
injury, microglia cells can be activated; they
then migrate to the lesion and envelop the
injury zone. Activated microglia have been
found in the perihematomal region as early as
1 h after hemorrhagic stroke [7], where they
provide protective effects—clearing the debris
and hematoma and promoting neurogenesis.
Microglia acutely stimulated by a hemorrhage
can be activated to two polarization states: M1,
for promoting inflammation, and M2, for sup-
pressing inflammation. A few minutes after the
stroke, M1-phenotype microglia cells secrete
and recruit inflammation factors such as Toll-
like receptor 2 (TLR2) and TLR4 [8–10], INF-c,
and complement C3a and C5a. Almost the pro-
inflammation factors are induced by the M1
type. The proinflammatory molecules activated
by M1 microglia comprise the interleukin (IL)
family (IL-1b, IL-6, IL-12, and IL-23), tumor
necrosis factor alpha (TNF-a), chemokines
(CX3C), redox molecules (NADPH oxidase,
phagocyte oxidase, and inducible NO synthase),
costimulatory proteins (CD40), and major his-
tocompatibility complex II (MHC-II) [11–15].

On the contrary, M2 microglia play a pro-
tective role by promoting anti-inflammatory
effects and suppressing oxidative injury [16, 17].
These cells create anti-inflammatory mediators
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such as IL-10, transforming growth factor beta
(TGFb), glucocorticoids, arginase-1, Ym-1
(chitinase 3-like 3), and CD206 [18–20]. M2
microglia are also considered to be nerve-re-
pairing cells, as they secrete anti-inflammatory
factors and upregulate neuroprotective factors
in CNS disease.

M1 and M2 microglia express different fac-
tors, so different molecular markers can be used
to distinguish these two phenotypes by double
or triple immunofluorescence. Usually, M1
microglia markers can be labeled with MHC-II,
CD16, CD32, CD80 (B7-1), CD86 (B7-2), and
CD40 (TNFR). M2-cell-specific antigens include
Ym-1, CD206 (mannose receptor), CD68, and
arginase-1.

Dynamic Changes in Microglial
Polarization

It was observed that hemorrhage induced the
activation of microglia with high M1 pheno-
type gene expression at 24 h, while the expres-
sion of M2 phenotype genes gradually increased
in the first 2 weeks, and the expression time
varied slightly in different brain regions [21].
This contrasts with what is seen following
ischemic stroke, where the M2 phenotype
increases first, followed by the M1 phenotype
[22]. These results suggest that the spatiotem-
poral dynamics of microglia polarization may
be related to the degree of damage and the
disease model considered.

Based on existing evidence and studies, once
microglia have been activated by acute injury,
they can change dynamically; this is especially
seen in collagenase-induced [23, 24] and blood-
induced [25] models. In mice with collagenase-
induced cerebral hemorrhage, the microglia
complete the transition from M1 to M2 phe-
notype within 1–3 days. In mice with blood-
induced cerebral hemorrhage, this transition
occurs within 1 week. Generally speaking, about
3 days after an intracerebral hemorrhage,
microglia polarize into the M1-like phenotype,
which is the main reason for the activation of
microglia in the acute phase after hemorrhage,
whereas M2-like microglia may play a role in
the long-term recovery from stroke.

Furthermore, studies have shown that in the
process of microglial polarization, M2-type cells
have multiple subtypes that are involved in
damage repair and anti-inflammatory processes,
and they play an important role (see Table 1
[26]).

Other Important Factors Related
to Microglia Activation

Microglia are activated in the core part of the
hemorrhagic stroke lesion and the perihe-
matoma [23, 24]. The activated microglia pro-
duce a large number of inflammatory mediators
that cause the activation of and changes in
various inflammatory signal pathways [27, 28].

NLRP3
The collagenase-induced hemorrhagic stroke
model presented an activated NLRP3 (NACHT
leucine-rich repeat protein 3) signal pathway.
Typically, NLRP3 activation is induced by the
inflammatory response caused by bleeding;
heme and other blood components in the blood
can activate this pathway [29]. In addition,
endogenous cytokines and other stimuli
(pathogens, etc.) can activate the classical NLRP
pathway. Exogenous or endogenous stimuli act
through TLR4 or TNFR to activate the NF-jB
pathway together with caspase-8 and FADD
(FAS-associated death domain protein) [30], and
they also initiate the transcription and transla-
tion of NLRP3 and pro-IL-1b. After NLRP3 has
been activated, lysosomes are destroyed, result-
ing in the release of cathepsin B. At the same
time, active caspase-1 can cleave the precursor
IL-1b and the precursor IL-18 to mature [31]. In
the nonclassical pathway, LPS directly induces
the activation of intracellular caspase-11 (ho-
mologous to human caspase-4 and -5) [32],
which in turn activates NLRP3 [32].

TREM2
Triggering receptor expressed on myeloid cells 2
(TREM2) is a natural immune receptor that is
mainly expressed in myeloid cells. In the ner-
vous system, it is mostly expressed in microglia,
with a small amount expressed in astrocytes and
neurons [33, 34]. After injury, its protein
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expression density in microglia is about 300
times that of other glial cells [35, 36]. This type
of receptor is related to a variety of cellular
processes, such as cell proliferation, regulating
the release of proinflammatory factors, and
promoting the phagocytosis of microglia [37].
Unlike TREM1, TREM2 is considered to provide
negative feedback regulation [38]. This effect
has been confirmed in a variety of neurological
disease models. For example, in Alzheimer’s
disease and multiple sclerosis models, it was
found that overexpression of TREM2 can inhibit
the inflammatory response and play a protec-
tive role [39–41]. The latest research has shown
that the endogenous expression of TREM2 in
the ipsilateral/right hemisphere after intracere-
bral hemorrhage increases in a time-dependent
manner, reaching a peak at 24 h after intrac-
erebral hemorrhage [42]. The PI3K/Akt signal-
ing pathway serves as a downstream target of
TREM2 [43, 44], which is likely to play a vital
role in the process of cerebral hemorrhage.
Therefore, the research and development of
drugs that can induce high expression of
TREM2 have become a broad prospect for clin-
ical therapeutic applications.

VAP1
Vascular adhesion protein 1 (VAP1) is a glycated
protein that can regulate inflammation and at
the same time provides a molecular basis for the
adhesion and migration of white blood cells
[45]. A study of subarachnoid hemorrhage in
rats found that the use of VAP1 inhibitors can
reduce the deterioration of neurological

function after injury [46]. Similarly, VAP-1
inhibitors can downregulate the expression of
adhesion molecules, thereby reducing the
infiltration of neutrophils into the injured site.
Subsequently, the proinflammatory cytokines
TNF-a and MCP (monocyte chemoattractant
protein) were significantly reduced, suppressing
the activation of microglia or macrophages and
ultimately improving the behavioral neurolog-
ical function and brain edema of mice [47].

Microglial Crosstalk with Other Cells
During Hemorrhagic Stroke

Astrocytes
The main role of astrocytes is to connect neu-
rons to the CNS vasculature and act as a bridge.
Anatomically speaking, the unique structure of
an astrocyte extends from the cell body of the
astrocyte to its end-feet, which attach to the
basement membranes of endothelial cells. This
structure helps maintain the integrity of the
blood–brain barrier and prevents harmful sub-
stances in the blood from entering the brain.
However, in central nervous system inflamma-
tion, microglia receive chemical stimulation
and migrate to the blood–brain barrier. In this
process, microglia initially play a protective role
by secreting endothelial connexin (claudin-5);
later, as the inflammation continues, they
swallow the ends of astrocytes, breaking the
blood–brain barrier and aggravating the
inflammation of the nervous system [48–50].
More interestingly, it was observed that astro-
cytes could transform into mature neurons

Table1 Characteristics of M1 and M2 microglia

Markers Factors secreted and recruited Function

M1 MHC-II, CD16, CD32, CD80

(B7-1), CD86 (B7-2), and

CD40 (TNFR)

TLR2, TLR4, INF-c, complement C3a and C5a,

IL-1b, IL-6, IL-12, IL-23, TNF-a, CX3C,

NADPH oxidase, NO synthase, CD40, and

complex II (MHC-II)

Proinflammatory; nerve

injury

M2 Ym-1, CD206, CD68, and

arginase-1

IL-10, TGFb, glucocorticoids, arginase-1, Ym-1, and

CD206

Anti-inflammatory; nerve

repair; suppressing

oxidative injury

In contrast to the function of M1-type cells, M2-type cells have an immunoprotective function
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in situ under stroke conditions [51], suggesting
that the mature brain is capable of replacing
neurons lost after injury [52], even though these
newborn neurons from astrocytes have a little
function which cortical neurons have.

Monocyte Macrophages
Similar to microglia, these are innate immune
cells and respond earliest to lesions. Interferon c
(IFN-c) secreted by TH1 cells can convert mac-
rophages into activated histiocytes, which can
produce nitrous oxide and other oxygen-
derived free radicals to kill pathogens. However,
excessive release of inflammatory factors can
exacerbate cell damage in hemorrhagic stroke.
Macrophages have the same activation path-
ways and effects as microglia during the hem-
orrhage process. The markers of these two kinds
of cells are almost the same, e.g., IBA1, CD11b,
and F4/80 [53]. However, there are at least two
differences between microglia and monocyte
macrophages. Firstly, some studies have shown
that macrophages that are activated by injury
and migrate from the blood into the lesion
express even more of the M2 phenotype than
microglia that proliferate in situ. Macrophages
that infiltrate from blood vessels have a impor-
tant phagocytic function and inflammatory
properties, while in situ microglia seem to
preferentially remove cell debris [54]. In addi-
tion, infiltrating macrophages may be cytotoxic
regardless of whether they adopt the M1 or M2
phenotype [55]. These results indicate that
although the expression of M2-type macro-
phages increases, M2 microglia have more
advantages than M2-type macrophages in brain
protection. Secondly, the marker
CD45lowCD11b? was found to be expressed in
microglia but not in macrophages. Similarly,
TMEM119 is only expressed in macrophages
[56]. Accordingly, the above two markers can be
used to distinguish microglia and macrophages.

Different causes and environments of inju-
ries may lead to slight differences in their
effects. As we all know, the brain has the ability
to self-repair after it has been damaged [57]. In
this process, microglia and macrophages work
together to surround the injured area and
secrete various nutritional factors so that the
protruding formation of new granular cells will

follow the nutritional gradients toward the
injured area, ensuring that the correct shape is
formed. Microglia and macrophages participate
in the whole process until the synapse is com-
pletely formed [56, 58].

MICROGLIAL ACTIVATION PLAYS
AN IMPORTANT ROLE IN PAIN
POST HEMORRHAGIC STROKE

The activation of microglia is closely related to
the occurrence of pain after stroke. Microglia
are activated in the core part of the hemorrhagic
stroke lesion and the perihematoma [23, 24].
The activated microglia produce a large number
of inflammatory mediators that activate and
change various inflammatory signal pathways
[27, 28]. Inflammation is considered the main
pathological feature that causes pain. The acti-
vation of the P2X4/P2RX7 receptors in micro-
glia [59–61] and the activation of NLRP3 in
microglia are both related to the occurrence of
pain after cerebral hemorrhage and stroke
[62, 63]. In the thalamic hemorrhage model,
depletion of microglia can effectively prevent
the development of analgesia [64].

Nagaka et al., using a macaque model [65],
found that microglial activation may play a key
role in post-stroke pain, although the associated
mechanism remains unclear. At present, it is
mainly believed that the increased secretion of
chemokines and proinflammatory factors after
the nervous system is damaged is the main
cause of pain symptoms. Chemokines are small
molecular proteins that are often divided into
four subtypes: CC, CXC, XC, and CX3C. The
CX3C family currently only includes one
member: CX3CL1. When damage occurs, the
chemokine CX3CL1 is expressed in primary
afferent and spinal neurons and induces
microglial activation through its microglia
receptor, CX3CR1 [66, 67]. CX3CL1 plays an
important role in the development of neuro-
pathic pain. In the neuropathic pain model
induced by paclitaxel, the expression of the
CX3CL1 protein in spinal cord neurons can be
upregulated through the NF-jB-dependent H4
acetylation mechanism [68]. When CX3CL1
inhibitor is injected intrathecally, it can reverse
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the mechanical hyperalgesia and thermal sen-
sitivity induced by cathepsin S [69]. When
neuropathic pain occurs, the activation of and
functional changes to microglia play an
important role [70]. During the transition from
immature to mature microglia, the macrophage
transcription factor MAFB is greatly upregulated
[71]. At the same time, mice that selectively
knock out the Mafb gene in microglia do not
develop hyperalgesia, which confirms that MafB
plays an important role in the process of neural
pain [72].

There are many other mechanisms for post-
stroke pain, but they are not well understood,
and mainly include mitochondrial Ca2? uptake,
NLRP3 activation, and endoplasmic reticulum
stress. Most of these are caused by the massive
release of proinflammatory factors to the pain-
causing effect [62, 73, 74].

As mentioned above, although the activa-
tion of microglia plays an important role in
post-stroke pain, no definitive studies have
identified the type of microglia that plays a
major role in PSP. Moreover, the specific
mechanism of M1 and M2 microglia activation
in post-stroke pain is not clear. Of course, this
also provides possibilities for future research
directions (Fig. 1).

MICROGLIA AS A THERAPEUTIC
TARGET FOR HEMORRHAGIC
STROKE AND HS-RELATED PAIN

At present, the clinical treatment of hemor-
rhagic stroke is mostly based on the cause of
treatment. Conventional treatments include
hemostasis, lowering the intracranial pressure,
preventing complications, and the surgical
removal of intracranial hematoma. This short-
ens the procession of the disease to some
extent, and reduces the direct stimulation of
physical damage. Thus, when the primary cause
is controlled, the continuous damage from
inflammation will be greatly reduced.

In recent years, more and more studies have
indicated that the interactions of numerous
neuroimmune cells in the central nervous sys-
tem play an essential role in neuropathic pain.
Neuropathic pain is not only related to the

activation of neurons but also to the response of
immune cells [75]. Previous studies have shown
that the activation of immune cells, particularly
glial cells (including microglia), is involved in
neuropathic pain. Glial cells actively commu-
nicate with neurons through direct connec-
tions, synapses, and the release of
neuroregulatory chemicals that affect neuronal
firing and signal transmission within the cell
[76]. Under neuropathological conditions,
microglia express a wide range of neurotrans-
mitter receptors, which leads to intracellular
signal transduction (e.g., STATs, NF-jB, and
MAPKs) and to a series of cascades that are
involved in the development of neuropathic
pain. Analgesics targeting the microglia path-
way have achieved a certain level of clinical
efficacy.

As they are the brain’s innate immune cells,
microglia can not only differentiate into differ-
ent subtypes to cope with the development of
disease during hemorrhagic stroke, but they can
also secrete nutrients to induce neuronal axons
to transform damaged regions for regeneration.
To a certain extent, the protective effect of M2-
type microglia is enhanced while the proin-
flammatory effect of M1 is weakened. M2
microglia exert their protective effect through
the secretion of remodeling factors such as
VEGF, BDNF, and matrix metalloproteinase-9
[77, 78]. Therefore, based on the aforemen-
tioned effects of microglia, microglia-based
therapy and any therapeutic strategy aimed at
the regulation of these immune cells may prove
to be promising and practical therapeutic
methods.

This cell therapy strategy can be divided into
two main aspects: the inhibition of M1 proin-
flammatory type cells and factors or receptors—
for example, anti-HMGB1 antibody treatment
attenuates the brain injury after stroke [79] and
anti-inflammatory cytokines (such as IL-4, IL-
10, and TGF-b) can improve the brain recovery
process after injury [80]—and the promotion of
M2 protective-type cells. Interestingly, activated
protective cytokines, such as transforming
growth factor-b (TGF-b) and IL-10, may suppress
inflammation and promote axonal growth and
angiogenesis [7, 81].
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Multiple forms of microglial activation and
associated inflammatory responses are being
considered as new targets for the development
of effective treatments for neuropathies. As
previously discussed above, the activation pat-
tern of microglia varies greatly during neuro-
pathic pain, with microglial activation peaking
in the first few days after injury and declining
from 3 days to 2 weeks after injury. Further
research is needed on the potential mechanisms
through which microglia are involved in neu-
ropathic pain and their role in neuropathic pain
during the hemorrhagic stroke recovery phase.

CONCLUSION AND PERSPECTIVES

A large number of studies have proved that the
activation of microglia plays an important role
in the pathophysiological progression of ICH.

Different cell phenotypes may contribute dif-
ferently to neuroinflammation in brain disease
models. Regulating the function of microglia
can reduce hemorrhage-related brain damage
and promote tissue repair and functional
recovery. However, given that microglia are
widespread in the central nervous system, do
microglia in the brain and microglia in the
spinal cord play the same role in PSP after
intracerebral hemorrhage? And does the regu-
lation of microglia function during certain
periods and for certain phenotypes improve
pathological pain after stroke? This is not yet
clear. Simultaneously, studies have shown that
the underlying mechanism may vary with pain
phenotype. Therefore, the specific role of
microglia in post-stroke pain after intracerebral
hemorrhage needs to be further studied.

There are still many limitations of existing
animal models of cerebral hemorrhage.

Fig. 1 Microglial activation plays an important role in
pain post hemorrhagic stroke and interactions with other
cells. After a stroke, inflammation can cause pain, and pain
can also aggravate the inflammatory response. When
microglia and macrophages are activated, they can differ-
entiate into two subtypes, M1 (which increase inflamma-
tion and pain) and M2 (protective), under the influences

of different chemokines. However, the specific functions of
the two subtypes of microglia in post-stroke pain have not
yet been clarified. At the same time, microglia may have an
impact on astrocytes during the ongoing inflammation,
thereby changing the functional state of the blood–brain
barrier (BBB)
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Although research into the cellular and molec-
ular mechanism of pathological pain in stroke
has become more and more prominent, most
studies have failed to make the leap from basic
experiment to clinical application. This also
highlights the importance of establishing a
clinical stroke model. Progress in science and
technology is expected to lead to a greater
understanding of the role of microglia in
pathological neuralgia after intracerebral hem-
orrhage, and thus to improve our understand-
ing of the mechanism of pathological pain after
stroke, allowing the development of an effective
treatment for post-stroke pathological neuralgia
[82–87].
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