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Abstract

Background

The complexity of the inflammatory response post subarachnoid hemorrhage (SAH) may

require temporal analysis of multiple protein biomarkers simultaneously to be more accu-

rately described.

Methods

Ventricular cerebrospinal fluid was collected at days 1, 4 and 10 after SAH in 29 patients.

Levels of 92 inflammation-related proteins were simultaneously measured using Target 96

Inflammation ® assay (Olink Proteomics, Uppsala, Sweden) based on Proximity Extension

Assay (PEA) technology. Twenty-eight proteins were excluded from further analysis due to

lack of >50% of measurable values. Temporal patterns of the remaining 64 proteins were

analyzed. Repeated measures ANOVA and its nonparametric equivalent Friedman’s

ANOVA were used for comparisons of means between time points.

Results

Four different patterns (Groups A-D) were visually observed with an early peak and gradu-

ally decreasing trend (11 proteins), a middle peak (10 proteins), a late peak after a gradually

increasing trend (30 proteins) and no specific pattern (13 proteins). Statistically significant

early peaks defined as Day 1 > Day 4 values were noticed in 4 proteins; no significant

decreasing trends defined as Day 1 > Day 4 > Day 10 values were observed. Two proteins

showed significant middle peaks (i.e. Day 1 <Day 4 >Day 10 values). Statistically significant

late peaks (i.e. Day 4 < Day 10 values) and increasing trends (i.e. Day 1 < Day 4 < Day 10

values) were observed in 14 and 10 proteins, respectively. Four of Group D proteins showed

biphasic peaks and the rest showed stable levels during the observation period.
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Conclusion

The comprehensive data set provided in this explorative study may act as an illustration of

an inflammatory profile of the acute phase of SAH showing groups of potential protein bio-

markers with similar temporal patterns of activation, thus facilitating further research on their

role in the pathophysiology of the disease.

Introduction

Spontaneous subarachnoid hemorrhage (SAH) comprises approximately 5% of all strokes

with an incidence of around 9 cases per 100.000 per year and aneurysm rupture being the

cause in 85% of cases [1]. Brain injury in SAH occurs both at the time of the bleeding itself,

termed primary injury, but also during the following days to weeks, a phenomenon known as

secondary injury. Despite advances in the critical care of SAH patients and aneurysm treat-

ment methods, mortality and morbidity rates among the survivals from the initial bleeding

remain high, reflecting a lack of effective treatments targeting the pathophysiological mecha-

nisms that underlie the secondary injury.

Delayed cerebral ischemia (DCI) develops in approximately 30–40% of SAH patients and is

considered to be a major cause of unfavorable outcome [2]. For decades the condition was

attributed to cerebral vasospasm (CV), i.e. the narrowing of basal cerebral arteries seen early

on angiography and persisting for up to two weeks post SAH leading to decreased cerebral

blood flow (CBF) and infarctions in the affected territories [3]. However, about 20% of SAH

patients develop DCI without radiological evidence of CV and only 30% of patients with CV

on angiography actually suffer from DCI [4]. Moreover, the randomized multicenter CON-

CSIOUS trials with the endothelin receptor antagonist Clazosentan failed to show any effect

on functional outcome or incidence of cerebral ischemia despite significant decrease of CV [5,

6]. Thus, an uncoupling of angiographic vasospasm and DCI became apparent and new con-

cepts emerged as potential underlying mechanisms of delayed brain injury [7, 8].

Early brain injury (EBI) refers to the events occurring within the first 72h from ictus and

includes the primary injury and its direct consequences. Elevation of intracranial pressure

(ICP), global ischemia and impairment of CBF autoregulation, cortical spreading depolariza-

tion (CSD), disruption of blood—brain barrier (BBB), cell death, oxidative stress and inflam-

matory processes are among the mechanisms that are activated shortly after aneurysm rupture

and evolve during the following days [9].

The processes triggered by the EBI are now believed to play an important role in the devel-

opment of DCI [9, 10]. Neuroinflammation may be a mechanistic link between these two con-

ditions and has been studied extensively in the past years [11–13]. Many clinical and

experimental studies report levels of single or few inflammatory biomarkers (such as cyto-

kines) in the peripheral blood, cerebrospinal fluid (CSF) and cerebral extracellular fluid

through microdialysis (MD) in SAH patients or animal models and further correlate these bio-

markers with clinical parameters and outcome [14–22]. Although this strategy provides useful

insight into the interplay between inflammation and the disease course it fails to account for

the complexity of the involved mechanisms that cannot be adequately described by a single (or

few) biomarker(s) alone.

The aim of the present explorative study was to provide a comprehensive inflammatory

profile of the acute phase of SAH by simultaneously measuring the levels of 92 inflammation-

related proteins in the CSF at days 1, 4 and 10 after admission. This was achieved using Target
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96 Inflammation1 assay (Olink Proteomics, Uppsala, Sweden) based on Proximity Extension

Assay (PEA) technology. PEA technology enables measurements of multiple proteins simulta-

neously in the same samples using only 1 μL of CSF (or other biological sample) with high

specificity [23]. The analyzed proteins were then categorized into different groups according

to their temporal expression and their peaks and trends throughout the observation period

were noted.

Materials and methods

Ethics

The study was conducted in accordance with Declaration of Helsinki for human studies and

approved by Uppsala University Ethics Committee. All participants or their next of kin gave

written consent for participation in the study.

CSF samples and analysis

Inclusion period was between May 2013 and August 2014. Eligibility criteria was spontaneous

SAH severe enough to require insertion of an external ventricular drain (EVD) within 24 h

from ictus. Patients considered terminally ill from the bleeding were excluded. Ventricular

CSF samples were collected through the EVD within 24 h, on day 4 and between days 9–11

after the bleeding, centrifuged directly after collection and frozen in -70˚C. The samples were

then analyzed using Target 96 Inflammation 1, a multiplex assay panel manufactured by

Olink Proteomics AB, Uppsala, Sweden where 92 inflammation-related protein biomarkers

are simultaneously measured using Proximity Extension Assay (PEA) technology. The analyti-

cal method was previously described in detail [23, 24]. More information can also be found

online at https://www.olink.com/. In short, a matched pair of antibodies labeled with unique

oligonucleotide tags (“probes”) bind specifically to each target protein present in the sample.

The two probes thus come in proximity and can hybridize by enzymatic DNA polymerization

producing a DNA sequence that is unique for each protein. Real-time quantification PCR

(qPCR) is then used to detect, amplify and quantify these DNA sequences. The number of

qPCR cycles required for detection is related to the concentration of the protein in the sample.

Data is then digitally processed and relative concentrations of the proteins in each sample are

reported. Values are provided in output unit Normalized Protein Expression (NPX) on log2

scale. NPX values express relative quantification between samples but is not an absolute quan-

tification. Limit of detection (LOD) is determined for each biomarker based on the negative

controls analyzed in each run.

Proteins

A list of the 92 inflammation-related proteins included in the panel as well as their families is

provided in S1 Data. In summary, the panel included 31 cytokines, 20 chemokines, 9 growth

factors, 8 tumor necrosis factor (TNF)-family members, 6 membrane glycoproteins, 6 neuro-

trophic factors, 5 proteases and 7 miscellaneous proteins.

A total of 87 NPX values (29 patients x 3 time points) corresponding to protein concentra-

tions were collected for each protein. Variations in the detectability of the proteins in the sam-

ples were noticed; for example, in 44 proteins all samples were successfully analyzed while in 6

proteins all values were below limit of detection. Inclusion criteria were therefore defined that

the values needed to be above level of detection (LOD) in at least 50% of the samples for each

protein (that is�44 existing values) and in 1/3 of the patients for each day (�10), which lead

to the exclusion of 28 proteins, thus leaving 64 proteins for further analysis.
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Statistics

The temporal pattern of each protein was illustrated in graphs with means and 0.95 confidence

intervals. Repeated measures Analysis of variance (ANOVA) with Fisher LSD test for post-hoc

analyses was used for comparisons of mean NPX values between time points in those biomark-

ers where the values were normally distributed (tested with histograms and Shapiro-Wilk’s test)

and the assumption of compound symmetry was met (tested with Mauchly’s sphericity test).

The nonparametric equivalent Friedman’s ANOVA was used for analysis in biomarkers whose

values were not normally distributed and/or the assumption of compound symmetry could not

be met (i.e. sphericity test with a p-value< 0.05). When Friedman’s ANOVA indicated signifi-

cant variance in the mean NPX values in the latter group, further pairwise comparisons were

performed with Wilcoxon test to identify between which days the significant differences were

found. Missing data were left as such. All results were considered statistically significant at the

p<0.05 level. All statistical analyses and graphical presentations were performed using the Sta-

tistica1 software (version 13.05.0.17, TIBCO Software Inc, Tulsa, OK, USA).

Results

Demographic data of the 29 patients included in the study are presented in Table 1. Brain CT

scans were used to establish the diagnosis of SAH and were classified according to Fisher scale

(median 4) [25]. World Federation of Neurosurgical societies (WFNS) scores were noted on

admission (median 4) [26]. CT angiography and catheter angiography were performed in all

cases and aneurysms were identified in 28 patients. In 26 patients the aneurysms were endo-

vascularly secured and the remaining two were surgically clipped. The patients were treated at

the Neurointensive Care Unit of Uppsala University Hospital for at least 10 days after the

bleeding. Standardized treatment protocols described in a previous publication were applied

[27]. Functional outcome was assessed by a research nurse at 1 year using Glasgow Outcome

Scale [28].

Visual inspection of the graphs revealed four different temporal patterns (Table 2): an early

peak at day 1 followed by a decreasing trend (Group A: 11 proteins), a middle peak at day 4

(Group B: 10 proteins), an increasing trend with a late peak at day 10 (Group C: 30 proteins)

and finally no specific pattern (Group D: 13 proteins). Figs 1–4 illustrate typical graphs of pro-

tein expression levels (mean NPX and 0.95 confidence intervals) over time for each group.

Four Group A proteins (Table 3) showed statistically significant early peak, defined as sig-

nificantly higher day 1 vs day 4 values, i.e. CCL11, CCL4 (MIP-1β), LIF and TGF-α; no pro-

teins in this group showed statistically significant decreasing trend (that is, significant

differences between day 1 vs day 4 and day 4 vs day 10 values).

Eight Group B proteins (Table 4) showed significantly higher values between day 4 vs day 1,

i.e. Beta-NGF, CCL28, CST5, DNER, FGF-5, Flt3L, LIF-R and OSM). Four of these proteins

Table 1. Demographic data of the patient cohort.

Number of patients 29

Male vs Female 12 vs 17

Mean age (range) 57 (37–81)

Median WFNS score 4

Median Fisher grade 4

Anterior vs posterior circulation aneurysm 23 vs 5 (1 patient with no aneurysm)

Embolization vs surgery 26 vs 2

Favorable vs unfavorable outcome (GOS) 9 vs 20

https://doi.org/10.1371/journal.pone.0263460.t001
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showed decreasing NPX values towards day 10 and the rest remained stable. The only proteins

with statistically significant middle peak (that is, significant difference between day 4 vs day 1

and day 4 vs day 10 values) were CCL28 and DNER.

Fourteen of the 30 proteins in Group C (Table 5) showed statistically significant late

peak defined as significantly higher day 10 vs day 4 values, i.e. 4E-BP1, ADA, CASP-8,

CCL19, CCL23 (MIP-3), CD40, CDCP1, CXCL1, CXCL6, CXCL8 (IL-8), CXCL9, IL-18,

SIRT2 and uPA. Ten of them also showed statistically significant increasing trend during

the entire observation period, that is significantly higher day 10 vs day 4 and day 4 vs day

1 values (i.e. 4E-BP1, ADA, CCL19, CCL23, CD40, CDCP1, CXCL1, CXCL6, CXCL9 and

uPA).

Four of the Group D proteins (Table 6) showed biphasic peaks at day 1 and day 10, i.e. CCL

25, CD6, MMP1 and VEGF-A, but only VEGF-A had a statistically significant difference

between day 1 vs day 4 values. The remaining 9 proteins CCL2 (MCP-1), CSF-1, CX3CL1,

CXCL5, IL-10, IL-12RB, SCF, TNFRSF9 and TNFSF14 showed fairly stable values throughout

the observation period.

Table 2. Groups of proteins by their temporal pattern of expression.

GROUP A (n = 11) GROUP B (n = 10) GROUP C (n = 30) GROUP D (n = 13)

EARLY PEAK MIDDLE PEAK LATE PEAK NO PATTERN

CCL11 BDNF 4E-BP1 CCL2 (MCP-1)

CCL20 beta-NGF ADA CCL25

CCL3 (MIP-1α) CCL28 CASP-8 CD6

CCL4 (MIP-1β) CST-5 CCL13 (MCP-4) CSF-1

CD244 DNER CCL19 CX3CL1

FGF-19 FGF-5 CCL23 (MIP-3) CXCL5

FGF-21 Flt3L CCL7 (MCP-3) IL-10

LIF IL-18R1 CCL8 (MCP-2) IL-12B

MMP10 LIF-R CD40 MMP1

TGF-α OSM CD5 SCF

TRAIL (TNFSF10) CDCP-1 TNFRSF9

CXCL1 TNFSF14

CXCL10 VEGF

CXCL11

CXCL6

CXCL8 (IL-8)

CXCL9

EN-RAGE

HGF

IL-10RB

IL-18

IL-6

IL-7

OPG

SIRT-2

STAMPB

TGF-β1

TNF-B

TWEAK

uPA

https://doi.org/10.1371/journal.pone.0263460.t002
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Discussion

In this study we present a concise data set of the sequential production of multiple inflamma-

tion-related proteins in the CSF of patients during the first 10 days post SAH. This is the first

report of Proximity Extension Assay (PEA) technology being used for measuring complex pro-

tein expression levels in the context of SAH. Similar studies were recently published in patients

with traumatic brain injury (TBI) and trigeminal neuralgia, as well as numerous other non-

neurosurgical conditions (such as neuropathic pain, cardiovascular diseases, gastric cancer,

etc.) [29–31].

Fig 1. Group A example; CCL4 (MIP-1ß): Temporal pattern of protein expression level (mean NPX ± 0.95 CI) for

C-C motif chemokine ligand 4 (CCL4) a.k.a. macrophage inflammatory protein-1ß (MIP-1ß). Statistically

significant early peak (mean day 1 vs day 4 values = 6,86 vs 5,46; p<0,005) but no significantly decreasing trend since

values seemed to stabilize between day 4 and 10 (5,46 vs 5,33; p = 0,52).

https://doi.org/10.1371/journal.pone.0263460.g001

Fig 2. Group B example; DNER: Temporal pattern of protein expression level (mean NPX ± 0.95 CI) for Delta

and Notch-like epidermal growth factor-related receptor (DNER). Statistically significant peak in the middle of the

observation period defined by significantly higher day 4 vs day 1 (8,1 vs 7,27; p<0.005) and day 4 vs day 10 mean NPX

values (8,1 vs 7,92; p<0.05).

https://doi.org/10.1371/journal.pone.0263460.g002
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The analyses in the present study were performed in CSF compartment alone (not plasma

or cerebral interstitial fluid) as this seems more suitable to describe the disease pathophysiol-

ogy, given also that major early and late clinical complications (i.e. CV and chronic hydro-

cephalus) spatially correlate best with this compartment. Many of the included proteins have

previously been associated to SAH inflammation, for example IL-1ra, IL-6, IL-8, TNF-a, LIF,

MCP-1, and VEGF-A [32]. On the other hand, there is scarce or non-existing literature on

many other proteins, some of which showed interesting temporal patterns and statistically sig-

nificant peaks and trends in the present study, such as LIF, CCL11, CCL28, 4E-BP1, CD40,

CXCL6, CXCL9, and IL-18 [20, 33–36].

Fig 4. Group D example; CCL2 (MCP-1): Temporal pattern of protein expression level (mean NPX ± 0.95 CI) for

C-C motif chemokine ligand 2 (CCL2) a.k.a. monocyte chemotactic protein 1 (MCP-1) showing essentially stable

values throughout the whole observation period (13,15 vs 13,04 vs 13,02; p = 0,575).

https://doi.org/10.1371/journal.pone.0263460.g004

Fig 3. Group C example; CXCL6: Temporal pattern of protein expression level (mean NPX ± 0.95 CI) for C-X-C

motif chemokine ligand 6 (CXCL6) showing statistically significant late peak and increasing trend, that is day

1< day 4< day 10 mean NPX values (4,41 vs 6,81 vs 8,57 respectively; p<0,005).

https://doi.org/10.1371/journal.pone.0263460.g003
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Group A

Eleven proteins showed higher day 1 values and decreasing trends throughout the observation

period (Tables 2 and 3). Four of them (CCL11, CCL4, LIF and TGF-α) showed statistically sig-

nificant early peaks with day 1> day 4 levels but no statistically significant decreasing trends

were observed. CCL4 (also known as MIP-1β) and CCL11 are members of the chemokine fam-

ily (C-C motif) and are involved in chemotaxis of macrophages and activated T-cells, respec-

tively, as well as other proinflammatory actions. Their early peak can possibly be associated to

the recruitment of leukocytes at the site of the bleeding. LIF is a cytokine involved in activation

of signaling pathways that regulate cell growth among other actions. A similar early peak in

serum has been observed previously [37]. TGF-α has not been studied in the SAH literature.

Table 3. Group A proteins.

DAY 1 1 v 4 DAY 4 4 v 10 DAY 10 1 v 10

CCL11 3,21 (2,75–3,67) �� 2,36 (2,15–2,58) 2,47 (2,26–2,68) ��

CCL20 6,21 (5,25–7,17) 5,97 (5,19–6,75) 5,58 (4,90–6,26)

CCL3 (MIP-1) 3,83 (3,14–4,52) 3,21 (2,69–3,73) 3,19 (2,81–3,56)

CCL4 (MIP-1β) 6,86 (6,14–7,59) �� 5,46 (4,93–6) 5,33 (4,96–5,69) ��

CD244 2,24 (1,86–2,62) 1,88 (1,61–2,15) 1,72 (1,52–1,92)

FGF-19 4,22 (3,88–4,57) 3,80 (3,47–4,13) 3,69 (3,31–4,06)

FGF-21 1,74 (1,34–2,14) 1,53 (1,23–1,83) �� 1,03 (0,90–1,15) ��

LIF 5,80 (5,10–6,50) �� 4,04 (3,35–4,73) 3,94 (3,34–4,54) ��

MMP10 4,09 (3,55–4,63) 3,94 (3,27–4,61) 3,54 (3,16–3,93)

TGF-α 3,06 (2,79–3,33) � 2,81 (2,61–3,02) 2,66 (2,51–2,80) �

TRAIL 3,57 (3,06–4,07) 2,87 (2,45–3,29) 2,80 (2,52–3,09)

Comparison of protein expression levels (mean NPX ± 0.95 CI within parentheses) between time points for each protein. Repeated measures ANOVA and Fisher LSD

test for post-hoc analyses was used for comparisons when data were normally distributed and assumption of compound symmetry was met. Nonparametric equivalents

Friedman’s ANOVA and Wilcoxon test were used when parametric statistics were deemed inappropriate; asterisks indicate level of significance for each comparison (�

= p<0,05;

�� = p<0,005).

https://doi.org/10.1371/journal.pone.0263460.t003

Table 4. Group B proteins.

DAY 1 1v4 DAY 4 4v10 DAY 10 1v10

BDNF 2,41 (1,78–3,04) 3,32 (2,35–4,28) 3,37 (2,19–4,54)

b-NGF 0,96 (0,79–1,13) �� 2,08 (1,86–2,31) 1,86 (1,59–2,13) ��

CCL28 0,51 (0,38–0,64) �� 0,71 (0,65–0,78) � 0,59 (0,52–0,66)

CST5 5,64 (5,36–5,92) �� 5,81 (5,66–5,95) 5,77 (5,64–5,91) �

DNER 7,27 (6,99–7,55) �� 8,10 (7,82–8,38) � 7,92 (7,66–8,17) ��

FGF-5 1,94 (1,62–2,26) �� 2,88 (2,57–3,19) 2,66 (2,35–2,96) ��

Flt3L 7,45 (7,16–7,74) �� 7,95 (7,65–8,26) 8,00 (7,7–8,31) ��

IL-18R1 2,16 (1,74–2,58) 2,52 (2,09–2,94) 2,33 (1,93–2,73)

LIF-R 2,13 (1,93–2,33) �� 2,50 (2,29–2,71) 2,42 (2,27–2,56) ��

OSM 4,04 (3,41–4,68) � 4,85 (4,14–5,56) 4,87 (4,32–5,43) �

Comparison of protein expression levels (mean NPX ± 0.95 CI within parentheses) between time points for each protein. Repeated measures ANOVA and Fisher LSD

test for post-hoc analyses was used for comparisons when data were normally distributed and assumption of compound symmetry was met. Nonparametric equivalents

Friedman’s ANOVA and Wilcoxon test were used when parametric statistics were deemed inappropriate; asterisks indicate level of significance for each comparison (�

= p<0,05;

�� = p<0,005).

https://doi.org/10.1371/journal.pone.0263460.t004

PLOS ONE Inflammation-related proteins in subarachnoid hemorrhage

PLOS ONE | https://doi.org/10.1371/journal.pone.0263460 March 24, 2022 8 / 15

https://doi.org/10.1371/journal.pone.0263460.t003
https://doi.org/10.1371/journal.pone.0263460.t004
https://doi.org/10.1371/journal.pone.0263460


Group B

Among the 10 proteins included in this group only two (CCL28 and DNER) showed statisti-

cally significant middle peaks, that is significantly higher day 4 values than both day 1 and day

10 (Tables 2 and 4). Production of the chemokine CCL28 is induced by other proinflammatory

cytokines and its chemotactic actions are exerted on B- and T-cells and eosinophils. Delta and

Notch-like Epidermal growth factor-Receptor (DNER) is an activator of NOTCH1 pathway.

None of these proteins have been studied in a SAH context earlier and their potential involve-

ment in the SAH complications, mainly CV that coincides temporally with the observed mid-

dle peaks, should be examined.

Table 5. Group C proteins.

DAY 1 1v4 DAY 4 4v10 DAY 10 1v10

4E-BP1 1,45 (1,07–1,83) �� 4,04 (3,10–4,97) �� 6,18 (5,49–6,86) ��

ADA 4,02 (3,71–4,33) �� 5,30 (4,73–5,87) � 5,86 (5,35–6,36) ��

CASP-8 1,45 (1,13–1,78) 1,73 (1,33–2,14) �� 2,51 (2,09–2,93) ��

CCL13 (MCP-4) 0,75 (0,54–0,95) 0,66 (0,57–0,76) 1,14 (0,9–1,39)

CCL19 7,74 (7,27–8,21) �� 10,38 (9,66–11,1) � 11,08 (10,44–11,72) ��

CCL23 (MIP-3) 3,86 (3,38–4,34) �� 5,89 (5,27–6,51) �� 7,26 (6,65–7,86) ��

CCL7 (MCP-3) 5,29 (4,65–5,93) � 6,27 (5,60–6,94) 6,65 (5,92–7,39) ��

CCL8 (MCP-2) 6,98 (6,34–7,62) � 8,13 (7,42–8,84) 8,88 (8,24–9,52) ��

CD40 6,12 (5,75–6,49) �� 6,87 (6,39–7,35) �� 7,82 (7,33–8,30) ��

CD5 1,29 (0,92–1,67) � 1,73 (1,42–2,04) 1,88 (1,50–2,27) �

CDCP-1 3,71 (3,48–3,95) �� 4,37 (4,11–4,63) �� 4,74 (4,42–5,07) ��

CXCL1 7,44 (6,81–8,06) � 8,80 (7,98–9,62) � 9,55 (8,79–10,32) ��

CXCL10 7,77 (7,04–8,50) �� 10,44 (9,67–11,22) 10,92 (10,33–11,52) ��

CXCL11 2,84 (2,41–3,28) �� 3,98 (3,40–4,56) 4,30 (3,83–4,76) ��

CXCL6 4,41 (3,74–5,07) �� 6,81 (5,85–7,77) �� 8,57 (7,68–9,45) ��

CXCL8 (IL-8) 12,80 (12,3–13,29) 12,89 (12,25–13,52) � 13,34 (12,73–13,95)

CXCL9 3,38 (2,96–3,80) �� 4,68 (4,15–5,22) �� 5,86 (5,2–6,52) ��

EN-RAGE 1,99 (1,46–2,52) �� 3,71 (3,10–4,32) 4,12 (3,49–4,75) ��

HGF 5,40 (4,97–5,83) �� 6,44 (6,06–6,81) 6,76 (6,38–7,15) ��

IL-10RB 2,06 (1,74–2,39) �� 2,65 (2,31–3) 2,88 (2,53–3,24) ��

IL-18 2,88 (2,35–3,41) 3,08 (2,43–3,74) �� 4,18 (3,64–4,73) ��

IL-6 9,55 (8,92–10,18) 10,45 (9,51–11,4) 10,79 (10,01–11,57) �

IL-7 1,22 (1,14–1,31) � 1,48 (1,32–1,63) 1,57 (1,43–1,71) ��

OPG 9,38 (8,78–9,98) 9,79 (9,23–10,36) 10,32 (9,74–10,9)

SIRT-2 2,56 (2,09–3,03) 2,96 (2,46–3,6) � 3,49 (2,97–4,02) ��

STAMPB 1,90 (1,58–2,22) 2,12 (1,73–2,52) 2,54 (2,15–2,93) ��

TGF-β1 3,95 (3,58–4,32) � 4,57 (4,11–5,02) 4,80 (4,32–5,27) ��

TNF-β 1,03 (0,74–1,31) 0,81 (0,67–0,95) 1,27 (1,02–1,51)

TWEAK 7,51 (7,21–7,81) �� 8,22 (7,9–8,55) 8,40 (8,11–8,69) ��

uPA 7,34 (7,01–7,66) �� 8,60 (8,17–9,04) �� 10,02 (9,47–10,57) ��

Comparison of protein expression levels (mean NPX ± 0.95 CI within parentheses) between time points for each protein. Repeated measures ANOVA and Fisher LSD

test for post-hoc analyses was used for comparisons when data were normally distributed and assumption of compound symmetry was met. Nonparametric equivalents

Friedman’s ANOVA and Wilcoxon test were used when parametric statistics were deemed inappropriate; asterisks indicate level of significance for each comparison (�

= p<0,05;

�� = p<0,005).

https://doi.org/10.1371/journal.pone.0263460.t005
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Group C

Thirty proteins showed higher levels towards the end of the observation period, reflecting a

more delayed activation post SAH that may indicate an involvement in the healing processes

or the development of late complications, such as late vasospasm, posthemorrhagic hydro-

cephalus, etc. (Tables 2 and 5). Fourteen proteins showed statistically significant late peaks,

meaning significantly higher day 10 than day 4 values; ten of them even showed significantly

increasing trends throughout the observation period with day 1< day 4< day 10 values.

Signaling pathway molecule 4E-BP1 has been implicated in the development of vaso-

spasm in a canine SAH-model but no reports on human studies are available [35]. Chemo-

kines CCL19, CCL23, CCL8 and CXCL6, all potent chemotactic agents for a variety of

immune cells such as lymphocytes, resting T-cells/monocytes and neutrophil granulocytes,

have been studied in other CNS-related inflammatory diseases but not in SAH patients ear-

lier [38]. Chemokines CXCL1, CXCL9, CXCL10 and CXCL11 demonstrated a similar pat-

tern of late activation alongside with monocyte and T-cells infiltration within the CNS and

were associated with DCI occurrence in a recent study by Mohme et al. [39]. Protein CD40,

a member of TNF family, is found on antigen-presenting cells and mediates multiple

inflammatory responses. Elevated serum levels of CD40 have been associated with poor out-

come and severity of neurological deficits in SAH patients [36, 40]. IL-18, a pro-inflamma-

tory cytokine involved in the synthesis of inflammatory mediators, has recently been shown

to be a predictor of early brain injury and clinical prognosis in SAH patients as elevated

concentrations correlated to cerebral edema and acute hydrocephalus [20]. It should be

noted though that the observed temporal pattern of IL-18 in that study differed from our

study as we demonstrated a late peak of this cytokine. Urokinase (or uPA) is a serum prote-

ase that activates plasminogen to plasmin which in turn leads to thrombolysis and tissue

degradation. Plasma concentrations of its receptor (soluble uPA-receptor) was shown not

to correlate with neurological outcome post SAH [41].

Table 6. Group D proteins.

DAY 1 1v4 DAY 4 4v10 DAY 10 1v10

CCL2 (MCP-1) 13,15 (13,04–13,26) 13,04 (12,86–13,23) 13,02 (12,85–13,18)

CCL25 1,68 (1,34–2,03) 1,34 (1,16–1,52) 1,56 (1,28–1,85)

CD6 0,69 (0,36–1,02) 0,49 (0,36–0,62) 0,60 (0,45–0,75)

CSF-1 6,30 (5,92–6,68) 6,54 (6,18–6,90) 6,29 (6,01–6,58)

CX3CL1 2,98 (2,67–3,29) 3,31 (2,96–3,67) 3,45 (3,14–3,77)

CXCL5 8,35 (7,59–9,11) 8,52 (7,81–9,23) 8,59 (7,89–9,30)

IL-10 2,63 (2,18–3,07) 2,88 (2,19–3,56) 2,54 (2,06–3,02)

IL-12B 1,64 (1,27–2,01) 1,77 (0,66–2,88) 1,37 (1,25–1,49)

MMP1 0,94 (0,61–1,26) 0,76 (0,15–1,36) 0,83 (0,42–1,25)

SCF 3,08 (2,64–3,51) 3,39 (3,01–3,78) 3,52 (3,09–3,95)

TNFRSF9 2,63 (2,27–3) 2,96 (2,55–3,38) 2,86 (2,48–3,25)

TNFSF14 0,90 (0,49–1,31) 0,72 (0,3–1,13) 0,72 (0,33–1,11)

VEGF-A 9,93 (9,57–10,29) � 9,51 (9,14–9,87) 9,79 (9,44–10,13)

Comparison of protein expression levels (mean NPX ± 0.95 CI within parentheses) between time points for each protein. Repeated measures ANOVA and Fisher LSD

test for post-hoc analyses was used for comparisons when data were normally distributed and assumption of compound symmetry was met. Nonparametric equivalents

Friedman’s ANOVA and Wilcoxon test were used when parametric statistics were deemed inappropriate; asterisks indicate level of significance for each comparison (�

= p<0,05;

�� = p<0,005).

https://doi.org/10.1371/journal.pone.0263460.t006
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Group D

VEGF-A is a well-studied biomarker in SAH [42–44]. Upon binding to its receptors it pro-

motes endothelial cell proliferation and cell migration and increases permeability of the blood

vessels. It has been described to play an important role in the blood brain barrier integrity and

development of brain edema and its suppression has reportedly ameliorated EBI in experimen-

tal SAH [45]. Higher levels on admission have also been correlated with worse outcomes in

patients [46]. The early peak noticed in our study can be explained by these actions that usually

take place early post SAH. The late peak is less clear (nor statistically significant) but may indi-

cate involvement in the development of chronic hydrocephalus as an experimental study sug-

gested previously [47].

CCL2 or MCP-1 is a strong chemotactic agent for monocytes and has been correlated with

bleeding severity and development of DCI [19, 34, 48]. Higher serum concentrations of MCP-

1 correlated with poor outcome and higher CSF concentrations with angiographically demon-

strated vasospasm in an early study by Kim et al. [49]. Of note is the high NPX values of this

biomarker that were among the highest observed values in our material. No peak or trend was

observed in our study but en ultra-early peak before the first sample and a strong activation

throughout the observation period cannot be ruled out.

The absence of a specific pattern of activation for the remaining Group D proteins may be

attributed to the fact that these proteins are only relevant for a very short period of time that

was not captured in the time points of the present analysis or not relevant at all.

General considerations

The great variability of the expression levels and temporal patterns of the measured inflamma-

tion-related proteins is an indicator of the complexity of the inflammatory response after SAH.

Many of the included proteins are well established biomarkers in the SAH research both in

humans and in preclinical animal models while others are novel in the SAH field. Their exact

role as well as interplay with each other is not easy to establish, especially considering the fact

that many of these substances are described to play both a detrimental and a beneficial role in

the disease course depending on the time after bleeding [50]. Bioinformatics analyses could

address this complex interplay between and within groups of proteins with similar features

(such as same family or similar temporal pattern of activation) in order to better elucidate

their role in the SAH pathophysiology in studies specifically designed for that purpose. The

current study provides a rough description of the inflammatory profile of the acute phase of

SAH and may serve as a pilot for the design of such biomarker studies.

Limitations

A limitation with the study is that the PEA analysis method in its presently available form does

not give absolute protein concentrations. However, the protein expression levels illustrate the

relative concentrations and how these change over time. They also illustrate the temporal rela-

tions between the levels of the different proteins. The study may be limited by the relatively

small number of patients included. Another drawback may be the fact that the study is limited

to the CSF compartment; similar analyses could be performed in the cerebral interstitial fluid

and plasma, giving the opportunity to compare protein levels in the different fluid compart-

ments providing a more thorough inflammatory profile of the acute phase of the disease. Com-

parisons with healthy individuals could also serve as an indicator of the intensity of activation

for each protein. Moreover, correlations of the protein expression levels with clinical parame-

ters were not performed in this study, nor were bioinformatics analyses, as the main goal was

to provide general information of as many proteins as possible in order to look for patterns of
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expression for further investigation. Finally, future SAH studies with a larger number of time

points are warranted to describe the temporal pattern of each protein more accurately.

Conclusion

The temporal patterns of expression of multiple inflammation-related proteins in the acute

phase of SAH are reported in this explorative study providing an inflammatory profile of the

disease that facilitates further research in the field of protein biomarkers. Proximity Extension

Assay technology enables the measurement of the expression levels of several proteins simulta-

neously in small amounts of sample with high specificity, adding a useful tool in the quest of

finding relevant biomarkers to better describe and understand the complex pathophysiology

of SAH.
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