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A B S T R A C T   

The magnetic field in magnetic resonance imaging guided radiotherapy (MRgRT) delivery systems influences 
charged-particle trajectories and hence the three-dimensional (3D) radiation dose distributions. This study 
investigated the dose-response as well as dose-rate and fractionation dependencies of silicone-based 3D radio
chromic dosimeters for photon irradiation in a magnetic field using a 0.35 T MRgRT system. We found a linear 
dose response up to 22.6 Gy and no significant dose-rate dependency as a function of depth. A difference in 
optical response was observed for dosimeters irradiated in a single compared to multiple fractions. The dosimeter 
showed clinical potential for verification of MRgRT delivery.   

1. Introduction 

The strong magnetic field of magnetic resonance imaging guided 
radiotherapy (MRgRT) systems influences the motion of charged parti
cles and causes changes in the patterns of dose deposition in three di
mensions (3D) [1]. Current dosimeters and techniques of quality 
assurance used for conventional radiotherapy therefore have to be 
adjusted to be applicable for MRgRT systems [2]. Ionization-chamber 
correction factors for reference dosimetry in MRgRT systems have 
been validated [3], while radiochromic films show no significant 
changes in optical density due to the presence of a magnetic field [4,5]. 
These techniques, however, are limited to point and planar 
measurements. 

Several methods have been developed over the past years to allow for 
3D dose measurements [6–8]. Dosimeters such as PRESAGE® (radio
chromic plastic), FOX (radiochromic gel), BANG (polymer gel), and 
others have been investigated in the presence of a magnetic field and 

have been shown to be applicable for MRgRT systems [1]. 
A new deformable silicone-based radiochromic 3D dosimeter has

been proposed and has already been assessed in the absence of a mag
netic field in terms of dosimetric and mechanical properties as well as 
dose-rate dependency, with promising results for both photon and pro
ton beams [9–14]. The dosimeter can potentially be moulded into 3D 
anthropomorphic phantoms and complex phantom geometries 
including air-tissue interfaces. Such interfaces are of special interest for 
MRgRT systems due to the electron-return effects (ERE) [15]. The aim of 
the present study was to assess the potential of this dosime
ter for MRgRT systems by characterizing its key properties in the pres
ence of a magnetic field. 
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2. Material and methods 

2.1. Fabrication 

Dosimeters were fabricated from silicone elastomer (SE), curing 
agent (CA), chloroform and leuco-malachite green (LMG). The SE and 
CA came from the commercially available SYLGARD 184 Silicone Elas
tomer (DOW) Kit. The batches were fabricated with 0.26% (w/w) LMG 
dissolved in 1.5% (w/w) chloroform and then mixed with 89.2% (w/w) 
SE and 9% (w/w) CA using a mixer. Air bubbles were removed using a 
vacuum desiccator before the mixture was poured into polystyrene cu
vettes (1 cm × 1 cm × 4.5 cm) and left to cure protected from light at 
room temperature. Two batches of dosimeters were used in this study 
and they were fabricated approx. 55 h (batch one) and 45 h (batch two) 
prior to irradiation, respectively, based on our previous characterization 
of the dosimeter response versus composition and curing time [9,10]. 

2.2. Irradiation conditions 

All dosimeters were irradiated using the MRIdian MRgRT system 
(ViewRay Inc., USA) at Herlev Hospital, Herlev, Denmark, with a 
magnetic field strength of 0.35 T, a 10 × 10 cm2 field, 6 MV beam 
quality, flattening-filter-free mode, a source-to-isocentre distance of 90 
cm and a dose rate of 650 monitor units (MU)/min (all parameters were 
fixed by manufacturer except the field size). The number of MU given for 
a specific dose was calculated on a virtual water phantom in the treat
ment planning system and the beam output was within the tolerance of 
clinical use for patient treatments. For all irradiations, five dosimeters 
were irradiated at the same time. 

The dose response was measured in 10 cm depth by placing the 
dosimeters between a 5 cm solid water (SW) backscatter slab and a 9.5 
cm SW build-up slab. The dosimeters were centered in the radiation field 
with a source-to-surface distance (SSD) of 80 cm and irradiated with an 
approx. dose rate of 4.9 Gy/min to total doses of 1.5, 3.8, 7.5, 11.3, 15.1, 
18.9 and 22.6 Gy. 

For the depth dose-rate measurements, the dosimeters were irradi
ated in depths of 5, 10 and 15 cm with a constant SSD of 85 cm. For 5 cm 
depth, the dosimeters were placed between a 5 cm SW backscatter slab 
and 4.5 cm SW build up slab. Measurement depths of 10 and 15 cm were 
obtained by placing additional 5 cm SW slabs while adjusting the 
treatment couch to maintain an SSD of 85 cm. Each beam was delivered 
with an approx. dose rate of 650 MU/min corresponding to approx. dose 
rates during field delivery of 6.0, 4.5 and 3.3 Gy/min at depths 5, 10 and 
15 cm respectively. 

For the fractionation measurements, the setup was identical to the 
one used for the dose-response experiments. A total dose of 7.5 Gy was 
delivered in 1, 2, 4 and 10 fractions with a total beam delivery time of 
approx. 100 s. The fractionated doses were delivered in a total treatment 
time of 6.5 min at regular time intervals i.e. the time between fractions 
was kept constant for each fractionation. The total treatment time for the 
single-fraction irradiation was approx. 100 s. 

Dosimeters used in the dose-response and fractionation experiments 
were made from batch one and dosimeters used for the depth dose-rate 
experiments were made from batch two. 

2.3. Pre- and post-irradiation optical read-out and data analysis 

The difference in optical density before and after irradiation 
(ΔODirradiated) for each dosimeter was measured using a spectropho
tometer (Spectroquant Pharo 100). The dosimeters were measured at 
approx. 625 nm, which is close to the absorption peak for the present 
chemical composition [10]. The dosimeters were pre-scanned approx. 
20 h before irradiation and post-scanned approx. 6 h after irradiation. 

For both batches, zero-dose reference dosimeters were brought back 
and forth to the irradiation source under the same conditions as the 
irradiated dosimeters, and they were pre- and post-scanned at the same 

time. The difference in optical density (ΔODzero-dose) was calculated. 
ΔOD was defined as the mean value of ΔODzero-dose for the batch in 

question subtracted from ΔODirradiated for each individual dosimeter. 
The optical response, Δα, was calculated as ΔOD divided by the optical 
path length (1 cm) and was plotted against dose and fitted with a linear 
regression with the slope being the dose response. 

For statistical analysis, the normality of data as well as the hypoth
eses of common variance were evaluated, following detailed description 
of statistical analysis. For the depth dose-rate experiments, the hy
pothesis of identical slopes was tested by comparing the regression line 
at each depth with the others [16]. The data for the fractionation ex
periments was analysed using one-way analysis of variance. 

3. Results 

We found a dose response (including 95% confidence interval) of 
(13.2 ± 0.2) × 10− 3 cm− 1 Gy− 1 (Fig. 1). The dose responses at different 
depths were (14.2 ± 0.3) × 10− 3 cm− 1 Gy− 1 at 5 cm, (14.4 ± 0.4) ×
10− 3 cm− 1 Gy− 1 at 10 cm, and (14.3 ± 0.3) × 10− 3 cm− 1 Gy− 1 at 15 cm 
(Fig. 2). Comparison of regression lines in the depth dose-rate experi
ment did not reject the hypothesis of identical slopes with p-values of 
0.26, 0.51 and 0.63. 

For the fractionation experiment at 7.5 Gy, we found a mean (and 
95% confidence interval) of the optical response of (103.9 ± 3.2) ×
10− 3 cm− 1 for 1 fraction, (97.5 ± 3.4) × 10− 3 cm− 1 for 2 fractions, (97.1 
± 3.4) × 10− 3 cm− 1 for 4 fractions and (99.1 ± 4.0) × 10− 3 cm− 1 for 10 
fractions. One-way analysis of variance rejected the hypothesis of equal 
means (p = 0.006) between all four groups. 

The mean changes in attenuation of the zero-dose dosimeters were 
(28.1 ± 0.5) × 10− 3 cm− 1 and (22.2 ± 0.5) × 10− 3 cm− 1 for batch one 
(16 dosimeters) and two (14 dosimeters), respectively. The mean values 
of the associated pre-scans were (198.4 ± 2.4) × 10− 3 cm− 1 and (188.9 
± 2.2) × 10− 3 cm− 1. 

4. Discussion 

In the presence of a magnetic field, our radiochromic dosimeters 
showed a linear dose response up to 22.6 Gy and no significant variation 
in dose response as a function of depth with effective dose rates ranging 
from approx. 3.3 to 6.0 Gy/min. A difference in optical response for a 
dose delivered in one single fraction compared to in multiple fractions 

Fig. 1. Optical response as a function of dose. The error bars represent the 95% 
confidence interval of the five observations in each group. R2 > 0.99 for the 
regression model. Dosimeters were made from batch one. 
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was observed. 
The dose-response experiment showed a dose response of 13.2 ×

10− 3 cm− 1 Gy− 1, whereas the depth dose-rate experiment showed a dose 
response of approx. 14.3 × 10− 3 cm− 1 Gy− 1. The small difference in dose 
response is attributed to the experiments being done with two different 
batches with time interval between fabrication and irradiation differing 
by 10 h. The difference in storage time as well as in the thermal and 
light-exposure history can affect the dose response [10,17]. In a previous 
study (irradiations without a magnetic field), we found a dose response 
in the same range, also comparable to the dose response of PRESAGE® 
[9,18]. No significant dose-rate dependency as a function of depth was 
observed which was also demonstrated previously in the absence of a 
magnetic field [10]. 

For the fractionation experiment, the optical response for 7.5 Gy 
delivered in one single fraction was higher with a relative difference up 
to about 7% compared to multiple fractions. The single-fraction irradi
ation was carried out approx. 1 h before the others (measurements done 
in connection with dose-response experiment), which potentially could 
have an influence. However, the outcome matched previous results 
without a magnetic field, where we found Δα for fractionated irradia
tions 5–11% lower compared to a single fraction with total dose of 30 Gy 
given in 15 min [10]. It is an important characteristic to investigate for 
the dosimeter to work as a good integrating dosimeter and for validation 
of treatment plans with spatially overlapping fields. 

The dose-response and fractionation measurements were done with 
SSD = 80 cm and the depth dose-rate measurements were done with 
SSD = 85 cm. Since the dose rate for the dose-response and fractionation 
experiments was within the dose-rate range investigated in the depth 
dose-rate experiment (where no significant variation of dose response 
was observed) the different SSDs should not have any influence on the 
dose response. The effective dose rates were calculated based on a 
machine-set dose rate of 650 MU/min with a precise machine-set dose 
rate not being specified. Overall, further assessments are needed in order 
to qualify the use of the silicone-based dosimeter for other MRgRT 
systems which operate with a different magnetic field strength, 
machine-set dose rate or energy. 

Higher sensitivity to radiation near the edges of 3D PRESAGE® and 
silicone dosimeters causing non-uniform dose response within the vol
ume of the dosimeters have been reported [17,19,20]. As air-tissue in
terfaces are of special interest in terms of investigating the ERE, 

measurements of the outer layers of the dosimeters are important and 
we need a similar investigation of our radiochromic dosimeters in order 
to validate dose depositions at the boundary of air-tissue interfaces. 

In this study ΔOD was defined as the mean value of ΔODzero-dose for 
the batch in question subtracted from ΔODirradiated, whereas ΔOD usu
ally is defined as the difference in optical density between pre- and 
postscans. The approach for calculating the optical response used in this 
study singles out the color change due to irradiation by eliminating the 
self-coloring of the non-irradiated dosimeters. 

Fricke gels are an interesting alternative for 3D dosimetry of MRgRT 
systems as these dosimeters could be read out by the MRI system during 
or immediately after irradiation without moving the dosimeter from the 
treatment device to an auxiliary imaging system [21]. Compared to 
optical CT read-out, the Fricke dosimeter thus eliminates positioning 
errors associated with pre- and post-scanning, and the known limitations 
of diffusion-induced dose smearing for these dosimeters [22] may be of 
less importance for the described workflow. 

In conclusion, this first study of a silicone-based radiochromic 
dosimeter in the presence of a magnetic field showed a linear dose 
response up to 22.6 Gy and no significant dose-rate dependency as a 
function of depth. A difference in optical response between dose deliv
ered in one single fraction compared to multiple fractions was observed. 
The dosimeter showed clinical potential for dose verification in MRgRT 
delivery systems. 
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