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Abstract: Lignin nanomaterials have wide application prospects in the fields of cosmetics delivery,
energy storage, and environmental governance. In this study, we developed a simple and sustainable
synthesis approach to produce uniform lignin nanoparticles (LNPs) by dissolving industrial lignin in
deep eutectic solvents (DESs) followed by a self-assembling process. LNPs with high yield could be
obtained through nanoprecipitation. The LNPs were characterized by dynamic light scattering (DLS),
transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform
infrared spectroscopy (FTIR), and gel permeation chromatography (GPC). Distinct LNPs could be
produced by changing the type of DES, lignin sources, pre-dropping lignin concentration, and the
pH of the system. Their diameter is in the range of 20–200 nm and they show excellent dispersibility
and superior long-term stability. The method of preparing LNPs from lignin–DES with water as
an anti-solvent is simple, rapid, and environmentally friendly. The outcome aids to further the
advancement of lignin-based nanotechnology.

Keywords: lignin; nanoparticles; deep eutectic solvents; nanoprecipitation; size-controlled

1. Introduction

Lignin is the second most abundant natural biopolymer after cellulose and constitutes
one of the major aromatic polymer resources available to mankind [1,2]. Its sustainability
and biodegradability coupled with rich functional groups aid significantly in the de-
sign and development of a variety of products, e.g., micro- to nano-carriers of bioactive
compounds [3,4]. Its limited solubility, however, in organic solvents along with hetero-
geneous characteristics and random microstructure preclude the downstream processing
and valorization [5]. The large particle size and poor water dispersibility further limit
its widespread utility [6]. More than 70 million tons of lignin is being produced from
several lignocellulose processing plants every year, throughout the world, but are being
underutilized and wasted [7,8]. Extending the high value-added applications of industrial
lignin, in this regard, is an unmet dream for value addition and economic gain.

A possible choice could be the production of nanoscale lignin, as increased surface area
facilitates enhanced chemical and physical interactions of lignin [9,10]. Lignin nanoparticles
(LNPs) could be prepared from various molecular sizes of soda lignin by the nanoprecipi-
tation process with tetrahydrofuran (THF) [11]. Similarly, enzymatic hydrolysis of lignin
followed by THF dissolution with subsequent self-assembly through water addition results
in lignin nanospheres [12]. Another viable protocol is the use of a THF/water system with
ultrasonic assistance [13]. Indeed, LNPs display fascinating properties such as favorable
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dispersibility, high specific surface area, and flexible molecular design [14]. They aid in the
preparation of nanostructured materials with several enhanced properties including in-
creased thermal stability, mechanical performance, and barrier properties [15–17]. Despite
this promising potential, large-scale production of LNPs is far from sufficient. Furthermore,
the most commonly used solvent, THF, is volatile, flammable, and difficult to handle, and is
not applicable at the industry scale [18]. In this regard, greener solvents that are non-toxic,
easy to handle, and recyclable need to be explored in producing LNPs with high yield and
controlled size.

Herein, we demonstrate the deep eutectic solvent (DES) as a “green solvent” for the
formation of LNPs. Common components of DESs are naturally occurring biocompatible
compounds that are not hazardous. Moreover, the synthesis methods of DESs include sim-
ple mixing of molecular components, which are economically viable and green chemicals.
Such simple preparation, low-cost, low-toxicity, and low-volatility, indeed, gained scientific
attention, mainly for the delignification of biomass [19]. Although structural features of
lignin isolated during the DES pretreatment have been explored [20,21], its selection as a
green solvent to produce nano-lignin has not been investigated comprehensively. Ethanol
and THF are common solvents used for LNP preparation, which are hazardous, volatile,
flammable, and difficult to handle [22], raising concerns about the safety protocols. Ethanol
and THF solubility for industrial lignin is quite limited, too. On the contrary, DES could
solubilize around 20–40 wt % of lignin and, thus, offers value addition by reducing the
amount of chemical reagent to be used during the LNPs production.

Herein, we propose an effective and environment-friendly approach for preparing the
industrial lignin nanoparticles. Our method uses DES as the green solvent through the
solvent displacement process. The effect of lignin sources, type of DES, pH of the system,
and the concentration of lignin solution on the formation of LNPs were studied. The
prepared LNPs were characterized by transmission electron microscopy (TEM), scanning
electron microscopy (SEM), dynamic light scattering (DLS), Fourier transform infrared
spectroscopy (FTIR), and gel permeation chromatography (GPC). The results reveal size-
controlled LNPs with excellent dispersibility and superior long-term stability. The outcome
facilitates an inexpensive way of producing LNPs through green protocols and is believed to
advance the current lignin-based nanotechnologies with value addition to industrial lignin.

2. Results and Discussion
2.1. Effects of Different Conditions on Morphology and Size of LNPs

LNPs were prepared based on the nanoprecipitation method outlined in Figure 1.
The yield, stability, structure, and size of LNPs could be controlled. In order to under-
stand the effects of different conditions, such as the types of DES, the source of lignin, the
pre-dropping concentration, and pH on the morphology and size control during nanopre-
cipitation, the characterization of various LNPs was conducted in detail. The prepared
LNPs were coded as x-LNPs-y-z, where x refers to the pre-dropping concentration of lignin
solution (3, 6, and 9 wt %), y specifies the DES type, namely, ETA: choline chloride and
ethanolamine (ChCl and ETA), EG: choline chloride and ethylene glycol (ChCl and EG),
and LA: choline chloride and lactic acid (ChCl and LA) and z corresponds to the pH value
of the lignin–DES/water mixture. The LNPs obtained from different conditions are shown
in Table 1.

The particle size and morphology of the LNPs are found to be dependent on the DES
type (Figure 2). The ChCl and LA and ChCl and ETA yielded an average particle size
of 138.2 and 69.7 nm for L1, respectively. They are larger than the particle size (30.4 nm)
obtained from the ChCl and EG system. Relatively more circular shape particles are
characteristics of ChCl and ETA and ChCl and LA, as revealed by the SEM and TEM
(Figure 2), in contrast to the ChCl and EG. One possible reason for the non-spherical shapes
in the SEM/TEM images may be due to the aggregation of a small number of spherical
LNPs during the air drying process [17]. The lignin source also dictates the LNPs size and
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morphology (Figure 3), and an average size of 91.5 and 95.4 nm is noticed from the L2 and
L3, respectively.
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Figure 1. Schematic representation of the preparation procedure of lignin nanoparticles (LNPs). DES:
deep eutectic solvent.

Table 1. LNPs obtained from different conditions.

Sample Material DES System Pre-Dropping Concentration pH Value

3-L1NPs-EG-4 L1 ChCl and EG 3 wt % 4
6-L1NPs-EG-4 L1 ChCl and EG 6 wt % 4
9-L1NPs-EG-4 L1 ChCl and EG 9 wt % 4
3-L1NPs-EG-5 L1 ChCl and EG 3 wt % 5
3-L1NPs-EG-6 L1 ChCl and EG 3 wt % 6

3-L1NPs-ETA-4 L1 ChCl and ETA 3 wt % 4
3-L1NPs-LA-4 L1 ChCl and LA 3 wt % 4
3-L2NPs-EG-4 L2 ChCl and EG 3 wt % 4
3-L3NPs-EG-4 L3 ChCl and EG 3 wt % 4

L1: corncob alkali lignin, L2: softwood kraft lignin, L3: commercial alkali lignin, ETA: choline chloride and
ethanolamine (ChCl and ETA), EG: choline chloride and ethylene glycol (ChCl and EG), and LA: choline chloride
and lactic acid (ChCl and LA).

Figure 4 shows the effect of the pre-dropping concentration on the morphology and
size of LNPs. It appears that pre-dropping concentration will be a significant influencing
factor during the production of LNPs. Its increase raises the LNPs’ diameter with the same
other conditions, which is consistent with the literature [23–25]. The average particle size
expands from 30.4 to 101.3 nm (Figure 4a,b) with the pre-dropping lignin concentration of
3 to 9 wt %. Higher amounts might promote more lignin molecules’ participation during
nanoparticle formation leading to a larger diameter [24]. The diameter change is in the
range of 20–150 nm as confirmed by the SEM (Figure 4c–e) and TEM (Figure 4f–h). The
morphology is irregular with hollow pores; such a structure could be advantageous for
coatings, drug delivery, and nano-composite materials, to name a few uses.

Lignin aggregates via stronger electrostatic interactions among its aromatic moieties.
Its hydrotropic properties further decrease at acidic and neutral conditions leading to self-
assembly of nanoparticles [26,27]. Consequently, the pH of the lignin solution influences
the resulting nanoparticle diameter. As the pH rises from 4 to 6, the average size is found to
reduce from 30.4 to 20.1 nm (Figure 5). This suggests that LNPs could be dispersed easily
at higher pH settings.
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2.2. Yield and Stability of LNPs

The particle size of the LNPs could be controlled easily using our approach. The yield
shows a reducing trend when increasing the pre-dropping concentration (Figure 6a). The
highest yield of 90.3% is noticed at 3 wt % lignin concentration. The yield decreases with
the rise of pH (Figure 6a). For example, the 90.3% yield at pH 4 recedes to 42.3% at pH 6.
Though the concentration of lignin used, 3–9 wt %, in our research is much higher than the
reported 0.05–2% [28–30] in the THF system, the obtained LNPs display uniform particle
size. This will certainly solve one of the major issues of industrial lignin that hinges on low
dissolution rates in ordinary organic solvents with meager yields [9,26], which could be a
significant breakthrough but warrants further investigation.
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The long-term stability of nanoparticles is critically important for large-scale applica-
tions of nanomaterials [31–33]. The zeta potential of the LNPs prepared in this research
at various conditions is shown in Figures 2b, 3b, 4b and 5b. The negative zeta potential
decreases from −41.1 mV to −37.2 mV with an increase of the pre-dropping lignin con-
centration from 3 to 9 wt %, indicating the stability of LNPs dispersion lessens subtly. The
negative charge of the nanoparticles increases with the pH of the environment (Figure
5b). As the pH value surges from 4 to 6, the negative zeta potential value changes from
−37.2 mV to −45 mV. The stability of the LNPs at different pre-dropping concentrations
and pH are studied by tracking the size change of the nanoparticles as a function of time.
The nanoparticles could be kept intact for more than 30 days in a neutral aqueous medium
without any size change (Figure 6b). In addition, there is no particle precipitation barring
for the higher pre-drop concentration (9 wt %), indicating excellent stability of the LNPs.
This phenomenon could be due to the fact that more LNPs will aggregate when they are
left standing for prolonged durations at higher concentrations. A steady nanoparticle
dispersion is observed upon re-dispersing the LNPs in water. This could be attributed
to the formation of electrical double layers due to surface charge related to the hydroxyl
groups and carboxyl groups [26].

2.3. Physicochemical Properties of Lignin and the LNPs

With different pristine lignin, the differences in the functional group contents and
molecular weights will lead to variable self-assembly processes [34]. In order to compare
the chemical structural features of LNPs in the preparation process, FTIR spectra of pristine
lignin and the LNPs were analyzed and results are shown in Figure 7. The lignin exhibits
bands at 3420 cm−1 (hydroxyl groups stretching), 1690 cm−1 (C-O stretching), 1599 cm−1

(aromatic skeletal vibration), 1509 cm−1 (C-C stretching of aromatic skeletal), 1468 cm−1

(C-H stretching of aromatic skeletal), 1427 cm−1 (aromatic skeletal vibrations combined
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with C-H in-plane deformation), 1119 cm−1 (aromatic C-H deformation of syringyl unit),
and 1036 cm−1 (OH stretching of primary alcohol) [35,36]. These bands also persist in LNPs
obtained from the three DES types without any disappearance or presence of new peaks. It
suggests clearly that the preparation process did not impact the initial lignin structure.
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The molecular weight of the three pristine lignin samples and LNPs are analyzed by
the GPC. The weight-average molecular weight (Mw), number-average molecular weight
(Mn), and polydispersity index (PDI) are presented in Table 2. The process of treating lignin
with DES at mild conditions, with increasing of the pre-dropping lignin concentration
from 3 to 9 wt % and slight decrease in molecular weight and PDI shows that the main
structure of the lignin aromatic ring is intact. Interestingly, when increasing pH from 4 to 6,
molecular weight swells from 3400 Da to 4200 Da.

Table 2. Weight-average molecular weight (Mw), number-average molecular weight (Mn), and
polydispersity index (PDI) of lignin and LNPs.

Sample Mn Mw PDI

L1 1400 3400 2.43
L2 1800 3900 2.17
L3 1100 2700 2.45

3-L1NPs-EG-4 1300 3000 2.31
6-L1NPs-EG-4 1600 3400 2.13
9-L1NPs-EG-4 1500 3100 2.07
3-L1NPs-EG-5 1600 3500 2.19
3-L1NPs-EG-6 1300 4200 3.23

3-L1NPs-ETA-4 1500 3000 2.00
3-L1NPs-LA-4 1400 3000 2.14
3-L2NPs-EG-4 1700 3700 2.18
3-L3NPs-EG-4 1000 2500 2.50

L1: corncob alkali lignin, L2: softwood kraft lignin, L3: commercial alkali lignin.

2.4. Formation Mechanism of LNPs

Generally, the formation of nanoparticles by nanoprecipitation follows the classical
nucleation theory (CNT) [37]. The diffusion-limited cluster–cluster aggregation (DLCA)
and nuclear growth (NG) are the two significant mechanisms [24,37]. On similar lines, it
could be argued as DES and water are miscible, a certain amount of lignin will be able to
dissolve in the DES.
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Subsequent to the dripping of the lignin–DES solution into water, some highly hy-
drophobic lignin molecules could form a membrane at the two-phase interface between
water and DES, causing water to be entrapped, and forming a balance between the continu-
ous phase and the dispersed phase [9]. The lignin–DES solution will then be wrapped with
the membrane. As the reaction time progresses, more and more water molecules penetrate
into the membrane, resulting in lignin molecules aggregating on the inner surface of the
membrane through layer by layer self-assembly. The resulting cooperative interactions be-
tween the hydrophobic lignin chains lead to stable small molecule nanoparticles (Figure 8).
The size of the resultant LNPs produced at such a high level of supersaturation could be
smaller than 200 nm [9,37]; high concentration lignin solution appears to instantaneously
trigger the supersaturation by being injected into the water. Concomitantly, a large number
of very small nuclei could be formed that further grow with time.
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During this process, DES could be regarded as a surfactant, which is less hydrophobic
but still dispersed in the colloidal suspension. Consequently, this unique self-assembly
method does not require the use of any other surfactants or crosslinking agents. Overall,
the process reported in this research is quite simple and environmentally friendly, and the
particle size could be controlled by adjusting the lignin concentrations and solution pH.
Further research with more examples of lignin from a variety of sources is needed to fully
understand the nanoparticle formation.

3. Materials and Methods
3.1. Materials

The corncob alkali lignin (L1) was obtained from Longlive Bio-Technology Co., Ltd.,
(Yucheng, China). Kraft lignin (L2), isolated from the black liquor of mixed softwood kraft
pulping via acid precipitation, was provided by Huatai Paper Co., Ltd. (Rizhao, China).
Another commercial alkali lignin (L3) was purchased from Tokyo Chemical Industry
Co., Ltd. (Tokyo, Japan). Choline chloride (ChCl) was purchased from Yousuo Chemical
Technology Co., Ltd. (Shandong, China). Ethanolamine (ETA) was purchased from Aladdin
Biochemical Technology Co., Ltd. (Shanghai, China). Ethylene glycol (EG) was purchased
from Fuyu Fine Chemical Co., Ltd. (Tianjin, China). Lactic acid (LA) was purchased from
Kermel Chemical Reagent Co., Ltd. (Tianjin, China). All chemicals were used as received
without further purification unless it was specially mentioned.

3.2. Synthesis of DESs

Deep eutectic solvents (DESs) are formed through strong hydrogen bond interactions
between suitable hydrogen bond donors (HBDs) and hydrogen bond acceptors (HBAs).
DESs are commonly composed of an ammonium salt and a metal halide or a hydrogen
bond donor. One of the most widespread HBAs used for the preparation of DESs is choline
chloride (ChCl). It can form DESs in combination with HBDs such as urea, carbohydrate-
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derived polyols, or carboxylic acids. Herein, HBAs of ChCl and HBDs of lactic acid (LA),
ethylene glycol (EG), and ethanolamine (ETA) were used for the synthesis of different DESs.
The molar ratios of the acidic DES (ChCl and LA), polyol-based DES (ChCl and EG), and
the alkaline DES (ChCl and ETA) were 1:9, 1:2, and 1:6, respectively.

3.3. Control of Process Parameters for LNP Synthesis

Four parameters were evaluated in the LNPs’ production: pre-dropping concentration,
pH, the types of DESs, and the lignin source. Initially, lignin was dissolved in DES at three
different concentrations of 3, 6, and 9 wt % (w/w). The solution was magnetic stirred
(600 rpm) at room temperature (25 ◦C) without filtration. Subsequently, the solution was
gradually added dropwise into vortexing deionized water at a ratio of 1:20 (solution/water,
w/w) with constant stirring (700 rpm) at room temperature. After 30 min, the H2SO4 and
NaOH solution was added until the pH value of the lignin/DES/water mixture reached 4,
5, and 6. The vortexing continued for 1 h and LNPs were formed. Following these steps,
the resultant mixtures were then centrifuged at 10,000 rpm for 5 min to precipitate the
LNPs. The LNPs were re-dispersed by adding deionized water and the separated liquid
was collected through rotary evaporation to recover the DES. The LNPs were freeze dried
for subsequent characterization. The yield was determined by measuring the mass of
freeze-dried LNPs divided by the mass of the starting lignin.

3.4. Characterizations of LNPs

The particle size distribution and average particle size of LNPs in the suspension
were detected by dynamic light scattering (DLS) using a Zetasizer instrument (Malvern,
Nano-ZS90, Malvern, UK). Number data were collected as a particle size-versus-fraction
distribution plot. Scanning electron microscopy (SEM; Hitachi Regulus 8220, Tokyo, Japan)
was used to observe the LNPs’ morphology. TEM images were acquired using the JEM-
2100F TEM under zero-loss conditions at liquid nitrogen temperature. The FTIR spectra
were recorded on a Fourier transform infrared spectrometer (Brooke, ALPHA, Karlsruhe,
Germany) operating in the wavelength range of 4000–500 cm−1. The molecular weight dis-
tribution of the samples was determined by the GPC according to our previous work [38].

4. Conclusions

In the study, lignin nanoparticles (LNPs) have been fabricated by an eco-friendly
and economic process using a novel lignin–DES system at room temperature. The size-
controlled LNPs exhibited excellent dispersibility and superior long-term stability. In-
creasing the pH and reducing the pre-concentration of lignin decreases the nanoparticle
diameter. The chemical structure and molecular weight of LNPs are also preserved. Based
on the experimental protocols used in our research, LNPs at a high yield of 90% could be
produced, which certainly is promising for the scale-up of LNP production in industry
settings. Overall, our study provides a simple and green approach to produce LNPs and
we strongly believe that the outcome opens up a window of opportunities for large-scale
production of LNPs for applications in controlled release, bioplastics, composites, adsor-
bents, and dispersants in electro-chemical applications, carbon fibers, and energy storage,
to name a few.
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