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AAAbbbsssttt rrraaaccc ttt:::   Echocardiographic strain and strain-rate imaging (deformation imaging) is a new non-invasive method for 

assessment of myocardial function. Due to its ability to differentiate between active and passive movement of myocardial 

segments, to quantify intraventricular dyssynchrony and to evaluate components of myocardial function, such as 

longitudinal myocardial shortening, that are not visually assessable, it allows comprehensive assessment of myocardial 

function and the spectrum of potential clinical applications is very wide. The high sensitivity of both tissue Doppler 

imaging (TDI) derived and two dimensional (2D) speckle tracking derived myocardial deformation (strain and strain rate) 

data for the early detection of myocardial dysfunction recommend these new non-invasive diagnostic methods for 

extensive clinical use. In addition to early detection and quantification of myocardial dysfunction of different etiologies, 

assessment of myocardial viability, detection of acute allograft rejection and early detection of allograft vasculopathy after 

heart transplantation, strain and strain rate data are helpful for therapeutic decisions and also useful for follow-up 

evaluations of therapeutic results in cardiology and cardiac surgery. Strain and strain rate data also provide valuable 

prognostic information, especially prediction of future reverse remodelling after left ventricular restoration surgery or 

after cardiac resynchronization therapy and prediction of short and median-term outcome without transplantation or 

ventricular assist device implantation of patients referred for heart transplantation. 

The Review explains the fundamental concepts of deformation imaging, describes in a comparative manner the two major 

deformation imaging methods (TDI-derived and speckle tracking 2D-strain derived) and discusses the clinical 

applicability of these new echocardiographic tools, which recently have become a subject of great interest for clinicians.  
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INTRODUCTION 

 Although conventional echocardiography is considered to 
be reliable for ventricular wall motion analysis and 
assessment of regional myocardial function, the visual 
estimation of wall motion is very subjective and therefore 
highly operator dependent. It also has high interobserver and 
intraobserver variability and allows only limited evaluation 
of radial displacement and deformation, without the 
possibility of assessing myocardial shortening and twisting 
[1,2]. 

 During recent years, velocity imaging, displacement 
imaging and deformation imaging (strain and strain-rate 
imaging) have emerged as valuable tools for more 
comprehensive and reliable echocardiographic assessment of 
myocardial function [2-11].  

BASIC CONCEPTS AND TERMINOLOGY 

 For a better understanding of different echocardiographic 
modalities available for the assessment of myocardial 
contractile function, it is important to make a distinction 
between myocardial wall motion and wall deformation [3-7]. 
Whereas velocity and displacement characterize wall motion, 
strain and strain-rate describe wall deformation. Over time a 
moving object will change its position (displacement) but 
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does not undergo deformation if all its parts move with the 
same velocity. If, however, different parts of the object move 
with different velocities, the object will undergo deformation 
and will change its shape. Thus wall motion measurements 
(displacement and velocity) cannot differentiate between 
active and passive movement of a myocardial segment, 
whereas deformation analyses (strain and strain-rate 
imaging) allow discrimination between active and passive 
myocardial tissue movement.  

 The term “strain”, which in everyday language can mean 
“stretching”, is used in echocardiography to describe 
“deformation” [12]. 

 However the concept of strain is complex. Thus for a 
one-dimensional (1D) object (i.e. an infinitesimally thin bar) 
the only possible deformation is lengthening or shortening 
and the linear strain (amount of deformation) can be defined 
by the formula:  

 

 =
L – L0

L0

=
 L

L0

,  

where  = strain, L0 = baseline length and L = instantaneous 
lengths at the time of measurement.  

 When the length of the object is known not only before 
and after deformation, but also during the deformation 
process the instantaneous strain can be defined as:  

 

(t) =
L(t) – L(t0 )

L(t0 )
,  
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where L(t) is the length at the time instance t and L(t0)  L0. 
The instantaneous deformation is thus expressed relative to 
the initial length (Lagrangian strain) [12]. The deformation 
can also be expressed relative to the length at a previous time 
instance (natural strain) and in this definition of 
instantaneous strain the reference value is not constant over 
the time but changes during the deformation process [12]. 
For small deformations the Lagrangian and natural strain are 
approximately equal whereas for large deformations which 
can occur during ventricular contraction and relaxation the 
difference between Lagrangian and natural strain are 
relevant. For myocardial strain measurements it appears 
more appropriate to measure the natural strain because the 
measured values are less dependent on the definition of the 
initial length L0 [12]. 

 For two-dimensional (2D) objects, the deformation is not 
limited to lengthening or shortening in one direction. A 2D 
object can lengthen or shorten along the x or y axis (normal 
strain) and can also distort (shear strain) by the relative 
displacement of the upper to the lower border or the right 
border to the left border [12]. Thus, in two dimensions strain 
has four components, two normal strains and two shear 
strains. More complex is the deformation of three-
dimensional (3D) objects such as myocardial segments. In 
this case there are three normal strains (along the x, y and z 
axes) and six shear strains. To completely define the 
deformation of 3D objects, all nine strain components must 
be defined. Today, echocardiographic deformation imaging 
allows 1D measurements based on tissue Doppler imaging 
and 2D strain measurements based on speckle-tracking 
imaging.  

 The amount of deformation (positive or negative strain) 
is usually expressed in %. Positive strain values describe 
thickening, negative values describe shortening, of a given 
myocardial segment related to its original length. During 
myocardial contraction, as the wall shortens it also thickens 
and thus assessment of all parameters, radial thickening 
(positive strain), circumferential shortening (negative strain) 
and longitudinal shortening (negative strain), is useful for the 
evaluation of contractile function.  

 Strain rate (SR) is the rate by which the deformation 
occurs (deformation or strain per time unit). The unit of 
strain rate is s

-1
 and the local rate of deformation or strain per 

time unit equals velocity difference per unit length: 

   

 =
t

=
( L / L0 )

t
=

( L / ( t)

L0

=
V

L0

,  

where V is the velocity gradient in the segment studied. 
Thus, the velocity gradient (i.e. difference in velocities 
between two points of the myocardial wall) can be used for 
SR calculations. The SR has the same direction as the strain 
(negative strain during shortening and positive strain during 
elongation).  

 Ventricular wall motion (velocity and displacement) is 
position dependent. Thus, as the apical parts of the ventricle 
pull down the ventricular base, the wall motion velocity and 
wall displacement increase from apex to base and some of 
the motion in the base is an effect of apical contraction – 
tethering. Thus, even completely passive segments, without 
deformation, can show motion [5].  

 Myocardial deformation (strain and SR) is more constant 
along the ventricular wall (position independent if the 
velocity gradient is evenly distributed). Therefore, strain and 
SR imaging (deformation analysis) is more useful than wall 
motion analysis (velocity and displacement) for detection of 
regional myocardial dysfunction [5,7]. Nevertheless, because 
of the relationship between myocardial motion and 
deformation, wall motion velocity measurements by tissue 
Doppler can be used to obtain regional and global strain (and 
SR) data [3-7,9,10]. 

 It is important to know that, although strain and SR are 
particularly suited for the assessment of systolic function 
(especially regional contractile function), they are not 
measurements of contractility because deformation is load 
dependent. Contractility (the basic property of the 
myocardium that reflects its active state, rather than loading 
conditions) is reflected by the stress / strain relation [13]. 
The relation to contractility of the different parameters used 
to evaluate systolic function can differ. Thus, because the 
final part of ejection occurs by inertial effects after myocyte 
contraction is finished, peak systolic strain rate, being an 
early systolic event, is more closely related to contractility 
than the ejection fraction (EF) [5].  

GENERAL PRINCIPLES OF ECHOCARDIO-
GRAPHIC DEFORMATION IMAGING  

 Initially myocardial deformation imaging became 
possible using tissue Doppler [4]. More recently myocardial 
deformation imaging also become possible with myocardial 
speckle tracking using 2D echocardiography [15].

 
Figs. (1) 

and (2) show examples of myocardial deformation imaging 
using tissue Doppler and 2D speckle-tracking, respectively. 
The examples in these 2 figures also show the advantages of 
strain imaging in comparison to velocity and displacement 
imaging in the evaluation of regional myocardial contractile 
function. 

Tissue Doppler-Derived Strain and Strain-Rate Imaging 

 Tissue Doppler imaging (TDI), also known as tissue 
velocity imaging (TVI), is currently accepted as a sensitive 
and sufficiently accurate echocardiographic tool for 
quantitative assessment of cardiac function [3,5-11]. Several 
tissue Doppler velocity parameters appeared to be useful for 
the diagnosis and prediction of long-term prognosis in major 
cardiac diseases [8,10,11]. Myocardial time-velocity curves 
can be obtained either online as spectral pulsed TDI, known 
as pulsed wave TDI (PW-TDI), or reconstructed offline from 
two-dimensional (2D) color coded TDI images, known as 
color TDI (C-TDI) loops. In addition to velocity and 
displacement (tissue tracking) measurements, due to the 
relationship between velocity and strain rate, TDI also 
allows the reconstruction of strain (and strain rate) curves 
and color coded images. Thus, the transmural velocity 
gradient (difference in endocardial and epicardial velocities 
divided by the instantaneous wall thickness) is equal to the 
transmural strain rate (rate of wall thickening), whereas the 
longitudinal velocity gradient over a segment with a fixed 
distance is a measure of longitudinal strain rate. Before the 
development of color coded TDI, it was difficult to 
distinguish myocardial contraction from translational motion 
of the heart. Thus, during systole, in addition to radial wall 
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thickening and longitudinal wall shortening, the left ventricle 
(LV) also rotates about its long axis and translates anteriorly. 
Calculation of myocardial velocity gradients (MVG) allows 
the assessment of wall motion independently from the 
translational motion of the heart [3,5,14,15]. However, as 
shown by the equation for tissue Doppler derived MVG: 

MVG (s
-1

) = ( V2 – V1 ) / d • cos  

where V2 - V1 is the difference in velocities, d is the distance 
between the two points of velocity measurement and cos  is 
the cosine of the angle between the ultrasound beam and the 
direction of myocardial movement, all tissue Doppler 
derived data on wall motion and deformation are angle 
dependent. Thus, for acceptable calculations, an angle 
deviation below the 20 to 15 degrees is mandatory. It is 
important to be aware that assessing tissue movement in 

 

 

Fig. (1). Tissue Doppler derived left ventricular wall motion velocity (panel A) and myocardial strain (panel B) images from a heart 

transplanted patient with normal cardiac function and no evidence of coronary artery disease. The velocity and strain curves were obtained in 

apical long axes views during the same cardiac cycle from the same two myocardial regions (posterior-basal and apical). Because of the 

velocity gradient which normally exists between the basal and apical LV regions (highest at the base and lowest in apical regions), the 

assessment of wall motion velocity is not useful for detection of regional differences in contractile function. Thus, as shown by the yellow 

curves, despite the very low wall motion velocity in the apical region (panel A), the longitudinal myocardial shortening in this region can be 

even higher than in basal regions (panel B). 
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relation to the transducer rather than relative to adjacent 
segments is a fundamental limitation of tissue velocity 

imaging, which can also affect tissue Doppler derived strain 
(and strain rate) imaging [11]. 

 

 

 

Fig. (2). Speckle-tracking 2D-strain imaging (apical long axis view) in a heart transplanted patient with normal LV function and no angiographic 

evidence of coronary artery disease. The same echocardiographic loop was used for evaluation of myocardial displacement and longitudinal 

deformation (strain) in the 6 visible LV wall segments. The images in panel A and B show that myocardial displacement can be misleading 

by suggesting regional differences in contractile function, although, as shown in panel C, myocardial deformation analysis (strain imaging) 

does not reveal relevant regional differences in myocardial longitudinal shortening. 
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 Although strain and strain rate (SR) measurements 
derived from the myocardial velocities are promising for the 
evaluation of ventricular contractile function they also have 
disadvantages [16].

 
First of all they are derived from 1-

dimension velocity measurements while, as already 
mentioned, the myocardium deforms simultaneously in three 
dimensions. An important disadvantage relates to limits on 
spatial resolution that are imposed by imaging at high 
temporal resolution. Other disadvantages of the TDI-derived 
strain and SR imaging technique are the time consuming 
steps for data acquisition and processing and the necessity of 
expert readers. It is also important to know that the 
comparison of adjacent velocities is highly sensitive to signal 
noise and the signal-to-noise ratio of TDI-derived SR 
measurements is reduced. This can be improved by 
increasing sample distance but only in exchange for lower 
spatial resolution.  

 Taking into account all the aspects mentioned above it is 
not surprising that TDI-derived strain and SR measurements 
are not highly reproducible (more than 10-15% interobserver 
variability). This is one of the explanations why this 
technique has not become standard in daily praxis. However, 
in the hands of very experienced and highly trained operators 
this method can be a valuable non-invasive tool for routine 
clinical use to evaluate the myocardial contractile function. 
Despite all limitations this technique has been initially 
validated with sonomicrometry and also with magnetic 
resonance imaging [7,9]. 

Non-Doppler Speckle-Tracking Derived 2D-Strain 
Imaging 

 Non-Doppler 2D-strain imaging derived from speckle 
tracking is a newer echocardiographic technique for 
obtaining strain and SR measurements [2,17-21]. It analyzes 
motion by tracking speckles (natural acoustic markers) in the 
2D ultrasonic image. These acoustic markers are statistically 
equally distributed throughout the myocardium and their size 
is about 20 to 40 pixels. These markers (“stable” speckles) 
within the ultrasonic image are tracked from frame to frame. 
Special software allows spatial and temporal image 
processing with recognition and selection of such elements 
on ultrasound images. The geometric shift of each speckle 
represents local tissue movement. When frame rate is 
known, the change in speckle position allows determination 
of its velocity. Thus, the motion pattern of myocardial tissue 
is reflected by the motion pattern of speckles. By tracking 
these speckles, strain and strain rate can be calculated. The 
advantage of this method is that it tracks in two dimensions, 
along the direction of the wall, not along the ultrasound 
beam, and thus is angle independent [2]. The 2D 
echocardiographic loops obtained from pararasternal and 
apical views are processed offline. This requires only one 
cardiac cycle to be acquired but strain and SR data can be 
obtained only with high resolution image quality at high 
frame rate [2,16]. The necessity of high image quality is a 
major limitation for routine clinical applicability in all 
patients. At present, the optimal frame rate for speckle-
tracking seems to be 50-70 frames per second (FPS), which 
is lower compared to TDI (>180 FPS). This could, however, 
result in under-sampling, especially in patients with 
tachycardia and also during strain and SR measurements 

performed throughout stress echocardiography. Moreover, 
rapid events during the cardiac cycle such as isovolumetric 
phases may not appear on images and peak SR values may 
be reduced due to under-sampling, in isovolumetric phases 
and in early diastole. Using higher frame rates could reduce 
the under-sampling problem, but this will result in a 
reduction of spatial resolution and consequently less than 
optimal region of interest (ROI) tracking [22]. Low frame 
rate increases the spatial resolution, but because speckle-
tracking software uses a frame-by-frame approach to follow 
the myocardial movement and searches each consecutive 
frame for a speckle pattern closely resembling and in close 
proximity to the reference frame, with too low a frame rate 
the speckle pattern could be outside the search area, again 
resulting in poor tracking [23,24]. It is also important to 
know that different tracking algorithms potentially produce 
different results and therefore it should be kept in mind that a 
periodical update of the software package conceivably 
influences reference values. 

 Although speckle-tracking derived 2D-strain and TDI-
derived strain calculations do not give the same values (2D-
strain imaging gives lower SR values), strain and SR 
measurements obtained by these two different imaging 
techniques correlate well [2]. For the LV, the reproducibility 
of 2D-strain measurements is better than that of TDI-derived 
strain measurements. The intraobserver and interobserver 
variability for 2D-strain and SR measurements were found to 
be low: 3.6% to 5.3% and 7% to 11.8%, respectively [2]. 
Ingul et al. found lower interobserver variability for non-
Doppler 2D-strain measurements in comparison to TDI-
derived strain measurements and automated non-Doppler 
2D-strain measurements also appeared significantly less time 
consuming [18]. The lack of angle dependency is a great 
advantage of non-Doppler 2D-strain imaging in comparison 
to TDI-derived strain data.  

CLINICAL USEFULNESS AND FUTURE DIREC-
TIONS OF ECHOCARDIOGRAPHIC DEFORMA-

TION IMAGING  

 Measurements of strain and strain rate by 
echocardiography have been validated using microcrystals 
and magnetic resonance imaging [16,25-27]. Comparing 
non-Doppler 2D-strain imaging with tagged magnetic 
resonance imaging (the current “gold standard” for 
deformation analysis) non Doppler 2D-strain measurements 
correlated well with data obtained by magnetic resonance 
imaging, both in normal myocardial segments and infarcted 
areas (r = 0.87, P<0.001) [25]. Experimental work performed 
on adult dogs showed that global diastolic strain rate can be 
useful for the assessment of ventricular relaxation and 
estimation of filling pressures [28]. In a study on 137 
consecutive patients with suspected congestive heart failure 
of different etiologies it was also shown that mean 
longitudinal LV strain is closely related to plasma brain-type 
natriuretic peptide (BNP) levels, in patients with both 
systolic and diastolic heart failure [29].  

 Strain and strain rate measurements appeared to be 
sensitive indicators for sub-clinical diseases, including 
diabetes, systemic sclerosis, myocardial ischemia, arterial 
hypertension, isolated mitral regurgitation, aortic 
regurgitation and non-ischemic cardiomyopathies, and also 
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very useful for the assessment of myocardial damage after 
infarction, evaluation of myocardial revascularization 
efficiency and prediction of patient outcome with heart 
failure [11,30-46].

 
Early detection of myocardial 

involvement in asymptomatic patients with systemic 
sclerosis, diabetes, amyloidosis, Duchenne’s progressive 
muscular dystrophy and Kawasaki syndrome is an important 
indication for strain and strain-rate imaging [47-51]. 
Recently it was also found that 2D-strain imaging is highly 
sensitive for the early detection of doxorubicin induced 
cardiac injury, and radial strain reduction in patients who 
underwent chemotherapy with doxorubicin appeared to be 
associated with histologic markers of doxorubicin 
cardiomyopathy [52].  

 Strain and strain rate assessment also appear to be useful 
in sports medicine for the quantification of LV systolic 
function in athletes involved in sports requiring endurance or 
strength and the differentiation of physiologic hypertrophy in 
athletes’ hearts from asymptomatic nonobstructive hyper-
trophic cardiomyopathy, which is the major cause of sudden 
cardiac death in young competitive athletes [53-55]. Strain 
imaging may also be used to differentiate physiologic 
cardiac hypertrophy (“athlete’s heart”) from hypertensive 
cardiac hypertrophy [56].  

 Recently it was shown that strain and strain-rate imaging 
is also useful for the evaluation of right ventricular (RV) 
function in pulmonary hypertension and RV diseases of 
different etiologies (RV infarction, arrhythmogenic RV 
dysplasia/cardiomyopathy) [57-63].  

 The clinical usefulness of echocardiographic strain and 
SR imaging in children is another important aspect, 
especially because in these patients the impact of heart rate 
(HR) on strain and SR measurements is more evident than in 
adults. It has been shown that HR changes in healthy 
children during growth have an important impact on both 
systolic and diastolic myocardial strain and also on late 
diastolic SR calculated from color Doppler myocardial 
imaging [64]. The impact of high heart rates as already 
mentioned on 2D-strain and SR measurements is of special 
importance in pediatric patients. Therefore, for the 
evaluation of regional and global myocardial deformation in 
children, HR at rest should be considered an important 
factor. 

 The assessment of myocardial viability is one of the most 
important clinical indications for echocardiographic strain 
and strain-rate imaging. TDI measurements in dogs with 
experimental occlusion of the left anterior descending (LAD) 
or circumflex (Cx) coronary artery showed that diastolic 
strain rate during dobutamine infusion reliably identified 
segments with >20% transmural infarction and, in 
comparison to other TDI-derived parameters, it related best 
to the extent of interstitial fibrosis (r = -0.86; P<0.01) [65].

 

The validity of non-Doppler 2D-strain imaging for 
identification and quantification of myocardial ischemia was 
also proved experimentally in pigs with occlusion of the 
LAD and in rat ischemia-reperfusion models with temporary 
LAD occlusion [66,67]. Also it was experimentally shown 
that speckle-tracking 2D-strain imaging correctly identifies 
segmental LV dysfunction induced by the scarring that 
follows myocardial infarction in rats [68]. Both non-Doppler 
2D-strain imaging and TDI-derived strain imaging were also 

used successfully in clinical diagnosis for detection of LV 
myocardial ischemia and infarction and estimation of 
myocardial infarction size [32-39].

 
Strain and strain rate 

measurements obtained by non-Doppler 2D-strain imaging 
were found to be highly sensitive and specific for the 
diagnosis of myocardial infarction [2]. In a study on 30 
patients Leitmann et al. found that 80.3% of the infarcted 
segments and 97.8% of normal segments were adequately 
recognized by speckle tracking based 2D-strain imaging 
[17]. Comparing the strain and strain rate obtained by 
speckle tracking based 2D-strain imaging with those 
obtained in the same patients by TDI, the authors found no 
significant differences. Comparing the accuracy of 2D-strain 
imaging derived from speckle tracking with TDI-derived 
strain imaging in 150 patients undergoing dobutamine stress 
echocardiography (DSE) and coronary angiography, 
Hanekom et al. found similar accuracy of these two methods 
during DSE in the anterior coronary circulation [69].

 

However, in the same study the accuracy of 2D-strain rate 
measurements for the diagnosis of right coronary artery 
(RCA) stenosis, was lower than that of TDI-derived strain 
rate measurements. Strain and strain rate measurements also 
appeared useful for detection of regional myocardial 
dysfunction in patients with right ventricular (RV) 
myocardial infarction [69]. 

 Augmentation of strain and strain rate with dobutamine is 
a marker of myocardial viability and it was shown that 
deformation parameters obtained by both non-Doppler 
speckle tracking (2D-strain imaging) and TDI can improve 
the diagnostic and prognostic assessment of myocardial 
ischemia and post-infarction scars during dobutamine stress 
echocardiography [11,31,70-73].

 
In patients with chronic 

ischemic LV dysfunction it was shown that combined 
assessment of long-axis and short-axis function using 2D-
strain imaging may be used to identify the transmural extent 
of myocardial infarction [70].

 

 Important discrepancies were found in patients with 
coronary stenoses when comparing the results of visual wall 
motion assessment with those obtained by deformation 
analysis [2].

 
The main reason for these discrepancies is well 

known: the fact that visual assessment of wall motion in four 
chamber views relies mainly on evaluation of inward motion 
of the myocardium (the transverse component of 
contraction), whereas deformation imaging allows the 
evaluation of functional components such as longitudinal 
myocardial shortening, which are barely visible to the naked 
eye [2]. Recently we published our observations on 2 
patients with stress cardiomyopathy (Takotsubo cardiomyo-
pathy) in which for the first time cardiac function was 
evaluated also by 2D-strain imaging [74]. During 
stress/catecholamine induced LV dysfunction, wall motion 
analysis performed by 2D-strain imaging revealed in both 
patients uniform systolic myocardial longitudinal shortening 
despite the typical ballooning and akinetic appearance of the 
LV apex and the hyperkinetic movement of the LV base, 
indicating myocardial viability in the visually nearly akinetic 
apical region and also questioning the existence of relevant 
differences in regional myocardial contractility. During 
maximal LV dysfunction, due to the particular geometry 
(larger diameters and thinner walls in apical regions), the 
systolic circumferential wall stress ( c) was several times 
higher in the apical regions (apical/basal systolic c-ratios up 
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to 7.3), high enough to oppose circumferential fiber 
shortening and consequently also high enough to prevent the 
visible inward wall motion in the apical region. At the same 
time, as revealed by 2D strain imaging, longitudinal 
shortening, which is usually not visible with the naked eye, 
was not affected (Fig. 3). Our findings might be important 

not only for the explanation of wall motion in stress 
cardiomyopathy but because they also reveal the potential 
impact of myocardial deformation analysis on the 
pathophysiological understanding of myocardial function in 
relation to ventricular geometry regardless of the nature of 
cardiac diseases.  

 

 

Fig. (3). Longitudinal global strain (dotted white curve) and regional longitudinal strain curves (distinctively colored curves for 6 left ventricular wall  

segments) obtained from apical 4-chamber views by speckle-tracking 2D-strain imaging in a patient with Takotsubo cardiomyopathy. Although 

during catecholamine induced severe LV dysfunction with apical ballooning (A) the apex appeared nearly akinetic (no visible relevant 

inward movement) the longitudinal strain curves showed the same uniform longitudinal shortening as after recovery (B), when also visually no 

regional wall motions were detectable. Thus, the visual analysis of inward movement used in conventional echocardiographic examinations can 

be misleading in the evaluation of regional myocardial contraction because it can not exclude the existence of longitudinal shortening (not visible 

with the naked eye) in the apparently akinetic region [cf. Dandel et al. International Journal of Cardiology 2008]. 
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 The advantages provided by deformation analysis can 
improve the decision making in patients referred for cardiac 
surgery and, in our experience, 2D-strain imaging is indeed a 
valuable tool for evaluation of patients before and after 
cardiac surgery. Fig. (4) shows an example of longitudinal 
strain images obtained in a patient before and after coronary 
bypass operation combined with mitral valve reconstruction.  

 In our department, 2D-strain imaging is also the method 
of choice for patient selection for surgical ventricular 
restoration (SVR) to improve the LV function after severe 
myocardial infarction. We also found that systolic 
dyssynchrony and the end-systolic dyssynergy indexes, 
calculated from regional strain values, are highly sensitive 
for evaluations of myocardial functional changes during the 
postoperative reverse remodeling processes after SVR 
[40,75]. Figs. (5) and (6) show examples of 2D-strain and 
strain-rate recordings obtained before and after SVR.  

 Tissue Doppler derived strain and strain rate 
measurements are also useful for the monitoring of LV 

function during the reverse remodeling processes after aortic 
valve replacement in patients with aortic stenosis [76].

 

 Before myocardial deformation imaging became 
available it had already been shown that in heart transplant 
recipients TDI wall motion assessment is useful for rejection 
diagnosis and early detection of patients with relevant 
transplant coronary artery disease (TxCAD) [77-79]. In our 
department TDI has been routinely used since 1998 and 
became a cornerstone for the monitoring of cardiac allograft 
function and for the timing of follow-up myocardial biopsies 
and coronary angiographies. After 2D-strain imaging became 
available, its usefulness for post-transplant follow-up 
monitoring of cardiac function was also investigated [40,80-
82]. Comparing the deformation parameters obtained from 
patients who underwent routine endomyocardial biopsies, 
Marciniak et al. found significantly lower LV longitudinal 
and radial peak systolic strain and strain rate values in 
patients with acute rejection  grade 1B in comparison to 
those with biopsies graded between 0 and 1A [82]. In 
patients with biopsy-proven acute rejection episodes  grade 

 

 

Fig. (4). Longitudinal strain before and after cardiac surgery (coronary bypass and mitral valve reconstruction) in a patient with coronary 

artery disease associated with severe mitral regurgitation. Global strain (white dotted line) increased from less than 3% preoperatively (A and 

C) to 11% after surgery (B and D). There was also a relevant improvement in the synchrony and synergy of regional systolic longitudinal 

shortening revealed by the more uniform amplitude and time course of the differently colored regional strain curves. [Knosalla C, Dandel M 

et al., Annual Meeting of the German Society for Thoracic and Vascular Surgery 2007]. 
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3, we found a significant (p<0.05) reduction of LV systolic 
and  diastolic radial,  circumferential  and longitudinal global  
peak strain and strain rate values in comparison to the values  
measured before rejection. The same changes were also 
detected in patients with cellular rejections grade  2 who 
had clinical symptoms and/or additional immune-
histological signs of vascular (humoral) rejection. An 
example of myocardial strain changes during acute rejection 
is shown in Fig. (7). Systolic and diastolic global strain rate 

reduction appeared to be more sensitive for the early 
detection of acute rejection than the reduction of systolic and 
early diastolic global strain values. As shown in Fig. (8), 
even mild acute rejection (grade 1) in completely 
asymptomatic patients, without any change in conventional 
echocardiographic parameters, can be associated with 
relevant strain rate changes. A sudden drop of 15% of the 
radial global strain rate in heart transplanted patients 
appeared highly predictive for acute biopsy proven rejection 

 

Fig. (5). Left ventricular longitudinal strain images obtained from the 4-chamber view of a patient with LV apical aneurysma after myocardial 

infarction before (panel A) and after (panel B) surgical LV restoration. Less systolic asynchrony (more uniform contraction), more uniform 

relaxation and improvement of contractile function in apical and basal lateral regions were the most evident postoperative changes detectable by 

2D strain imaging. [Knosalla C, Dandel M, et al. Journal of Heart Lung Transplant 2008; 27: S186]. 

 

Fig. (6). Left ventricular longitudinal strain (shortening) and strain rate (velocity of shortening) images obtained from apical 2-chamber 

views before (A and C, respectively) and after surgical ventricular restoration (B and D, respectively) in a patient with initially severe LV 

dysfunction after apical myocardial infarction. Panels B and D show more uniform shortening (amplitude and velocity, respectively) after 

surgery. [Knosalla C, Dandel M et al., Annual Meeting of the German Society for Thoracic and Vascular Surgery 2007]. 



142     Current Cardiology Reviews, 2009, Vol. 5, No. 2 Dandel et al. 

[80].
 
Two-dimensional strain imaging is also useful for the 

evaluation of anti-rejection treatment efficacy. In patients 
without visible alterations in LV kinetics, 2D-strain  imaging  
also appeared reliable for non-invasive prediction of TxCAD 
with  and without focal stenoses (>50% narrowing) of main 
epicardial coronary arteries [40,83,84].

 
Eroglu et al. found 

that strain and strain-rate imaging in combination with 
dobutamine stress echocardiography is useful for early 
detection of TxCAD before the development of relevant 
stenoses detectable with conventional angiography [84].

 
The 

high predictive value for coronary stenoses of systolic strain 
dyssynchrony and dyssynergy indexes found in our patients 
even at rest (positive and negative predictive values of 90%-
95% and 91-97%, respectively) recommended 2D-strain 
imaging as a non-invasive tool with the potential to facilitate 
early detection of stenoses and to enable angiographies to be 
timed, sparing patients frequent routine heart catheterizations 
[40]. Fig. (9) shows examples of strain and strain rate images 
obtained from heart transplant recipients with focal stenoses 
of the coronary arteries. 

 The negative effects of altered electrical activation on 
ventricular mechanical function were already recognized 
more than 40 years ago [85]. More recently this aspect has 
gained important scientific interest and several large clinical 
trials have established the long-term benefits of cardiac 
resynchronization therapy (CRT) in patients who have 
severe LV dysfunction and a wide QRS complex [86,87]. 
However, despite these promising results, approximately 
30% of patients selected on the basis of QRS duration do not 
respond to CRT and there is increasing evidence that the 
main predictor of responsiveness to CRT is mechanical 

rather than electrical dyssynchrony [87,88]. Measurement of 
regional myocardial electro-mechanical events with velocity 
data acquired with tissue Doppler imaging facilitate 
identification of mechanical dyssynchrony and has been 
shown to be useful to select patients who may better respond 
to CRT [88]. However, identification of responders by time-
delay indexes alone is limited, especially in patients with 
ischemic cardiomyopathy who have myocardial segments 
with delayed contraction, which is often caused by scar [88]. 
Two-dimensional strain imaging by speckle tracking and 
TDI-derived strain imaging are well suited to detecting and 
defining intraventricular dyssynchrony and they have already 
proved to be useful for both the selection of patients who 
might benefit from cardiac resynchronization therapy (CRT) 
and the evaluation of CRT efficiency [83,84,89-94]. The 
accuracy of speckle tracking 2D-strain echocardiography in 
the detection and quantification of cardiac dyssynchrony was 
validated experimentally in canine and sheep models 
[95,96]. In a canine model of dyssynchrony with and without 
heart failure, Arita et al. found radial strain by speckle 
tracking to be more accurate than TDI velocity to detect 
cardiac dyssynchrony [97]. Nevertheless, whereas 
parameters of systolic dyssynchrony based on TDI 
longitudinal and radial velocity measurements were able to 
predict the efficacy of CRT in patients with heart failure, 
parameters of systolic dyssynchrony based on longitudinal 
and radial strain data obtained from TDI and speckle 
tracking 2D-strain imaging appeared not predictive for CRT 
results [91,94]. However, the combination of parameters of 
systolic dyssynchrony based on TDI longitudinal velocity 
with parameters of systolic dyssynchrony based on radial 
strain data obtained by speckle-tracking (2D-strain imaging) 

 
Fig. (7). Left ventricular strain changes during symptomatic, biopsy-proven acute rejection (mixed cellular and vascular rejection). Radial (A 

and B), circumferential (C and D) and longitudinal (E and F) global strain decreased during rejection by 24%, 50% and 38%, respectively, without changes 

in synchrony and synergy of myocardial contraction. [Dandel et al. 2007, oral abstract, AHA Scientific Session]. 
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showed the highest predictive value for LV functional 
response to CRT, which was significantly better than that of 
either technique alone (p<0.0001) [98]. Recently, the value 
of strain imaging for prediction of future reverse remodelling  
after CRT has been improved by the development of a strain 
delay index calculated by use of longitudinal strain assessed 
by 2D speckle tracking [88]. At a cut-off value of 25% the 
strain delay index showed high positive and negative 
predictive values (90% both) for response to CRT [88]. Also 
recently it was shown that the incorporation of local 2-D 
echocardiographic deformation data into a 3-D model by 
dedicated software allows a comprehensive analysis of 
spatio-temporal distribution patterns of myocardial 
dyssynchrony of the global LV deformation and the 
development of new indexes that may better reflect 
myocardial dyscoordination and/or impaired ventricular 
contractile efficiency [99]. An important aspect for CRT 
effectiveness is its dependency on the LV lead position. To 
find out the optimal LV lead position is therefore a major 
goal, and recent studies have shown that 2D-strain imaging 
is a useful tool for this purpose [91].  

 Mechanical dyssynchrony of the LV is a more sensitive 
marker of myocardial dysfunction than the ejection fraction 
(LVEF) [93,96]. In patients with idiopathic dilated 
cardiomyopathy who were accepted for heart transplantation 
(HTx) we found that systolic and diastolic LV dyssynchrony 

and dyssynergy, which were detectable by 2D-strain imaging 
in all investigated patients, were more closely related to 
hemodynamic alterations, exercise intolerance and patient 
outcome than LVEF [100]. We also found that 2D-strain 
imaging provides prognostic information, which can be 
useful for patients’ selection for HTx. Thus, in patients with 
similar LVEF, those with rapid worsening toward inotropic 
support dependence showed higher dyssynchrony and lower 
global strain rate values than those who remained clinically 
stable (p<0.01) [100]. 

 In patients with left ventricular assist devices (LVADs) 
we found that TDI is useful in the evaluation of myocardial 
recovery during mechanical unloading [101]. The more 
recent introduction of 2D-strain imaging in our weaning 
protocol for patients with mechanical circulatory support has 
substantially improved our ability to evaluate cardiac 
recovery during mechanical unloading and the information 
obtained (global strain and strain rate plus evaluation of 
mechanical synchrony and synergy) was essential to the 
decision to wean six patients from their assist devices. To 
date none of these 6 patients showed heart failure recurrence 
after assist device explantation. Fig. (10) shows the time 
course of 2D-strain images recorded during reduction of the 
LVAD (Type Incor) rate in a patient with idiopathic dilated 
cardiomyopathy who showed relevant myocardial recovery 
during mechanical unloading. 

 

Fig. (8). Left ventricular radial (A and B) and circumferential (C and D) strain rate changes in an asymptomatic patient with mild acute rejection 

(ISHLT grade 1). The peak systolic and diastolic strain rates (dotted yellow arrows) were higher in rejection-free state (A and C) and lower during 

rejection (B and D). Strain rate reduction was more evident in diastole than in systole. [Dandel et al. 2007, oral abstract, AHA Scientific 

Sessions]. 
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 Although strain rate imaging provides several details on 
diastolic  ventricular  function, the clinical  value of diastolic  
strain and strain rate parameters was less investigated. Wall 
motion velocity measurements with pulsed-wave tissue 
Doppler revealed high predictive values for acute cardiac 
allograft rejection of early diastolic wall motion peak 
velocity (Em) reduction, prolongation of early diastolic time 
(TEm = from onset of relaxation to the peak of the early 
diastolic wave Em) and reduction of Em/TEm ratio [77]. 
Preliminary results of our recently started investigation on 
the clinical value of cardiac rejection surveillance with 2D 
strain imaging also revealed a significant reduction in early 
diastolic strain rate (DSRE) and prolongation of the time 
from onset of relaxation to the peak of DSRE during acute 
cardiac rejection, suggesting the usefulness of diastolic strain 
parameters as markers for early non-invasive detection of 
cardiac rejection [40].

 
The assessment of diastolic function 

by 2D-strain imaging appeared also useful for the evaluation 
of patients referred for heart transplantation because 
parameters like late diastolic strain rate (DSRA) and the 
diastolic E/A strain rate ratio (DSRE /DSRA) showed high 
predictive values for the outcome of patients with idiopathic 
dilated cardiomyopathy (IDCM) during the first 6 months 
after listing for HTx [102].

 

 In IDCM patients with similar LVEF and peak oxygen 
consumption (VO2max) at the time of listing for HTx, those 
who showed rapid clinical worsening had significantly 
(<0.01) lower DSRA and higher DSRE /DSRA ratios than 
those who remained stable during the first 6 post-listing 

months [102].
 
At a cut-off value of <0.3/s the DSRA showed 

high positive and negative predictive values (89% and 90%, 
respectively) for deterioration of cardiac function during the 
first 6 post-weaning months which recommend this 
parameter as a useful tool for listing decisions (elective, 
urgency or high-urgency) [102].  

 A next step in development of deformation imaging by 
echocardiography which will be superior to the 2D strain and 
SR imaging will be the calculation of strain and SR in three 
dimensions during the same heart cycle. The potential 
diagnostic benefits of this further technical development 
remain, however, to be established.  

CONCLUSIONS  

 Echocardiographic strain and strain-rate imaging is a 
promising tool for the evaluation of myocardial function. 
The spectrum of potential clinical applications is very wide 
due its ability to differentiate between active and passive 
movement of myocardial segments, to quantify intra-
ventricular dyssynchrony and to evaluate components of 
myocardial function such as longitudinal myocardial 
shortening that are not visually assessable. The high 
sensitivity of both TDI-derived and 2D speckle tracking 
derived strain and strain rate data for the early detection of 
myocardial dysfunction recommend this new non-invasive 
diagnostic method for routine clinical use. Speckle tracking 
derived 2D-strain measurements have the advantage of angle 
independency but are sensitive to image quality. TDI-derived 

 

Fig. (9). Left ventricular strain and strain rate images in heart transplant recipients with focal stenoses of coronary arteries. A and B: 

Circumferential strain and strain rate in a patient with stenosis of the right coronary artery. C and D: Longitudinal strain and strain rate in a 

patient with stenosis of the left anterior descending coronary artery. [Dandel et al. JHLT 2008; 27(2): S95-96]. 
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strain measurements are less sensitive to image quality but 
the angle dependency of the method is an important 
limitation. In addition to early detection of myocardial 
dysfunction of different etiologies, assessment of myocardial 
viability, detection of acute allograft rejection after HTx and 
early detection of patients with TxCAD, strain and strain rate 
measurements are helpful in the selection of different 
therapies (CRT, coronary revascularization, SVR and HTx). 
Strain and strain rate data also provide valuable prognostic 
information, especially for prediction of future reverse 
remodelling after left ventricular restoration surgery or after 
CRT and prediction of short and median-term outcome 
without transplantation or ventricular assist device 
implantation of patients referred for HTx. 
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