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The detection and staging of Alzheimer’s disease (AD) using non-invasive imaging
biomarkers is of substantial clinical importance. Positron emission tomography (PET)
provides readouts to uncover molecular alterations in the brains of AD patients with
high sensitivity and specificity. A variety of amyloid-β (Aβ) and tau PET tracers are
already available for the clinical diagnosis of AD, but there is still a lack of imaging
biomarkers with high affinity and selectivity for tau inclusions in primary tauopathies,
such as progressive supranuclear palsy (PSP), corticobasal degeneration (CBD) and
Pick’s disease (PiD). This review aims to provide an overview of the existing Aβ and
tau PET imaging biomarkers and their binding properties from in silico, in vitro, and
in vivo assessment. Imaging biomarkers for pathologic proteins are vital for clinical
diagnosis, disease staging and monitoring of the potential therapeutic approaches of
AD. Off-target binding of radiolabeled tracers to white matter or other neural structures
is one confounding factor when interpreting images. To improve binding properties such
as binding affinity and to eliminate off-target binding, second generation of tau PET
tracers have been developed. To conclude, we further provide an outlook for imaging
tauopathies and other pathological features of AD and primary tauopathies.

Keywords: Amyloid-beta, tau, Alzheimer’s disease, biomarker, positron emission tomography, binding sites,
affinities

INTRODUCTION

Neurodegenerative diseases such as Alzheimer’s disease (AD) are associated with cognitive
impairment and have a prevalence of 60 – 80% in individuals over 65 years of age. AD is the
most common cause of dementia (Scheltens et al., 2021). Apart from the challenges imposed
on people with AD and their relatives, the disease also places a significant financial burden on
societies. The AD continuum consists of three phases: the preclinical, mild cognitive impairment
(MCI) and dementia stages, where the last stage is further subdivided into mild, moderate and
severe AD (Scheltens et al., 2021). The molecular hallmarks of AD are extracellular Aβ plaques and
neurofibrillary tangles (NFTs) formed by hyperphosphorylated tau (Bloom, 2014). Although no
impairment of memory manifests in the preclinical stage, pathological changes such as abnormal
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accumulation of Aβ and tau in the brain have already occurred,
which necessitates early diagnosis and adequate interventions
(Dubois et al., 2021). Frontotemporal dementia (FTD) includes
a spectrum of primary tauopathy diseases featured by progressive
executive, behavioral and language dysfunction, including
progressive supranuclear palsy (PSP), corticobasal degeneration
(CBD), and Pick’s disease (PiD) (Boeve et al., 2022).

Neuroimaging techniques enable us to non-invasively reveal
information about the anatomy, metabolism, or activity of
the brain. Multimodal imaging methods have emerged to
(differentially) diagnose AD. Among the most commonly used
imaging methods in the early diagnosis of AD are Aβ-
positron emission tomography (PET), tau PET, FDG-PET,
and volumetric magnetic resonance imaging (MRI) (Chételat
et al., 2020). T1-weighted MR imaging enable detection of
regional atrophy indicative of neurodegeneration, such as in
the medial temporal lobe typical in AD. The use of various
imaging modalities evidently focuses on detecting aberrant
features of AD and gathering further knowledge on how
protein aggregates associate with pathophysiology. [18F]fluoro-
2-deoxy-D-glucose (FDG) PET has been applied for assisting
the diagnosis of AD for many years by identifying cerebral
hypoglucose metabolism. In addition to the aforementioned
imaging biomarker, cerebrospinal fluid (CSF) Aβ (Aβ42/Aβ40
ratio, Aβ42) and phosphorylated tau (P-tau) biomarkers have
been established in the routine clinical practice for assisting the
diagnosis of AD (Hansson et al., 2019, 2021). The amount of
soluble tau in the CSF serves as an early biomarker in AD
patients as the level of phosphorylated and non-phosphorylated
tau is associated with the progression of cognitive decline. Plasma
biomarkers such as plasma p-tau (p-tau181, p-tau217) have
emerged as promising biomarker ideal for large scale screening
(Zetterberg and Blennow, 2020). As increasing levels of p-tau in
blood correlate with the stage of the disease, p-tau might be a
useful biomarker to assess disease progression (Palmqvist et al.,
2021). In 2011, the National Institute on Aging and Alzheimer’s
Association (NIA-AA) established a framework that consists of
recommendations for identifying preclinical stages of AD with
biomarkers (Jack et al., 2018). In vivo PET imaging has been
included in the diagnostic criteria of neurodegenerative disorders
to increase the accuracy and facilitate differential diagnosis
(Hampel et al., 2021). The AT(N) framework, implemented in
2018, uses biomarkers rather than clinical symptoms to diagnose
AD in living people by detecting Aβ aggregates as pathological
biomarker, tau and neurodegeneration (Jack et al., 2018). Its
purpose is to serve general clinical practice and provide a tool
to diagnose and stage AD in vivo. In the continuum of AD,
quantitative measures help in identifying the severity and stage
of disease development. Evolved from the AT(N) framework, the
ATX(N) system aims to introduce other pathological pathways,
such as neuroinflammation, neurovascular dysfunction and
blood–brain barrier (BBB) dysfunction, which in turn allows
for the development of new biomarkers (Hampel et al., 2021).
Recently, new synaptic vesicle glycoprotein 2A (SV2A) tracers
such as [11C]UCB-J have been introduced, which has the
potential as a biomarker for the decreased synaptic density in
AD (Naganawa et al., 2021; O’Dell et al., 2021). In addition, PET

tracers for microgliosis and astrocytosis have been increasingly
utilized to provide tools for studying the pathophysiological
events in AD (Rodriguez-Vieitez et al., 2016; Leng and Edison,
2021). Here, we focus on the Aβ and tau imaging tracers in
regards to their in vitro and in vivo binding properties.

Aβ POSITRON EMISSION TOMOGRAPHY
IMAGING

Amyloid precursor protein (APP) is a transmembrane protein
expressed in neurons and other tissues, and once cleaved by γ-
and β-secretases, it leads to the formation of a 37–49 amino acid
long Aβ peptide (Mucke and Selkoe, 2012). Aβ can self-assemble
into oligomeric Aβ with less well-defined structures and greater
toxicity to cells as well as into fibrillar Aβ (Cohen et al., 2013).
Different forms of Aβ plaques, including core plaque, diffuse
plaque, and cerebral amyloid angiopathy (CAA) were observed
in the autopsy brain (Thal et al., 2002).

In silico and in vitro
Aβ imaging tracers detect β-sheets of Aβ fibrils and are mainly
derivatives of benzoxazole and benzothiazole, and (Okamura
et al., 2004). Three tracers, [18F]flutemetamol (Vizamyl),
[18F]florbetaben (AV-1, Neuraceq), and [18F]florbetapir
(Amyvid) have been approved by the Food and Drug
Administration (FDA) and European Medicines Agency
(EMA) for clinical use. [11C]PiB, a thioflavin T derivative, is the
most commonly used tracer for in vivo Aβ PET imaging in a
research setting. Klunk et al. (2004) reported increased [11C]PiB
abundance in the cortical regions of AD patients compared to
non-demented controls. [11C]PiB preferentially binds to Aβ42
fibrils with one high and one low binding site (Fodero-Tavoletti
et al., 2007; Ni et al., 2013, Ni et al., 2017). Apart from labeling
classical plaques, [11C]PiB also detects diffuse plaque and,
to a minor extent, NFT. In addition, [11C]PiB detects CAA,
a comorbidity that accumulates mainly in the occipital lobe
(Johnson et al., 2007). Recent study showed that [11C]PiB PET
can underestimate brain Aβ burden in the presence of cotton
wool plaques (Abrahamson et al., 2021). [18F]AZD4694, a
benzofuran derivative, structurally resembles [11C]PiB (Rowe
et al., 2013), enabling the detection of small Aβ aggregates
and minimally recognizing white matter. Examination of the
regional distribution in the brains of AD patients compared to
healthy controls indicated similar binding properties between
[18F]AZD4694 and other Aβ radioligands, such as [11C]PiB
(Cselényi et al., 2012). Binding characterization study showed
that [3H]florbetaben bound to Aβ deposits in AD brain with
high affinity and was able to accurately detect the Aβ burden
in AD and shows low non-specific binding to non-demented
control (Ni et al., 2021). [18F]florbetapir, a stilbene derivative,
demonstrated high-affinity binding to Aβ, and faster uptake
in the brain than [18F]florbetaben and [18F]flutemetamol
(Mason et al., 2013). The radioligand [11C]BF227, a benzoxazole
derivative, showed acceptable BBB permeability and Aβ affinity
and preferentially bound to dense plaques in AD patients
(Kudo et al., 2007).
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FIGURE 1 | Structural and binding properties of the tau protein. (A) Side view of [18F]PM-PBB3 binding to straight filaments in AD. (B) Images from cryo-EM
showing paired helical filaments and straight filaments in AD with bound [18F]PM-PBB3 (+APN-1607) and without [18F]PM-PBB3 (–APN-1607). Reproduced from
Shi et al. (2021b) with permission from Springer Nature. (C) Chemical structure of a tau protofibril, representing the four high-affinity binding sites for tau tracers. S1,
S3, and S4 show the core sites, and S2 shows the surface site. Reproduced from Murugan et al. (2018) with permission from American Chemical Society.

In vivo
High concordance between Aβ PET tracers have been reported.
A study comparing [11C]PiB and [18F]flutemetamol in MCI, AD
and healthy subjects exhibited promising outcomes regarding
[18F]flutemetamol’s specificity (85.3%) and sensitivity (97.2%)
in differentiating AD from controls (Hatashita et al., 2014).
High concordance between [11C]PiB and [18F]flutemetamol
uptake was reported (0.81) in this study (Hatashita et al.,
2014). Similar robust concordance in the tracer brain uptakes
have been reported in head-to-head studies using different
pairs of amyloid tracers, e.g., [11C]PiB vs. [18F]florbetapir (Su
et al., 2019), and [18F]flutemetamol vs. [18F]florbetaben (Cho
et al., 2020). In regards to the brain uptake of the tracers,
[18F]florbetapir showed a lower cortical uptake (standardized
uptake value, SUV = 1.67) compared to [18F]flutemetamol
(SUV > 2) (Choi et al., 2009). The off-target binding of [18F]-
labeled tracers to white matter is a common but unwanted
limitation in regard to PET imaging tracers. To facilitate the
discrimination between Aβ positivity or negativity scans and
the standardization of rating methods, a quantitative threshold
to assess Aβ abundance is needed. Therriault et al. (2021)
suggested a standard uptake value ratio (SUVR) of 1.55 for Aβ

positivity for [18F]AZD4694, SUVRs of 1.1 for low Aβ burden,
and 1.24 for established pathology for [18F]florbetaben (Bullich
et al., 2021). Similarly, the centiloid method suggested the use
of the unit to quantitatively determine the Aβ load of PET

images using a standardized approach. The scale ranges from
0 to 100, where 0 anchors reflect amyloid-negative outcomes,
and 100 anchors reflect typical amyloid-positive AD patients.
Standardization of acquisition time duration, tracer usage and
reconstruction algorithms facilitate multicentric collaborations
(Klunk et al., 2015).

TAU POSITRON EMISSION
TOMOGRAPHY IMAGING

Six isoforms of microtubule-associated protein tau exist, differing
in the number of repeating domains. Each isoform has either
three repeats (3R) or four repeats (4R) located at the C-terminus
(Spillantini and Goedert, 2013). While 4R tau is abundant in
individuals with CBD and PSP, both forms are present in AD
and 3R in Pick’s disease (PiD) (Spillantini and Goedert, 2013;
Shi et al., 2021b). The highly conserved repeating regions are
where tau proteins bind to the microtubule inside the neuron,
assuring its stability. The tau protein, assisting in stabilizing
microtubules, generally stays in an unfolded and phosphorylated
state. When the tau protein changes to a hyperphosphorylated
conformation, the involvement with microtubules decreases,
and the protein migrates and congregates in the form of
protofibrils (Figure 1A), the so-called paired helical filaments
(PHFs) (Spillantini and Goedert, 2013).
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First-Generation Tau Tracers
The first-generation tau PET tracers include [18F]FDDNP,
[18F]AV1451 (also called [18F]flortaucipir), and [11C]PBB3,
and the 2-arylquinolines derivative tracers include
[18F]THK523, [18F]THK5105, [18F]THK5117 [18F]THK5317,
and [18F]THK5351 (Okamura et al., 2013).

In silico and in vitro
[18F]FDDNP, the first PET biomarker labeling NFTs, can
recognize Aβ and NFTs in the brains of living humans
(Agdeppa et al., 2001). There is also evidence for the retention
of FDDNP in the brains from patients with other diseases,
such as Down’s syndrome, prion disease and PSP. Findings
obtained from in vivo imaging-autopsy comparison suggest a
correlation between in vivo cortical [18F]FDDNP binding and
the quantity of Aβ and tau build-ups at postmortem (Agdeppa
et al., 2001). [18F]flortaucipir, is the first PET tau tracer that
was recently approved to detect tau inclusions in AD by the
FDA (Barthel, 2020). In vitro autoradiography demonstrated
the binding of the radioligand [11C]PBB3 to the neocortex of
human brains with AD compared to controls (Ono et al., 2017).
Autoradiographic data from [18F]THK5105 indicated selective
recognition of NFTs and neuropil threads in the hippocampus
of AD patients (Lemoine et al., 2017). Nonetheless, off-target
binding of [18F]THK5351 to monoamine oxidase B (MAO-B)
in the basal ganglia and cortex remains a major drawback when
interpreting PET images (Harada et al., 2016; Ng et al., 2017;
Nihashi et al., 2021). First-generation tau tracers [18F]THK5351,
[11C]PBB3 and [18F] flortaucipir all bind to the 3R + 4R
combination of tau as in AD (Table 1; Chien et al., 2013;
Maruyama et al., 2013; Okamura et al., 2013; Xia et al., 2013;
Harada et al., 2016; Betthauser et al., 2017; Ono et al., 2017).

Four binding sites for radioligands have been identified on the tau
fibrils, where [11C]THK5351, [11C]PBB3, and [18F]flortaucipir
bind preferentially to one or more binding sites (Murugan et al.,
2018, 2021; Table 1).

In vivo
[18F]flortaucipir showed rapid clearance from the plasma and
favorable binding kinetics and has been widely used in imaging
tau distribution in patients with AD (Schöll et al., 2016).
[18F]flortaucipir enabled monitoring of tau spread and disease
progression in AD (example in Figure 2A; Vogel et al., 2020;
Chen et al., 2021); however, it does not detect primary tauopathies
such as PSP and CBD (Fleisher et al., 2020; Malpetti et al., 2021;
Van Wambeke et al., 2021). Using [18F]flortaucipir PET, Vogel
et al. (2020) showed that tau pathology was accompanied by
neuronal loss and consequent shrinkage of the brain, especially
in the cortex and hippocampus of patients with AD. Meisl et al.
(2021) further showed using [18F]flortaucipir PET and modeling
that tauopathies either progress by spreading or replicating
the proteopathic seeds. Another [18F]flortaucipir PET study
by Yushkevich et al. (2021) showed that the spread of tau
originated in the transentorhinal region of the medial temporal
lobe, the locus coeruleus and the dorsal raphe nucleus, progress
to limbic and isocortical regions in patient with AD. Vogel
et al. (2021) revealed four different spatiotemporal pathways
for tau pathology using [18F]flortaucipir PET: tau spread via
posterior and lateral temporal patterns in atypical forms of AD.
One limitation of [18F]flortaucipir is that the ligand binds non-
specifically to MAO-B in the thalamus and the basal ganglia
to a certain extent (Murugan et al., 2019; Wolters et al., 2021).
When comparing [18F]THK5317 to [18F]THK5351, the latter
was cleared faster from the gray matter in areas of the brain

TABLE 1 | Binding properties of tau PET tracers.

Tracers Affinity [nM] Binding to AD (3R + 4R)/
PSP (4R)/ CBD (4R)

In silico binding site (S1 –
S4)

References

1st generation

[18F]THK5317 AD Okamura et al., 2013

[11C]THK5351 2.9 (AD) AD
PSP
CBD

1–4 Most strongly S1 and
S3

Harada et al., 2016; Betthauser et al., 2017

[11C]PBB3 2.5, 6.3 (AD) 4.8 (PSP) AD
PSP
CBD

1–4 Most strongly S4 Maruyama et al., 2013; Ono et al., 2017

[18F]AV1451 14.6, 0.7 AD 1–4 Most strongly S1 Chien et al., 2013; Xia et al., 2013

2nd generation

[18F]RO948 18.5 AD 1–4 Honer et al., 2018; Yap et al., 2021

[18F]MK6240 0.32, 0.15, 0.3 AD 1–4 Most strongly S1 Walji et al., 2016; Malarte et al., 2021; Yap et al., 2021

[18F]PI-2620 4.9, 1.8 (AD) AD
PSP
CBD

Mueller et al., 2017; Kroth et al., 2021; Tezuka et al., 2021

[18F]JNJ311 8 AD 1–4 Declercq et al., 2017

[18F]PM-PBB3 7.63 (AD) 3.44 (PSP) AD
PSP
CBD

Tagai et al., 2021

[18F]GTP1 14.9 AD Lois et al., 2019; Teng et al., 2019
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FIGURE 2 | Disease staging with the tau PET tracer [18F]AV1451 and autoradiography with [3H]PI-2620, [3H]MK6240, [3H]RO948, and [3H]JNJ067.
(A) Representation of tau PET images labeled with flortaucipir ([18F]AV1451) for staging tau pathology. An increase in SUVR is visible in the cortex and subcortex
from stage 0 to 4. Stage 0 represents tau levels of healthy controls. In stage 1, tau levels are elevated in medial temporal areas. [18F]AV1451 accumulates in
extramedial temporal regions in stage 2, followed by higher SUVRs in the inferior and lateral temporal lobes in stage 3. Significantly increased uptake finally occurred
in the neocortex in stage 4. Reproduced from Chen et al. (2021) with permission from Springer Nature. (B) Characteristics of the binding properties of the tau tracers
[3H]PI-2620, [3H]MK6240, [3H]RO948, and [3H]JNJ067 in the medial temporal lobe of patients with AD, primary tauopathies and healthy controls. (R406W = FTD),
here a MAPT R406W missense mutation leads to the formation of NTFs in the case of FTD with parkinsonism linked to chromosome 17 (FTDP-17), PCA, posterior
cortical atrophy; PSP, progressive supranuclear palsy. Reproduced from Yap et al. (2021) with permission from Oxford press.

typically affected by tau inclusions (Betthauser et al., 2017), thus
exhibiting more favorable pharmacokinetics than [18F]THK5317.
Chiotis et al. showed that [18F]THK5317 accurately predicts
the degree of cognitive decline in patients with AD (Chiotis
et al., 2020). Nihashi et al. (2021) suggested that the quantity
of [18F]THK5351 uptake in the brain of AD patients inversely
correlated with hippocampal volume and neuropsychological
assessment, implying that [18F]THK5351 may be a candidate for
monitoring AD disease progression. Ezura et al. (2021) compared
differential binding of [18F]THK5351 to different tauopathies
and found that high [18F]THK5351 uptake was detected in
the precentral and postcentral gyri of CBD patients, in the
midbrain of PSP patients and in the parahippocampal gyri of
AD patients compared to healthy controls, clearly distinguishing
different tauopathies. In vivo imaging using [11C]PBB3 showed
the detection of tau inclusions in the brain stem of PS19 and
cortical and hippocampal regions of the rTg4510 mouse model
of FTD (Maruyama et al., 2013; Ishikawa et al., 2018; Ni et al.,
2018; Vagenknecht et al., 2022). A disadvantage of radiolabeled
[11C]PBB3 is the insufficient dynamic range, clearance rate and
off-target binding in the basal ganglia (Okamura et al., 2018).

Second-Generation Tau Tracers
Several second-generation tau PET tracers with improved
binding properties have been developed, including [18F]MK6240,
[18F]PM-PBB3, [18F]RO948, [18F]PI-2620, [18F]JNJ311, and
[18F]Genentech Tau Probe 1 (GTP1) (Leuzy et al., 2019).

In silico and in vitro
Hostetler et al. showed that [18F]MK6240 displayed selective
high-affinity binding to NFT and almost no binding to
Aβ. In vitro results comparing AD and control brains of
the entorhinal cortex and hippocampus also showed high
selectivity for NTF-associated regions (Hostetler et al., 2016).
Tagai et al. reported that [18F]PM-PBB3 ([18F]APN-1607)
overcame the limitation of the first-generation tracer [11C]PBB3
and demonstrated better binding properties. A cryo-electron
microscopy (cryo-EM) study further showed that the different
morphologies of [18F]PM-PBB3 were associated with paired
helical filaments and straight filaments in AD (Figures 1B,C; Shi
et al., 2021a). [3H]PI-2620 has also been shown to bind to 4R tau,
thus allowing the assessment of patients with PSP (Figure 2B;
Kroth et al., 2019; Brendel et al., 2020; Song et al., 2021).
Additionally, [18F]PI-2620 has shown lower binding affinity to
monoamine oxidase A (MAO-A) of AD brain homogenates
(Kroth et al., 2021). Zhou et al. (2021) investigated the binding
properties of PET tracers [18F]PI-2620, [18F]CBD2115, [18F]PM-
PBB3, and [18F]MK6240 binding to CBD tau by using in silico
studies where high affinity binding for the core and an entry site
of the 4R tau fibril were detected. For AD tau, [18F]CBD2115
and [18F]PM-PBB3 displayed higher affinity to tau in the
brain from patients with AD than [18F]PI-2620. However,
none of the four tracers bound preferentially to 4R tau over
a combination of tau species, indicating that they did not
exclusively bind to 4R tau (Zhou et al., 2021). [18F]JNJ311,
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synthesized from the trimethylammonium precursor, showed
promising pharmacokinetic results based on preclinical imaging:
sufficient uptake in the mouse brain, followed by a rapid wash-
out were detected (Declercq et al., 2017). While autoradiography
study showed that [18F]JNJ311 detected tau inclusions in AD
brain slices, it did not bind to the tau inclusions in the
postmortem brain from PSP or CBD (Declercq et al., 2017).
Furthermore, in silico findings concluded that [18F]JNJ311 binds
to all four binding sites on the tau fibril but most strongly to
sites one and two (Murugan et al., 2018). [18F]GTP1 showed
higher binding to tau than Aβ plaques in the cortex and almost
no affinity for MAO-B in brain tissue from patients with AD
(Sanabria Bohórquez et al., 2019).

In vivo
[18F]RO948 has shown higher specificity for AD-related tau
than other tauopathies, such as Pick’s disease, suggesting that
it is an ideal biomarker for the differential diagnosis of AD
(Leuzy et al., 2020). [18F]RO948 imaging in patients with mild
AD revealed little off-target binding and outstanding kinetic
properties (Kuwabara et al., 2018). Kuwabara et al. (2018) further
introduced an index, tau-positive fraction (TPF), for indicating
the amounts of tau in medial and lateral temporal lobe and
parietal lobe with binary readout (positive or negative). Janelidze
et al. (2021) recently showed that the plasma p-Tau217 levels
correlated with tau accumulation measured by using [18F]RO948
PET in patients with early AD. The evaluation of in vivo tau
load based on SUVRs presented evidence that [18F]MK6240 is
a favorable biomarker to assess the presence and amount of
NFT in the hippocampus of AD brains (Pascoal et al., 2018).
However, Smith et al. (2021) reported sex differences in off-target
binding in the meninges: cognitively unimpaired females showed
more pronounced off-target binding than males for all three
tracers: [18F]flortaucipir, [18F]RO948 and [18F]MK6240. Levy
et al. (2021) demonstrated that [18F]MK6240 showed significant
binding in the temporal lobes and the basal ganglia in Aβ-
negative patients withP301L and R406W MAPT mutations and
minimal off-target binding, suggesting the potential of this tracer
for differential diagnosis. Sufficient [18F]PM-PBB3 uptake in the
cortex and the hippocampus of rTg4510 mice was observed
(Weng et al., 2020; Tagai et al., 2021). In patients with CBD and
PSP, in vivo PET scans revealed elevated [18F]PM-PBB3 binding
in the subcortex. Mueller et al. (2020) reported that [18F]PI-2620
showed significantly higher SUVRs and distribution value ratios
(DVRs) using visual and quantitative assessments in the cortex of
AD patients than in controls. In contrast, a study investigating
the potential 4R imaging agent [18F]PI-2620 for a variety of
tauopathies, such as PSP, CBD, and CBS (corticobasal syndrome),
versus healthy controls indicated increased tracer uptake in the
globus pallidus in patients with PSP, CBD, and CBS but also
in healthy controls (Tezuka et al., 2021). Favorable imaging
results have been reported for another 2nd generation tau tracer
[18F]GTP1: Teng et al. (2019, 2021) demonstrated the association
between increased tau load ([18F]GTP1 uptake) and cognitive
decline in people with mild and progressive AD. In addition,
[18F]GTP1 brain uptake (SUVR) has been shown negatively
correlated with CSF ratio of tau368 and t-tau in patients with AD
(Blennow et al., 2020).

DISCUSSION

To date, there have been several approved Aβ tracers, and
emerging tau PET tracers with improved specificity and binding
properties for the detection of NFTs in AD. Amyloid and
tau PET helps to uncover the interplay between Aβ, tau
and neurodegeneration in longitudinal studies of the disease
progression. Aβ PET has been established as diagnostic tool
for assisting clinical diagnosis, while the diagnostic value for
tau imaging has yet to be further demonstrated (Altomare
et al., 2021). Tau PET has a strong impact on diagnosis
and on subsequent cognitive decline in AD (Ossenkoppele
et al., 2021). Recent head-to-head comparison study (tau
PET vs. amyloid PE vs. MRI) has demonstrated the accuracy
and added prognostic value of tau PET in patients with
preclinical and prodromal AD (Ossenkoppele et al., 2021).
Finding an optimal imaging biomarker remains a demanding
task, as there are several prerequisite for PET tracers targeting
at central nervous system, including structural requirements
such as the size to pass the BBB, pharmacokinetic properties,
and stability of the chemical for imaging. Off-target binding
of tau radiotracers, e.g., to MAO-B, is a concern for first-
generation tau PET tracers (Murugan et al., 2019). Other
off-target binding sites include neuromelanin and melanin-
containing cells (Aguero et al., 2019), which [18F]MK6240 tends
to bind. The novel tracer [18F]SNFT-1 (THK5562) might have
overcome this drawback, as it demonstrated reduced off-target
binding to MAO enzymes in preclinical animal experiments
(Ishiki et al., 2020).

While eminent research has been conducted on Aβ imaging,
more insight into how Aβ structures, such as fibrils or
protofibrils, are associated with pathology are to be provided.
Having the same amino acid sequence of Aβ, aged non-human
primates develop Aβ deposition similar to humans, raising the
question of why they lack the human pathological manifestation
and that resulted in the hypothesis of conformational changes
on a molecular level (Rosen et al., 2016). Absence of [11C]PiB
binding to Aβ aggregates in the brains from monkeys with
age-related amyloid plaques was reported (Rosen et al., 2011,
2016). Studies have further shown that binding is dependent
on plaque structure (dense or diffuse) or on the relative ratios
of Aβ40 and Aβ42 (Aβ42/Aβ40) (Lee et al., 2019). Recent cryo-
EM study found that the structure of Aβ fibrils from human
AD patients were different from those formed in vitro (Kollmer
et al., 2019). Contrary to synthetic fibrils that form left-hand
twists, the human-derived fibrils demonstrated right-handed
twists. Nonetheless, the folding of proteins and the assembly of
protofilaments are conserved structures. Autosomal dominant
AD is the genetic variant of AD and emerges due to mutations
in the presenilin 1 (PSEN1), presenilin 2 (PSEN2), and amyloid
precursor protein (APP) genes (Gordon et al., 2018). Yang
et al. (2022) reported that different structures were observed
in fibrillar Aβ from sporadic and autosomal dominant AD.
Lower Aβ detection by [11C]PiB might be associated with
morphological changes of Aβ molecules in genetic forms of AD
or other species expressing amyloidosis (Schöll et al., 2012).
Longitudinal observations of subjects with the PSEN1 E280A
mutation without clinical symptoms served as a tool to monitor
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the association between Aβ, entorhinal tau accumulation and
cognitive decline (Sanchez et al., 2021). Studies found only
minimal [11C]PiB retention in the cortex of APP arctic mutation
carriers versus non-carriers while the CSF Aβ42 and p-tau are
pathologic, thus implying the importance of genetic variants
on Aβ structure (Lemoine et al., 2021). In contrast, Benzinger
et al. (2013) discovered that the [11C]PiB cortical retention was
elevated in autosomal dominant AD even 15 years before the
onset of the disease.

CONCLUSION

Positron emission tomography imaging using Aβ and tau
tracers has enabled the early and differential diagnosis of
AD and monitoring of disease progression. Although many
Aβ PET tracers has been applied in preclinical research and
a few for clinical use, there is only one tau PET imaging
biomarker available in the clinic. For the differential diagnosis

of primary tauopathies, such as CBD and PSP, there is
no specific 4R tau PET tracer to enable specific detection,
which requires future development. In addition, the detection
of other targets, neuroinflammation and synaptic density at
the beginning of AD has the potential for more holistic
in vivo diagnostics.
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