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Abstract: Landscape characteristics have been shown to influence health outcomes, but few studies
have examined their relationship with cancer survival. We used data from the National Land Cover
Database to examine associations between regional-stage colon cancer survival and 27 different
landscape metrics. The study population included all adult New Jersey residents diagnosed be-
tween 2006 and 2011. Cases were followed until 31 December 2016 (N = 3949). Patient data were
derived from the New Jersey State Cancer Registry and were linked to LexisNexis to obtain resi-
dential histories. Cox proportional hazard regression was used to estimate hazard ratios (HR) and
95% confidence intervals (CI95) for the different landscape metrics. An increasing proportion of
high-intensity developed lands with 80–100% impervious surfaces per cell/pixel was significantly
associated with the risk of colon cancer death (HR = 1.006; CI95 = 1.002–1.01) after controlling for
neighborhood poverty and other individual-level factors. In contrast, an increase in the aggregation
and connectivity of vegetation-dominated low-intensity developed lands with 20–<40% impervious
surfaces per cell/pixel was significantly associated with the decrease in risk of death from colon can-
cer (HR = 0.996; CI95 = 0.992–0.999). Reducing impervious surfaces in residential areas may increase
the aesthetic value and provide conditions more advantageous to a healthy lifestyle, such as walking.
Further research is needed to understand how these landscape characteristics impact survival.

Keywords: residential histories; residential mobility; time-varying covariates; survival analysis;
geographic disparities; colon cancer; neighborhood socio-economic status; landscape metrics; land-
scape characteristics

1. Introduction

Neighborhood characteristics can capture social, physical, and economic conditions
of the environment in which a person lives [1]. According to Northridge et al. [2], social
context and the built environment are two intermediate factors that influence health and
well-being at the individual and population level. The social context of a neighborhood
is most often defined through its socio-economic and demographic composition using
census data (e.g., median income, % living below poverty) [3]. The built environment
includes physical characteristics of neighborhoods (i.e., land covers) that are human-
made or modified [4], such as buildings, roads, housing conditions, parks sidewalks or
greenspace, that can potentially provide the setting for human activity [5].
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Therapeutic landscape theory [6] can add depth to our understanding of how land-
scapes impact health and cancer outcomes [7]. Gesler’s therapeutic landscape theory
posits that social and spatial factors are interconnected, and modification of place can have
various effects on human health. Moreover, people may have experienced different feelings
and healing effects in various places caused by perceptions of landscape aesthetics [6].
Some studies linked the aesthetical value of the landscapes, analyzed through photography
of micro-landscapes, to emotional load and restoration [8–11]. Lee et al. [12] found that
neighborhood satisfaction is related to landscape structure. Others suggest that config-
uration and composition of different types of land cover and land use classes could be
influential on place perception and emotions because “perception, cognition, and evalua-
tion are highly interrelated processes” [13], and perception of environmental landscape
is important (among others) for movement and social interactions [14–16]. In addition,
factors such as natural habitat fragmentation and impervious surfaces may also influence
health outcomes considering the relation between urban design and mental health [17].

For numerous cancer types, studies report significant associations between neigh-
borhood socio-economic conditions and cancer mortality and survival [18–29]. Generally,
these studies have found that people living in low socio-economic-status neighborhoods
have significantly higher mortality or shorter survival after diagnosis. The relationship is
less consistent between the built environment and cancer mortality and survival. Several
studies have examined these associations. For example, a study focused on greenspace
availability and accessibility by James et al. [30] found that higher levels of green veg-
etation were associated with decreased cancer mortality. Several other studies on lung
cancer-specific mortality did not find any significant associations [31–34]. For breast cancer,
Keegan et al. [35] did not find any positive influence of park availability and survival, but
did report an increased risk of breast cancer death in areas with higher traffic/road density,
possibly through discouraging recreational-based physical activity.

Among the studies that have examined the relationship between the built environment
and non-cancer health outcomes (e.g., cardiovascular and/or mental health illnesses), most
have focused on greenspace. Mears et al. [36] summarized positive effects of the urban
greenspace on health outcomes, including the reduction of traffic pollution and a reduction
of heat-island effects, as well as an increase of emotional recreation effect and physical or
social activities. In one study, Bratman et al. [37] examined evidence across the natural,
social, and health sciences on the impacts of nature experience on mental health. They
argue that the configuration and conception of greenspace is essential for human well-being.
Kondo et al. [38] also concluded that navigating through urban greenspaces causes more
positive emotions compared to the built urban environment. Additionally, the quality of
the greenspace (e.g., well-maintained parks) has a positive influence for psychological well-
being [39–42]. Moreover, urban gardens and well-maintained front yards may influence
population health through the pathways of aesthetics and promote walking and outdoor
physical activity [43]. Additionally, walkability, mix and type of businesses, and land use
composition of a neighborhood may encourage healthy behavior and ‘facilitate integration
of habits into a daily lifestyle” (p. 76) [5]. Given the importance of greenspace on health
and a lack of studies focused specifically on cancer, more research is needed examining
the relationship between the built environment and cancer outcomes in order to better
understand these relationships and underlying pathways [44].

With the exception of a few studies [30,35,45], insufficient attention has been given to
integration of both social and environmental landscape characteristics on cancer outcomes.
Considering that cancer survival has shown to be associated with mental well-being [46,47],
integrating landscape and built-environmental characteristics may be useful for quanti-
fying neighborhood quality and help measure the effect of neighborhood land cover
configuration and composition on cancer outcomes.

Estimating the aesthetical value of a landscape and finding the best measure for defin-
ing the built environment can be challenging because there are infinite ways to measure
and operationalize the data in research [48] and further distil the essential components that
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impact health and health behaviors. Frequently, the built environment is integrated into
modeling using census data such as housing density and quality [44]. However, recent tech-
nologies in image classification allow an estimation of neighborhood physical disorder (e.g.,
presence of abounded buildings, non-maintained roads) or greenspace availability and
quality using remote sensing products and street view in health research [49–51]. Despite
the increasing literature, however, when examining the role of greenspace on health out-
comes, several gaps remain, including “standardization” of appropriate measures [38,52].
Therefore, it is important to develop clear concepts and metrics for quantifying and mea-
suring the effects of a neighborhood’s landscape and the built environment on health
outcomes to understand the underlying pathways.

Landscape metrics are a commonly used technique in landscape ecology—an envi-
ronmental science approach of landscape characterization, evaluation, and design [53]
to quantify landscape characteristics and features. This concept is frequently applied in
urban planning, biodiversity, species richness, and conservation and infectious disease
epidemiology studies [54,55]. Landscape metrics are also common in urban aesthetics
evaluation [8,9]. To date, there have been no population-based cancer studies that integrate
landscape metrics.

In this study, we examine associations between regional-stage colon cancer survival
and several landscape metrics that quantify neighborhood’s built-environment using cancer
surveillance data from the New Jersey State Cancer Registry, residential histories, and land
cover and land use data from the National Land Cover Database.

2. Materials and Methods
2.1. Study Population

The NJSCR provided all colon cancer cases. The NJSCR is a population-based cancer
registry that collects and maintain incidence data for the State of New Jersey. It was
established in October 1978 and monitors cancer among the more than 8.9 million residents
of New Jersey [56]. The study population includes all New Jersey residents, 18 years and
older, with histologically confirmed, first primary regional stage colon cancer, as defined
according to the International Classification of Diseases for Oncology, 3rd Edition (ICD-O3
C180–C189, C260; excluding histology codes 9050–9055, 9140, 9590–9992) [57] diagnosed
between 1 January 2006 and 31 December 2011 (N = 4041). We restricted our analysis
to regional stage colon cancers to simplify the interpretation of the results and reduce
systematic variation in survival that could be attributable to stages at diagnosis. The
study was reviewed and/or approved by Temple and Rutgers University Institutional
Review Boards.

Individual-level factors included age at diagnosis, gender (male, female), race/ethnicity
(Non-Hispanic (NH) White, NH Black, NH Asian/Pacific Islander (API), NH Other, and
Hispanic (any race)), and vital status, including date of death and cause of death (if de-
ceased) or date of last contact (if alive). Cases were followed until their deaths, relocation
from the state of New Jersey, or until 31 December 2016. Deaths attributed to colon cancer
were coded based on ICD-10 code C18 [57]. NJSCR regularly updates the database through
linkages with state and national sources, including death data from the New Jersey Depart-
ment of Health Office of Vital Statistics and Registry and the National Death Index, hospital
discharge files, Centers for Medicare and Medicaid Services, Social Security Administration
Services for Epidemiologic Researchers, and motor vehicle registration files [56].

2.2. Residential Histories

The NJSCR linked the study population to the commercial residential history database
developed by LexisNexis, Inc. (Miamisburg, OH, USA; https://www.lexisnexis.com/en-us/
products/public-records.page, accessed on 28 April 2021), similar to earlier studies [58–61].
The majority of regional stage colon cancer cases [n = 3949 (97.6%)] had residential infor-
mation available for up to 20 of the most recent addresses between 1946 and 2018, with
documented start and stop dates. A preprocessing technique described by Wiese et al. [24]

https://www.lexisnexis.com/en-us/products/public-records.page
https://www.lexisnexis.com/en-us/products/public-records.page
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was applied to establish a complete residential timeline for the time after diagnosis. All res-
idential addresses were geocoded to the 2010 census tract (CT) boundaries using the North
American Association of Central Cancer Registries (NAACCR) AGGIE Geocoder [62].

2.3. Socio-Economic Variables

The socio-economic variables included a widely used census tract poverty (CT-
poverty) variable, defined as the proportion of population 18 years and older living
below the Federal poverty level. Additionally, we included information on census tract
measures of housing density and median year housing built. The required variables
were obtained from publicly available U.S. Census and American Community Survey
(ACS) data. U.S. Census 2010 and the ACS 5-year average data 2006–2010, 2007–2011,
2008–2012, 2009–2013, and 2010–2014 were used for residencies between 2006 and 2010.
ACS 2011–2015, 2012–2016, and 2013–2017 were used for residencies between 2011 and 2016.

For each case, all corresponding CTs during the follow-up period were included, and
every residential record received a corresponding value based on the earliest date of the
residential appearance in the data set. If a patient remained at the same diagnosis CT over
multiple years, we assigned annual values to capture changes within the neighborhood
that could be caused by the gentrification.

2.4. Environmental Variables

The neighborhood built-environment factors were measured by using landscape
metrics that captured characteristics such as land cover and land use composition and
configuration of the neighborhood considering local spatial patterns.

The National Land Cover Database (NLCD) was used to extract land cover classes and
proportion of imperviousness for the years 2006 (used for residential records 2006–2009),
2011 (used for residential records 2010–2014), and 2016 (used for residential records
2015–2016). The NLCD products are freely available raster files of 30 m spatial reso-
lution that were classified using Landsat-based satellite imagery by the U.S. geological
survey [63]. The land cover raster includes 16 categorical classes and the imperviousness
raster, which has a continuous scale of proportion of impervious surfaces per pixel. To re-
duce the number of categories for further analysis, we reclassified the original NLCD raster
using R package raster [64] into 7 classes (Forest, Grass, Shrubs, Developed Lands (Open,
Low-, Medium-, and High-Intensity) (Table 1). Land use information was obtained from
the New Jersey Geographic Information Network (njgin.nj.gov/njgin/edata/parcels/#!/,
accessed on 28 April 2021), which includes publicly available information on parcel use for
the state of New Jersey as of the year 2019. The original shapefile (spatial polygon) was
rasterized (i.e., converted) using R package raster [64] based on the parcel use category and
reclassified by keeping only industrial and commercial lands.

Previous studies have already examined the NLCD’s classification of developed lands
to estimate greenspace availability in urban areas and have noted that open and low-
intensity developed lands are suitable for identification of greenspaces and trees [34,65–67].
Typically, areas with predominantly large housing parcels, roads surrounded by greenspaces,
urban housing with larger backyards, or isolated large roads would be classified as de-
veloped open land (NLCD class 21), assuming a larger proportion of greenspaces than of
impervious/built surfaces (max. 20%) in the area. In contrast, a central business district,
densely built inner-city housing, or a largely expanded shopping mall would be classified
as high-intensity developed lands (NLCD class 24) with 80–100% imperviousness.

Landscape metrics on patch (square) and class levels (greenspaces) within a landscape
(i.e., census tract) were calculated using R statistical software [68] (version 4.0.1), imple-
menting packages landscapemetrics [69] and SDMTools [70]. Landscape metrics include
more than 50 measures. Because most variables are highly correlated or difficult to interpret
and compare between landscapes because of the open, non-fixed range scale [53,71], we de-
veloped a list of the influential landscape metrics, as defined by previous studies [36,39,42].
Table 2 summarizes all landscape metrics that were considered in the present study. Se-

njgin.nj.gov/njgin/edata/parcels/#!/
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lected landscape metrics and the land cover classification were also mapped using QGIS
v.3.10 (Figure 1).

Table 1. Overview of the land cover classes before and after the reclassification of the NLCD dataset.

The NLCD Code Reclassification Commentary

21: Developed Open Space U21: Developed Open Space Max 20% imperviousness per cell/pixel

22: Developed Low Intensity U22: Developed Low Intensity 20–49% imperviousness per cell/pixel

23: Developed Medium Intensity U23: Developed Medium Intensity 50–79% imperviousness per cell/pixel

24: Developed High Intensity U24: Developed High Intensity 80–100% imperviousness per cell/pixel

41: Deciduous Forest
Forest

Dominated by tree canopy and includes any
type of parks and squares42: Evergreen Forest

43: Mixed Forest

52: Shrub/Scrub Shrubs Dominated by shrubs; present on empty
housing parcels

71: Grasslands/Herbaceous
Grassland

In urban areas, may assume a low-quality
green space81: Pasture/Hay

82: Cultivated Crops

90: Woody Wetland Forest
Woody wetlands are common in southern New
Jersey and have large proportions of
deciduous trees

95: Emergent Herbaceous Wetland Grassland Herbaceous (also grassy) wetlands are typical
for many coastal regions.

Table 2. Overview of the area-based and individual variables.

Variables Land Covers Definition Commentary

Land Cover Class-Level Metrics

Class Proportion

Forest, Grass, Shrubs,
Industrial, Developed Lands
(Open, Low, Medium,
High Intensities)

Composition metric.
Proportional coverage—% of
the landscape covered by
each type.

Used by [72,73] and
recommended by [36] for green
and water space; [74]
recommended for Forest,
Shrubs and Grass

Aggregation Index (AI)
Developed Lands (Open, Low,
Medium, High Intensities),
Industrial Areas

Configuration metric.
Computed as an area-weighted
mean class aggregation index,
where each class is weighted
by its proportional area in
the landscape.

Redundant with several other
metrics of proportion, cohesion,
and contiguity and may be a
meaningful alternative [53]

Splitting Index Forest, Grass, Shrubs

Configuration metric. A large
splitting index, results from
land covers being split into
many patches with an even
size distribution.

Correlated with the aggregation
index.
Applied for green spaces only in
relation to health outcomes [39].

Contiguity Index (CI)
Developed Lands (Open, Low,
Medium, High Intensities),
Forest, Grass

Configuration metric. Large
contiguous patches will result
in larger contiguity
index values.

CI for green/tree land cover
classes associated with health
outcomes [39].
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Table 2. Cont.

Variables Land Covers Definition Commentary

Landscape-Level Metrics

Shannon Diversity Index Based on all Land
Cover Classes

Composition metric. The more
classes and the more equally
distributed, the higher
the index.

Used for measuring the
aesthetic value and diversity [8].
Associated with health
outcomes [39].

Patch Richness
Density (PRD)

Based on all Land
Cover Classes

Number of patches per hectare.
High values indicate
high dispersion

PRD for green areas and
recreational lands associated
with poor health [39].

Contagion Index Based on all Land
Cover Classes

Composition metric. High
values indicate result from
landscapes with a few large,
contiguous patches and low
dispersion and interspersion of
patch types

Average Proportion
of Imperviousness

Census Tract Average based on
NLCD dataset estimating
imperviousness proportion
per pixel

Composition metric. Highly
negatively correlated with Tree
Canopy proportions but is
more accurate

Highly correlated (negative)
with Tree Canopy Cover but
more accurate [75,76]

Census-Based Variables

Poverty Level by Category
Percentage of population 18
and older living below federal
poverty level.

Socio-economic status
Associated with cancer
outcomes including survival
and mortality

Median Year
Structures Built

Median that the areas
residential buildings were
constructed.

Organized into categories.
Housing age and conditions are
associated with health
outcomes [17,77] and poverty [78]

Housing Density Number of structures per area
unit (acre)

Continuous variable defined
by census tract

Potential intermediate factor in
health outcomes [79]

2.5. Statistical Analysis

The survival time for every patient was calculated in months as the difference between
the date of diagnosis and the date of death or date of last contact. Cases missing survival
time (i.e., only ascertained through death certificates or autopsy) were excluded from
this analysis. Patients were censored at the date of death if they died from causes other
than colon cancer, the date the patient was lost to follow-up, at the end of the follow-up
period (31 December 2016), or at the time of the relocation from the State of New Jersey,
whichever occurred first. Additionally, we calculated time intervals to every CT location
and assigned start and end dates based on residential histories. Every time interval received
a corresponding socio-economic and environmental neighborhood value, as well as the
vital status of the patient (1-dead, 0-alive).

We designed a process for variable selection and evaluation with minor modifications
based on methodology from a previous neighborhood wide association study or NWAS [80].
All methodological steps are summarized in Figure 2. First, we developed a series of
univariate, crude models to estimate the effect of each selected landscape metric and other
neighborhood variables on the duration of survival time using Cox proportional hazard
regression for time-varying covariates [81]. Cox proportional hazard regression is a widely
used semi-parametric time-to-event modeling technique, where death is considered being
the event. Cox proportional hazard regression allows incorporation of individual and area-
level covariates. Additionally, it does not require the definition of a probability distribution
in advance, and is suitable for time-varying covariates [82]. Variables were selected if they
reached significance at p < 0.05.
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land cover classification (1 = Water, 2 = Sand/Bare, 3 = Forest, 4 = Shrubs, 5 = Grass, 6 = Open, 7 = 
Low, 8 = Medium, 9 = High intensity developed lands); (b) Census tract poverty level by catego-
ries (0–5%, 5–10%, 10–20%, 20+%); (c) Shannon Diversity Index (SHDI) by quartiles low to high; 
(d) Proportion of open developed lands by quartiles low to high; (e) Proportion of high-intensity 
developed lands by quartiles, low to high; (f) Forest contiguity index by quartiles, low to high; (g) 
Aggregation index (AI) of open developed lands by quartiles, low to high; (h) Aggregation index 
(AI) of medium-intensity developed lands by quartiles, low to high; (i) Aggregation index (AI) of 
high-intensity developed lands by quartiles, low to high. 

Figure 1. Land cover classification and landscape characteristics of New Jersey: (a) Reclassified land
cover classification (1 = Water, 2 = Sand/Bare, 3 = Forest, 4 = Shrubs, 5 = Grass, 6 = Open, 7 = Low,
8 = Medium, 9 = High intensity developed lands); (b) Census tract poverty level by categories (0–5%,
5–10%, 10–20%, 20+%); (c) Shannon Diversity Index (SHDI) by quartiles low to high; (d) Proportion
of open developed lands by quartiles low to high; (e) Proportion of high-intensity developed lands by
quartiles, low to high; (f) Forest contiguity index by quartiles, low to high; (g) Aggregation index (AI)
of open developed lands by quartiles, low to high; (h) Aggregation index (AI) of medium-intensity
developed lands by quartiles, low to high; (i) Aggregation index (AI) of high-intensity developed
lands by quartiles, low to high.
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Figure 2. Workflow diagram.

Then we applied Spearman correlation analysis of the selected variables because many
landscape metrics are highly correlated and redundant. After excluding all highly corre-
lated variables (r2 > 0.7), the number of variables was reduced from 14 to 8 (Figure 3). The
remaining variables included aggregation indices of all four intensity levels of developed
lands, proportion of high intensity developed lands, forest contiguity index, Shannon
diversity index, the patch richness density, and CT-poverty (Figure 1).
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Figure 3. Correlation matrix before and after reduction of significant variables: (A) All significant variables based on the
univariate models; (B) Reduced set of significant variables used in final multivariate models. (Note: Land cover classes are
based on the reclassified NLCD raster: U21 = Open, U22 = Low, U23 = Medium, U24 = High intensity developed lands).
AI = Aggregation Index, SHDI = Shannon Diversity Index, CI = Contiguity Index, PRD = Patch Richness Density.

We then developed a set of models that included all individual-level variables (sex,
age and race/ethnicity, sub-stage, and mover status) and each neighborhood variable or
landscape metric. To estimate the risk of death from colon cancer by each individual and
area-based variable, all coefficients were exponentiated and expressed as Hazard Ratios
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(HRs). For continuous variables, positive HRs indicate a positive association with the
increase in risk of death. For categorical variables, the HRs are compared to the reference
group. An HR = 1 indicates that the risk is similar across groups [83].

All models were run using R package survival [84] and survsim [81], and met the
proportional hazard assumption based on the examination of Schoenfeld residuals using
the cox.zph() function in the R survsim [81].

3. Results
3.1. Study Population

The study population included 3949 regional stage colon cancer cases. The spatially
interpolated distribution of cases and total population density are presented in Figure S1.
There were slightly fewer males (47.6%) than females (52.4%), and about three quarters
(73.6%) were NH-White, 12.4% NH-Black, 8.1% Hispanic origin (any race), 3.6% NH-API,
and 2.4% Other race. Approximately a third (27.5%) of all the patients died from the colon
cancer by the end of follow-up, with a median survival of 66 months (range 1–139). During
the follow-up period, 65.5% remained at their diagnosis CT, and 12.1% left New Jersey
during the study period. Among those who moved, 18.5% only moved once, 12.3% moved
twice, and 3.6% moved three or more times after cancer diagnosis. The average time spent
at the CT at diagnosis was 7.5 years (Table 3).

Table 3. Study population characteristics.

Overall (n = 3949)

Age
Mean (SD) 65.8 (13.3)

Median [Min, Max] 68.0 [21.0, 85.0]

Gender
Male 1878 (47.6%)

Female 2071 (52.4%)

Race/Ethnicity
NH-White 2902 (73.5%)
NH-Black 488 (12.3%)

Hispanic (any race) 325 (8.2%)
NH-API 141 (3.6%)

Other 93 (2.4%)

Regional Stage Subcategory
Regional, direct extension only 1339 (33.9%)

Regional, lymph nodes only 1268 (32.1%)
Regional, both 1342 (34.0%)

Vital Status
Censored 2862 (72.5%)

Colon Cancer Death 1087 (27.5%)

Survival Time (months)
Mean (SD) 62.3 (38.0)

Median [Min, Max] 66.0 [1.00, 139]

CT Changes (Type of “moves”)
CT at Date of Diagnosis Only 2587 (65.5%)

Change in Residential CT within NJ 885 (22.4%)
Change in Residential CT outside NJ 477 (12.1%)

The distribution of colon cancer patients by neighborhood/landscape characteristics
at the time of diagnosis showed that the majority of patients (73.9%, n = 2919) lived in
areas with a poverty level of less than 10%. Additionally, most patients (82.5%, n = 3259)
were living in neighborhoods with a relatively low (≤30%) proportion of open developed
lands (areas with large greenspace cover), while 89.8% (n = 3547) of patients living in
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neighborhoods where more than 30% of the total landscape was dominated by high-
intensity developed lands (less than 20% greenspaces). Twenty-four percent (n = 939) of all
colon cancer patients were residents in a neighborhood with no tree cover. The distribution
of the study population for these and other landscape metrics are summarized in Figure 4.
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Figure 5 summarizes the model results for each variable. For every 10% increase in
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CI = 1.04–1.44).
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Of the 27 landscape metrics, six were statistically significant. An increasing proportion
of the high- and medium-intensity developed lands were positively associated with the
risk of death (HR = 1.007; 95% CI = 1.003–1.01 and HR = 1.008; 95% CI = 1.005–1.011,
respectively). Similarly, a positive association was found between an increasing aggregation
index of high- and medium-intensity developed lands and risk of death (HR = 1.005; 95%
CI = 1.001–1.009; HR = 1.01; 95% CI = 1.007–1.02, respectively). There was also a positive
association between increasing patch richness density (HR = 1.02; 95% CI = 1.01–1.03)
and elevated risk of death. Average imperviousness was also significant, indicating an
approximate 7% risk increase for every 10% increase of the neighborhood’s imperviousness
(HR = 1.007; 95% CI = 1.004–1.011).

Seven landscape metrics were significantly associated with a decrease in risk of
colon cancer death, including aggregation of low-intensity developed lands (HR = 0.996;
95% CI = 0.991–0.999), proportion and aggregation of open developed lands (HR = 0.992;
95% CI = 0.988–0.997, HR = 0.996; 95% CI = 0.991–0.999, respectively), Shannon diversity in-
dex (HR = 0.79; 95% CI = 0.64–0.98), and proportion and contiguity (i.e., connectivity) of for-
est/trees (HR = 0.995; 95% CI = 0.992–0.998, HR = 0.997; 95% CI = 0.996–0.998, respectively).

3.3. Multivariate Models

In the last step, we developed ten multivariate models, adjusting for individual level
variables (age and sub-stage, sex/gender, race/ethnicity, and mover status), CT-poverty,
and each landscape metric. The individual level HRs are provided in Supplementary
Table S1.



Int. J. Environ. Res. Public Health 2021, 18, 4728 12 of 19

In multivariate models, the proportion of high-intensity developed lands had the
strongest association with the colon cancer risk of death. For every 10% increase in
the proportion, the risk of death increased by 6% (HR = 1.006; 95% CI = 1.002–1.01).
Additionally, increasing aggregation index (i.e., more compact areas) of high-intensity
developed lands was positively associated with the risk of colon cancer death (HR = 1.005;
95% CI = 1.001–1.009). Similar associations were found for the increasing aggregation
index of medium intensity developed lands (HR = 1.009; 95% CI = 1.003–1.015). In contrast,
a 6% decrease in risk of colon cancer death was estimated for every 10% increase in
the proportion of open developed lands (HR = 0.994; 95% CI = 0.988–0.999). Increasing
aggregation index of low-intensity developed lands (HR = 0.995; 95% CI = 0.99–0.999) and
increasing forest contiguity index (HR = 0.998; 95% CI = 0.996–0.999) were all significantly
negatively associated with the risk of colon cancer death. CT-poverty was no longer
significant in multivariable models (Figure 6).
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4. Discussion

To date, only a few studies have integrated landscape characteristics into cancer
disparities research. Traditionally, socio-epidemiological neighborhood studies focus on
examining associations between neighborhood factors and cancer survival using Census-
based socio-economic status data. However, the physical environment [85], recreational
activities [86], and urban design are important components in the selection of residence,
especially among older adults [87]. While experiences of place are recognized and there
have been several attempts to incorporate the role of the landscape characteristics into
cancer research [35,44], often it is done through the utilization of road networks or based
on parcel use, greenspace availability, and accessibility. Only few attempts were made
using satellite imagery-based products [45,88,89].

We evaluated the relationship between the risk of death from colon cancer and several
area-based landscape characteristics that attempt to describe the configuration and compo-
sition of the built environment after adjusting for individual-level factors and CT-poverty.
This study adds to a body of literature on the effects of neighborhood landscape character-
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istics on cancer survival. Independent of CT-poverty and several individual demographic
and prognostic factors, we found a significant relationship between the risk of death from
colon cancer and the proportion and aggregation of high-intensity developed lands (i.e.,
areas dominated by buildings and roads). The risk of death increased as the proportion and
aggregation of high-intensity developed lands increased. The reasons for this relationship
may be attributed to a low prevalence of greenspaces in areas with more high-intensity
developed lands. Less greenspace in these places could reduce access to recreational sites
that promote physical activity. Furthermore, such places may evoke negative emotional
feelings and psychological well-being that have been found to be associated with a lack of
greenspace [37]. Creating landscapes that promote exercise and active transport such as
biking and walking is particularly important to cancer patients. Many clinical trials have
shown the positive effects that walking and physical activity can have on quality of life
and survival time in cancer patients [90], and are known to reduce risk of colorectal cancer
development [91,92].

The relationship of worse survival with increasing high-intensity developed lands
independent of CT-poverty is likely related to what this metric is capturing. High-intensity
developed lands are characterized by places that include less than 20% greenspace of total
land area [63]. An increasing proportion and aggregation of high-intensity developed
lands is generally characterized by very compact and large areas within neighborhoods,
with few or no parks and where the majority of greenspace is a result of overgrown
vegetation from abandoned lots. A study from Philadelphia (PA, USA) reported that
abandoned buildings and lots were associated with negative health outcomes among
residents because of dangerous physical and social environments and sanitation/garbage
issues [93]. High-intensity developed lands are also characterized by large parking lots
and multiple lane roads that can reduce the aesthetic value of a neighborhood. This can
lead to a reduction in walkability. Several previous studies reported the importance of
aesthetic value and quality of the neighborhood environment on mental health and physical
activity [36,37,42,43,52,65,94]. Additionally, we cannot exclude that this finding could also
result from unmeasured confounding factors such as environmental pollution in highly
urbanized areas or food deserts.

The better survival in neighborhoods with a higher proportion of open developed
lands is likely a result of the large and compact greenspaces found in these areas, which
provide potential for recreational activities. Larger open developed lands also assume
more contiguous areas with a large proportion of street tree canopy, urban gardens, or large
backyards across the landscape (neighborhood). Having vegetation along the roads, green
front and backyards could have positive emotional effects [36,43] essential for many cancer
survivors. Kondo et al. [38] also conclude that navigating through urban greenspaces
compared to built urban spaces leads to more positive emotions. Additionally, this could
suggest that the availability of green infrastructure and neighborhood parks would increase
walkability and exercising [43,95,96].

We also found that increasing the forest contiguity index was positively associated
with a decrease in the risk of death. This suggests that lower shape complexity and lower
interspersion of greenspaces (i.e., larger and better-connected greenspaces) may further
decrease the risk of colon cancer death because of the availability of green corridors within
cities. Large contiguous green space leads to more varied use and extended use for physical
activity and provides an opportunity to strengthen social capital that improves survival.
This aligns with an earlier study reporting a positive effect on general and mental health
from having fewer, but larger patches/areas of greenspaces, rather than a high density of
small patches [39]. This finding confirms our earlier hypothesis that lack of greenspaces
in neighborhoods negatively influences colon cancer patients. As Mary Soderstrom [97]
argues, increasing street greenery and number of greenspaces can make a difference and
create a dense and pleasurable city at the same time.

While access to and availability of greenspace is recognized as an (predominantly
positive) influential factor on health conditions, the reduction of impervious surfaces and
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spaces occupied by oversized residential-area roads and gigantic parking lots might be as
important as the creation of green infrastructure through zoning or the re-use of abandoned
lots. Unfortunately, this practice is rare in the U.S., but more attention must be given
to the aesthetics of the neighborhoods. Therefore, we agree with Kondo et al. [38] that
“urban planners and public health professionals need evidence of the impacts of specific
therapeutic or place-based interventions to help address public health issues facing their
constituents” (p. 22) and argue that integration of landscape metrics into health disparities
research may provide the required evidence.

Remote sensing-based classification is a valuable tool for land cover analysis and can
be customized depending on the research question and study area. Additionally, there is a
growing amount of data on a high spatial resolution allowing fine classifications. However,
the land cover classification schema developed by the NLCD is informative for analyzing
urban and urbanized areas, and offers enormous opportunities for integration of land cover
data into cancer research also on nationwide scale, including non-contiguous states and
Puerto Rico [63]. Additionally, it is available for several time points, which allows temporal
analysis and application of longitudinal study design like in our example. On the other
hand, the calculation of various landscape metrics allows a straightforward integration of
several measures of landscape characteristics. These could then be helpful for city planning
and the establishment of specific cancer prevention and control strategies.

Moreover, while aesthetical value of a neighborhood is a very subjective measure
and typically requires qualitative interviews or surveys, some landscape metrics offer
an opportunity for quantification. The contiguity or aggregation indices used here may
provide information about landscape configuration [53,71] and become an alternative to
more complicated measures derived from Google street view, which are time-consuming
and more expensive to process.

The present study has several limitations. While we found evidence for associations
between the land cover configuration and risk of death from colon cancer, the results
may not be generalizable to other states with different demographic, socio-economic, or
landscape characteristics because the study population was limited to New Jersey only.
Additionally, we did not have access to individual-level factors such as individual socio-
economic status, general health conditions (e.g., obesity data) and behavior. Not only
could these factors potentially confound the relationship between landscape characteristics
and colon cancer survival, but accounting for individual-level factors may reduce the
geographic variance explained by neighborhood and landscape characteristics [98].

Another limitation is that we restricted our study population to regional-stage colon
cancer cases and followed patients for only 10 years after diagnosis. This was necessary
to minimize extreme variations in survival and limit sources of variation in residential
history measures. Therefore, analyzing colon cancer cases diagnosed in earlier (local) or
later (metastatic) stages of the disease may result in a different conclusion.

Moreover, we utilized only residential histories collected from LexisNexis. We did not
have access to self-reported information and could not validate and/or augment Lexis-
Nexis data. However, according to previous studies, the concordance between LexisNexis
addresses and addresses collected from study participants (85–86%) is high [58,59]. In our
study, we could only validate the residential location at the time of diagnosis between
the LexisNexis and the NJSCR. The concordance rate was approximately 83%. Opening
to a 6-month window before and after the diagnosis date substantially increased the con-
cordance rate to 93%. Only 8% of the locations from LexisNexis cases did not match any
locations reported by the NJSCR. Several factors such as incorrect links at LexisNexis, in-
correct geocodes assigned by NJSCR for both registry and LexisNexis residential addresses,
incorrect addresses reported to the registry by hospitals and other reporting facilities or
geocodes assigned to addresses based on post office boxes could be the reason for address
discordance. However, the extent of the bias in either direction would be minimal be-
cause of the low proportion of affected cases. In contrast to the residential histories from
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self-reported data, LexisNexis is an objective source of residential history data, and is not
sensitive to potential recall bias.

Additionally, the application of landscape metrics in neighborhood research is not
typical and is more common in natural landscapes for ecological analysis and modeling. In
this study, we used census tract boundaries for defining neighborhoods or landscapes. The
definition of a landscape as a census tract is a subject of modified area unit problem. The
selection of the landscape boundaries is essential for calculating landscape metrics, and
change in area size and shape will affect the values of multiple indices. Defining landscapes
through a use of other administrative boundaries or grid system may result in different
conclusions. However, census tract is a common unit of analysis in public health research
and allows an uncomplicated merge of data from various sources.

Lastly, the spatial resolution of the land cover classification raster was 30 m and
suggests that all features within an area of 900 m2 are generalized and defined as one
class. The establishment of land cover classification with a fine spatial resolution would
result in higher precision in the classification of the ground objects. However, 30 m spatial
resolution is widely used in remote sensing discipline for land cover classification, and the
utilized NLCD dataset is a well-known high-quality product.

The calculation of landscape metrics can be done on any spatial resolution, but values
may vary with change in pixel size. More challenging is the selection of landscape metrics
itself. There are many measures on various geographic levels. Thereby, most metrics are
highly correlated and redundant. Previous research in landscape ecology suggests that a
minimal number of metrics (e.g., number of patch types, mean edge/area ratio, contagion,
average patch shape, fractal measurements) would be sufficient to quantify spatial hetero-
geneity [71–73]. However, in a public health context, the selection of landscape metrics
should be done more carefully, selecting meaningful variables that can be easily translated
to the policy makers and urban planners. Selection of other landscape metrics could result
in different associations or cause complications in interpretation.

5. Conclusions

The associations between neighborhood socio-economic status and cancer survival are
fairly established, where increased risk of death is often associated with high neighborhood
poverty. However, the neighborhood environment is not limited to socio-demographic
factors because buildings, roads, greenspaces, and other human-made objects dominate
landscapes, especially in urban and urbanized areas. It is essential to understand the
relationship between landscape characteristics and health outcomes to develop new policies
in urban planning and design essential for population health, especially in urban and
urbanized areas. Our results suggest that increasing proportions and connectivity of urban
greenspaces may substantially decrease the risk of colon cancer death. This association
did not change, even after adjusting for neighborhood poverty, which is reported to be
associated with a lack of greenspaces in urban and suburban areas [99], and reflected in
our correlation analysis. The integration of remote sensing-based products, the NLCD
and the calculation of landscape metrics allow the exploration of undiscovered pathways
between neighborhood characteristics and colon cancer survival and should be further
evaluated in neighborhood studies with other cancer sites and outcomes such as stage at
the diagnosis. Additionally, further research is needed to understand how these specific
landscape characteristics impact survival, and evaluate opportunities for developing a
socio-environmental deprivation index combing census-based variables and land cover
metrics in order to identify neighborhoods in need of interventions. Moreover, future
studies should include additional neighborhood variables, especially related to walkability,
that could help to evaluate the association between neighborhood built environment and
colon cancer survival.
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