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The mitochondrial quality control system is essential for the
preservation and regulation of mitochondrial function. This
system is formed by a complex machinery that controls and
maintains protein function and regulates mitochondrial
morphology through a coordinated system of continual fusion
and fission events. Impairments in the mitochondrial quality
control system through either mutation or deficiency in any of
its components, can lead to mitochondrial dysfunction.
However, the physiological consequences of these deficiencies
remain unknown in most cases. Here, we briefly review the
role of the OPA1-OMA1 system in mitochondrial biology, and
summarize our recent report on the generation and pheno-
typic characterization of a model deficient in OMA1, an ATP-
independent mitochondrial metalloprotease that participates
in mitochondrial quality control. Interestingly, Oma1-deficient
mice display an obesity phenotype, characterized by hepatic
steatosis, decrease in energy expenditure and defective
thermogenic regulation. In addition, our study has provided
in vivo evidence of OMA1 function as a mitochondrial quality
control protease, inactivating OPA1 under stress conditions
and inhibiting mitochondrial fusion. Further, we have demon-
strated the essential role of the OMA1-OPA1 system for brown
adipose function and how this system regulates metabolic
homeostasis in mice.

Mitochondria are the central core of energy metabolism within
the cell, producing ATP through oxidative phosphorylation, as
well as participating in many pathways of intermediate metabol-
ism, calcium regulation and other processes such as apoptosis.1

For this reason, mitochondria have developed a complex quality
control system, comprised of a network of proteases and
chaperones, which regulate the assembly, folding and turnover
of mitochondrial proteins to maintain proper function.2,3

Mitochondria are highly dynamic organelles that continually
undergo a process of fusion and division. As such, depending on
the cell type, tissue or moment, mitochondria adopt morphologies
ranging from small punctuate organelles to a highly connected
network.4 Linked to the quality control mechanism exerted by
proteases and chaperones, the regulation of mitochondrial
dynamics generates another point of control. Thus, mitochondrial

dynamics can result in more efficient organelles through induction
of mitochondrial fusion, or can protect the mitochondrial
network under some stress conditions by coordinating mitochon-
drial fission. Due to the range and importance of the functions in
which mitochondria participate, a highly evolved process of
cellular safeguarding has developed. As an illustrative example, if
mitochondrial damage continues unabated and its function
cannot be rescued, small mitochondria generated by fission can
be removed by mitophagy, or apoptotic signals can be
orchestrated to remove damaged cells and protect organismal
viability.5,6 Given the importance of the quality control
machinery, it is plausible that mutations in any of its protein
components could induce mitochondrial dysfunction and under-
lie human diseases.

The study of mitochondrial dynamics during recent years has
permitted the identification of several components of the fusion
and fission machinery, as well as some components that
participate in the regulation of these processes. In mammals, the
fusion process is principally performed by three large GTPases,
mitofusin 1 and 2 (MFN1 and MFN2) in the outer membrane
and OPA1 in the inner membrane.7,8 The fission process is largely
controlled by the dynamin-related GTPase DRP1, located in the
cytoplasm, which is recruited to mitochondria and recognized by
specific mitochondrial receptors in the outer membrane, MFF or
FIS1.9,10 Both dynamic processes have to be highly controlled to
maintain the balance between fusion and fission events, as well as
to enable a rapid response to a wide variety of stimuli in the cell.
Thus, a decrease in ATP levels, loss of mitochondrial membrane
potential or apoptotic stimuli, induce fragmentation of the
mitochondrial network due to inhibition of the fusion process.11

Conversely, the fission process is inhibited in response to
starvation, increasing the connection of the mitochondrial tubular
network to protect mitochondria from degradation and increase
cell viability.12 Deregulation of fusion or fission events is
implicated in several human diseases, most of them related to
neurological disorders, as neurons appear to be particularly
susceptible to mitochondrial defects.13 Thus, Charcot-Marie-
Tooth type 2A, autosomal dominant optic atrophy or postnatal
death with neurodevelopmental disorder, are due to mutation in
MFN2, OPA1 and DRP1, respectively.14-17 Moreover, OPA1
mutations are also associated with different forms of optic atrophy
with or without deafness, ophthalmoplegia, myopathy, ataxia and
neuropathy,18,19 as well as with susceptibility to normal tension
glaucoma20,21 Indeed, mutations in other proteases of the
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mitochondrial inner membrane that belong to quality control
systems and are associated with OPA1 processing, have a clear
neurological phenotype, such as spastic paraplegia and a dominant
form of spinocerebellar ataxia caused by mutations in SPG7 and
AFG3L2, respectively.22,23

Despite recent advances in our understanding of mitochondrial
dynamics, the generation of animal models is essential to
understand the entirety of this molecular process and its
functional relevance in pathophysiology. In this regard, we have
recently reported that OMA1, a mitochondrial metalloprotease
that processes the GTPase OPA1 in response to stress stimuli, has
a new key role in metabolic homeostasis.24 OMA1 was identified
in yeast as a mitochondrial protease of overlapping activity with
the m-AAA protease,25 a mitochondrial quality control protease
located in the inner membrane.26 Subsequent in vitro studies in
mammalian cells determined that OMA1 proteolytically inacti-
vates OPA1, inhibiting the fusion process and catalyzing
mitochondrial fragmentation.27,28 However, the physiological role
of this protease remained unknown. Thus, we generated a
knockout mouse model of Oma1 in order to delineate the in vivo
roles and relevance in mitochondrial function and quality control
of this protease. Surprisingly, Oma1-deficient mice showed an
unexpected metabolic phenotype, characterized by increase in
body weight and hepatic steatosis, together with defective energy
balance and thermogenic regulation. Under control conditions,
Oma1-deficient mice displayed a slight body weight increase and
hepatic steatosis. However, on a high-fat diet, Oma1 knockout
mice developed a marked obesity phenotype with a significant
increase in body weight and fat mass compared with controls.
Further, gonadal and skin adipocytes showed a clear hypertrophy,
and hepatic steatosis was enhanced together with an increase in
triglyceride levels in blood. In addition, Oma1−/− mice displayed
reduced energy expenditure, which is in accordance with previous
studies in mouse models as a possible cause of an obesity
phenotype.29,30 Further, the metabolic alterations observed in
Oma1-deficient mice were accompanied by a decrease in the
expression of genes controlling mitochondrial dynamics and
oxidative phosphorylation, metabolic regulation, β-oxidation and
an increase in lipogenic genes in both liver and brown adipose
tissues. These gene changes were similarly consistent with
previous observations in other murine models in which an
obesity phenotype was related to mitochondrial dysfunction.31

Moreover, thermogenic control and adaptive thermogenic
response to cold-stress were both altered, indicating a possible
dysfunction in brown adipose tissue function regulating heat
production.

Interest in brown adipose tissue has gained significant
momentum over the last few years due to recent studies
correlating its function to, not only the generation of heat in
animals and newborns, but also as an integral tissue for
regulating metabolic homeostasis and as a possible control point
for obesity.32,33 In our studies of Oma1-deficient mice, brown
adipose tissue showed reduced β-oxidation rates in both normal
and high-fat diets. These results indicated a dysfunction in
brown adipose tissue due to deficiency of the OMA1 protease,
under both normal and stress conditions. We analyzed

mitochondrial structure by electron microscopy, and found that
Oma1-deficient mice displayed an increase in mitochondrial size
without changes in the number of mitochondria. It has been
previously described that under cold-stress conditions, mito-
chondria elongate, increasing fusion in an attempt to protecting
the mitochondrial network.34 However, analysis of mitochon-
drial structure after cold-stress of brown adipose tissue from
Oma1-deficient mice did no display an increase in mitochondrial
size in contrast to control mice, indicating a dysfunction in the
response to cold-induced stress by the mitochondrial dynamic
machinery. In addition, using in vitro experiments with brown
adipocytes, we confirmed that both OMA1 and OPA1 are
required for β-oxidation, and that this function was dependent
on OPA1 isoforms generated by OMA1 activity. Further,
analysis of mitochondrial respiratory rates and ATP production
were not altered in the liver under normal or high-fat diets;
however, β-oxidation rates were significantly reduced in liver
under high-fat diet treatment. These results confirmed that the
OMA1-OPA1 system is required for the proper function of
brown adipose tissue and for keeping metabolic homeostasis in
mice.

The deficiency in OMA1 alters the balance between fusion and
fission, and can be the origin of the metabolic alterations observed
in our mouse model. Thus, we have demonstrated in vivo that
OMA1 has a non-redundant role in the proteolytic inactivation of
OPA1 under stress conditions. OPA1 functions are controlled by
alternative splicing and proteolysis of the different isoforms.
Thereby, OPA1 is characterized by at least five different isoforms,
two long isoforms (L-OPA1; a and b), and three short isoforms
(S-OPA1; c–e).11,35 Under stress conditions, such as loss of
mitochondrial membrane potential or apoptotic stimuli, L-OPA1
isoforms are cleaved to S-OPA1 isoforms by OMA1 activity,
inhibiting the fusion event.36,37 This inhibition is due to the fact
that, for an inner membrane fusion event to occur, OPA1 requires
at least one of each of the long and short isoforms, forming a
complex structure to induce the fusion of membranes. At present,
several mitochondrial proteases have been implicated in the
processing and regulation of OPA1 levels, such as PARL1, m-
AAA and YME1L1.27,35,38 Analysis of Oma1-deficient cells
demonstrated the absence of one of the short isoforms of OPA1
and a decrease in the expression of the other under basal
conditions (Fig. 1; c and e, respectively). Moreover, under stress
conditions, Oma1-deficient cells displayed no proteolysis of
OPA1 to generate the shorter isoforms. This observation
reinforces that under normal conditions, several inner membrane
proteases could regulate the generation of some S-OPA1 isoforms,
although in response to stress conditions the inactivation of OPA1
is exclusively due to OMA1 function.

As fusion and fission are interdependent, inhibition of one of
the two creates disequilibrium in the balance of these two events.
Under normal conditions mitochondria adopt a tubular morpho-
logy that fragments in response to fission predominance.
Conversely, inhibition of fission increases the tubular connection
of mitochondria due to increased fusion. Analysis of mitochondria
from Oma1-deficient MEFs showed, predominantly, an arche-
typal tubular morphology with a significant increase in the
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elongated mitochondrial morphologies. Further, under stress
conditions, Oma1−/− MEFs maintain their tubular morphology
due to absent fusion. Intriguingly, the stabilization of L-OPA1
isoforms in Oma1-deficient MEFs protected cells from apoptotic
stimuli, due to maintenance of cristae morphology and prevention
of cytochrome c release.38,39 Thus, the OMA1-OPA1 system is
critical to maintain mitochondrial function and has an important
role in mitochondrial quality control, exerting its function on
mitochondrial dynamics and apoptosis levels. The alterations in
this control system due to Oma1 ablation induce mitochondrial
dysfunction under stress conditions due to inability to adequately
respond to stress stimuli, such as metabolic stress induced by
high-fat diet or cold-stress.

Future Perspectives

Oma1-deficient mice have provided the first in vivo evidence linking
dysfunction in the mitochondrial quality control system with an
obesity phenotype and deregulated thermogenic control.
Interestingly, recent publications have shown that OPA1 function
is necessary for mitochondrial glucose-stimulated ATP production in
pancreatic β cells,40 and for mediating adrenergic control of lipolysis,
as a dual-specificity A-kinase anchoring protein in lipid droplets.41

Collectively, these findings further emphasize the importance of the
OMA1-OPA1 system for metabolic homeostasis. Looking toward
the future, the possibility must be entertained that OMA1 has other
additional substrates and interaction partners that can contribute to

Figure 1. Schematic representation of mitochondrial dynamics regulation, the mitochondrial dynamics response mediated by OMA1 and the alterations
observed in Oma1-deficient mice due to alterations in mitochondrial dynamics equilibrium under stress conditions.

www.landesbioscience.com Adipocyte 9



the quality control system or to other mitochondrial pathways. The
potential identification of novel regulatory proteins belonging to the
OMA1 proteostasis network would provide further insights into
mitochondrial function and could also shed new light on human
pathologies. Accordingly, Oma1 knockout generation has allowed
the discovery of an unexpected role of this mitochondrial quality
control protease as a new key regulator of metabolic homeostasis.
Hopefully, the use of this and other mouse models of mitochondrial
quality control components will let us further understand this
complex system and its associated human diseases.
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