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Bone marrow mesenchymal stromal cells (BMSCs), identified as pericytes comprising
the hematopoietic niche, are a group of heterogeneous cells composed of
multipotent stem cells, including osteochondral and adipocyte progenitors.
Nevertheless, the identification and classification are still controversial, which
limits their application. In recent years, by lineage tracing and single-cell
sequencing, several new subgroups of BMSCs and their roles in normal
physiological and pathological conditions have been clarified. Key regulators and
mechanisms controlling the fate of BMSCs are being revealed. Cross-talk among
subgroups of bone marrow mesenchymal cells has been demonstrated. In this
review, we focus on recent advances in the identification and classification of
BMSCs, which provides important implications for clinical applications.
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INTRODUCTION

BMSCs, first identified by Frieden (Friedenstein et al., 1976; Owen and Friedenstein, 1988), are a
group of heterogeneous cells composed of multipotent stem cells, including osteochondral and
adipocyte progenitors (Ashton et al., 1980; Pittenger et al., 1999; Wolock et al., 2019). BMSCs with
niche forming and immunomodulatory ability are of great clinical significance and are widely
explored in the treatment of autoimmune disorders and biological engineering (Orkin, 2000; Kong
et al., 2009; Amini et al., 2012; Laranjeira et al., 2015).

Although the differentiation and hierarchies of hematopoietic stem cells have long been well
clarified, those of BMSCs are less well defined (Azadniv et al., 2020), which limits BMSC application.
Traditional RNA sequencing can only obtain the average data of cells, which fails to reflect cellular
heterogeneity (Tang et al., 2019). The development of single-cell sequencing offers the opportunity to
identify and classify BMSCs at the single-cell level. Through single-cell sequencing, several new
BMSC subgroups have been identified, and their roles are clarified under normal physiological and
pathological conditions.

In this review, we focus on recent advances in the identification and classification of BMSCs, key
regulators, and mechanisms controlling BMSC fate and cross-talk among subgroups of BMSCs, to
find important implications for clinical applications.
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Identification and Classification
According to the International Society for Cellular Therapy,
BMSCs are plastic-adherent when maintained in standard
culture conditions and express CD105, CD73, and CD90 but
not CD45, CD34, CD14, or CD11b, CD79α, or CD19 or HLA-DR
surface molecules. In addition, BMSCs can differentiate into
osteoblasts, adipocytes, and chondroblasts in vitro (Dominici
et al., 2006). In this review, we emphasize the multipotent
stem cells (MSCs), skeletal stem cells (SSCs), and adipocyte
lineage cells (Figure 1).

Multipotent Stem Cells
The identification of MSCs is mainly based on morphological
observation (Li et al., 2016) and detection of surface markers
(Baddoo et al., 2003; Ambrosi et al., 2017).

Novel molecular markers are continually being investigated to
identify MSCs. LepR+ cells are a highly heterogeneous population
containing multipotent stem cells. They are the main source of
osteo-lineage cells and adipo-lineage cells in adult mice and
generate the hematopoietic niche around bone vessels. Leptin
receptor (LepR)+ cells are the primary source of multipotent stem
cells that are stem cell factor (SCF)high Cxcl12 high Nestinlow

NG2low (Zhou et al., 2014). Platelet-derived growth factor-α
(PDGFRα)+ is another marker used individually or in
combination for enriching MSCs (Suire et al., 2012; Grandl
and Wolfrum, 2017). Its combinations include CD45-Ter119-
(a nonhematopoietic marker) CD31-CD51+Sca1+ (Wolock et al.,
2019), and CD45-Ter119-vascular cell adhesion molecule
(VCAM) + CD146lowCD31–PDGFRα+ (Chou et al., 2012).
Glioma-associated oncogene (Gli1) +, a transcription factor

and an effector of the Hedgehog pathways, enriches
metaphysis mesenchymal progenitor cells (MMPs) located at
the junction of cartilage just below the growth plate of
postnatal mice. Hox11+ enriches MSCs in adult mice
(Swinehart et al., 2013), especially in the periosteum and
perivascular areas (Rux et al., 2016). In addition, CXCL12-
abundant reticular (CAR) cells enrich bipotent progenitors of
osteoblasts and adipocytes (Omatsu et al., 2010).

With the development of single-cell sequencing, we are able to
further classify highly heterogeneous MSCs (Tikhonova et al.,
2019). In addition, with a single trajectory, we can further
characterize the hierarchy and differentiation routes of
osteoblasts, chondrocytes, and adipocytes (Wolock et al.,
2019). Wolock assigned cell state labels to each cluster of the
scRNA-seq dataset and inferred the gene expression trajectories
of MSCs isolated by flow cytometry. In this study, mesenchymal
stromal cells represented the starting states and the most
abundant population in the dataset. Gene sets of extracellular
matrices, BMP2 targets, adipose tissue stromal cells, and HSC-
supportive stromal cell lines were enriched in mesenchymal
stromal cells, including B3galnt1, Cebpa, Cxcl12, Cybb, Il7,
Kitl, Lpl, and Snai2. Mesenchymal stromal cells differentiate
into adipocyte progenitors and osteoblast-chondrocyte
progenitors. The second layer of hierarchy consists of
adipocyte progenitors (AdPs) and osteoblast-chondrocyte
progenitors (OsPs). The third group consists of preadipocytes
(pre-Ad) and preosteoblast chondrocytes (Pre-OCs). Gene set
enrichment analysis of TNFA signaling via NFKB showed that
during adipogenesis, adult tissue stem cells are enriched in AdPs
and pre-Ad, including Adipoq, Ccl2, Cebpb, Cxcl12, Fos, Il6, Jun,

FIGURE 1 | Hierarchy of bone marrow mesenchymal stromal cells. SSC, skeletal stem cell; MALP, marrow adipogenic lineage precursors; BCSP, bone, cartilage
and stromal progenitor; pre-Ad, pre-adipocyte; OPC, osteo progenitor cell.
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and Kitl. OsPs and pre-OCs were enriched in the gene sets of
extracellular matrices, epithelial–mesenchymal transition,
extracellular space, and tissue development, including Alpl,
Mmp13, Poxstn, Sp7, and Wif1. Pro-osteoblasts and
prochondrocytes served as end states of this dataset. Pro-
osteoblasts were enriched in the gene set of endoplasmic
reticula, Golgi apparatus, skeletal system development, and
ossification, including Bglap, Col1a1, Col1a2, Creb3l1, Mef2c,
Nupr1, Spare, and Sp7. Prochondrocytes were enriched in tissue
development, extracellular space, and biomineral tissue
development genes, including Ackr3, Ank, Cd44, Dmp1,
Mepa, Mmp13 Nupr1, and Spp1 (Wolock et al., 2019).

Tikhonova classified LepR+ cells into four clusters by scRNA-
seq: adipogenesis-associated clusters were P1 (Mgp high) and P2
(Lpl high), suggesting a poised pro-adipogenic state; clusters P3
(Wif1 high) and P4 (Spp1 high Ibsp high) represented
osteoprimed LEPR+ cells (Tikhonova et al., 2019).

Zhong and others subdivided MSCs. They further classified
LepR+ cells and reported the following hierarchy of LepR+ cells:
early mesenchymal progenitors (EMPs) as the state status (highly
expressing the genes Ly6a, Cd34, Thy1, Mfap5, Gsn, and Cles3b);
intermediate mesenchymal progenitors (IMPs) (expressing
higher levels of osteogenic genes than EMPs and located after
EMPs); late mesenchymal progenitors (LMPs) (highly expressing
the genes Aspn, Edil3, Tnn, Pstn, Ostn, and Dkk3); lineage
committed progenitors (LCPs); and three final states of
osteoblast/osteocyte (highly expressing the genes Sp7, Runx3,
Col1a1, Ibsp, Bglap2, and Dmp1), adipocyte (highly expressing
the genes Cebpa, Cebpb, Pparg, Lpl, Adipoq, and Apoe), and
chondrocyte clusters (highly expressing the genes Sox9, Col2a1,
Col10a1, Pth1r, Acan, and Ihh) (Zhong et al., 2020).

In the studies mentioned above, some functional features of
MSCs have arisen. LepR+MSCs are located around sinusoids and
arterioles, are a main source of adipocytes in adult bone marrow
(Tikhonova et al., 2019), and are regulated by the Pten gene to
promote osteogenesis and to restrain adipogenesis (Zhou et al.,
2014). CAR LepR+ MSCs can retain HSCs and colony-forming
progenitors. During growth, Hox11 + can form perichondrium,
tendons, and muscle connective tissue (Swinehart et al., 2013).
Under irradiation, LepR+ MSCs can form osteoblasts and
adipocytes (Zhou et al., 2014).

When discussing MSCs, we emphasize their potential for
differentiation in multiple directions. The starting point of the
branch of BMSCs has long been discussed, yet there is still no
common resolution. After assembling the current studies that
identify and classify MSCs through various markers or their
combination, we tried to illustrate some functional relations
and provide some implications for clinical applications.

Skeletal Stem Cells
SSCs were once thought to be equal to BMSCs (Li et al., 2016) and
to functionally give rise not only to osteoblasts and chondrocytes
but also to adipocytes (Robey and Riminucci, 2020). However,
recent studies have determined that SSCs, as a lineage-restricted
subset of BMSCs, are especially characterized by self-renewal and
osteochondral (Méndez-Ferrer et al., 2010; Chan et al., 2013;
Marecic et al., 2015a; Worthley et al., 2015) differentiation

(Méndez-Ferrer et al., 2010; Chan et al., 2013; Marecic et al.,
2015a; Worthley et al., 2015).

Various studies have identified and defined different SSCs by
detecting different sites of active bone growth. Therefore, it may
be easier to understand SSCs from a clinical and functional
perspective.

In the mouse growth plate, the system of SSCs and their
downstream progenitors can be described as lineage hierarchy.
Determination of the mouse SSC (mSSC) lineage hierarchy
included mSSCs and pre-mBCSP cells (CD45-TER119-TIE2-
ITGAV+THY1-6C3-CD200-CD105-). Then, mBCSP cells
(CD45-TER119-TIE2-ITGAV+THY1-6C3-CD105+) were
generated, followed by chondro-lineage/PCP cells (CD45-
TER119-TIE2-ITGAV+THY1+6C3-CD200 + CD105+),
osteo-lineage cells, and stroma cells. The osteo-lineage can
be further classified into two subgroups, namely, THY (CD45-
TER119-TIE2-ITGAV+THY1+6C3-CD200-CD105+) and
B-cell lymphocyte stroma progenitors (BLSPs) (CD45-
TER119-TIE2-ITGAV+THY1+6C3-CD105-). The stroma
can also be further classified into two subgroups, that is,
6C3 (CD45-TER119-TIE2-ITGAV+THY1-6C3+CD105+)
and hepatic leukemia factor-expressing HECs (CD45-
TER119-TIE2-ITGAV+THY1-6C3+CD105-) (Chan et al.,
2015). The same group also reported on SSCs in human
tissue. Nonhematopoietic SSCs can be prospectively isolated
and characterized by PDPN+CD146-CD73+CD164+ (Chan
et al., 2018). Another study isolated an intermediate cell type
(CD200+ CD105-) between the start cluster mSSCs and
BCSPs. These cells are self-renewing, pluripotent, and give
rise to all other cells at the single-cell level. Pre-mBCSPs and
mSSCs are functionally indistinguishable, so this population
may be collectively referred to as phenotypic mSSCs (Gulati
et al., 2018). PTHrP+ resting chondrocytes were identified as
SSCs in the stationary region of the growth plate partially
overlapping with mouse skeletal stem cells and progenitor cells
previously identified by Chan and others. These cells are
distributed in the perichondrium during the fetal stage
(Mizuhashi et al., 2018) (Figure 2).

A study reported the existence of an SSC pool within the
periosteum. Compared with bone marrow SSCs, periosteum SSCs
are more clonal and have stronger growth and bone regeneration
ability (Allen et al., 2004). Ctsk was found to label a type of SSC
called periosteum stem cells that exist in the periosteum
mesenchyme of long bones or the skull (Debnath et al., 2018).
Gli1+ cells are osteogenic, chondrogenic, and weakly adipogenic
cells in the sutura cranii (Zhao et al., 2015; Farmer et al., 2021).
Axin2+ can label osteogenic and cartilaginous cells in the cranii
(Maruyama et al., 2016).

In the hematopoietic microenvironment in human bone
marrow, Sacchetti found a cluster of CD146+TIE2- cells
around sinusoids defined as SSCs (Sacchetti et al., 2007).
Another study from the same group illustrated that CD146 is
able to functionally regenerate bone and stroma and to form a
homotopic niche (Serafini et al., 2014).

As shown above, we can see that the tight relationship between
active bone generation and the location of SSCs was vividly
shown above.

Frontiers in Cell and Developmental Biology | www.frontiersin.org January 2022 | Volume 9 | Article 7871183

Gao et al. Bone Marrow Mesenchymal Stromal Cells

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


Adipocyte Lineage Cells
Adipocyte lineage cells represent a branch of BMSCs after the
differentiation point in the pseudotime trajectory according to
several studies.

Berry and Rodeheffer described adipocyte lineage cells
consisting of CD24+ cells (generating adipocyte progenitors)
and CD24−cells (generating preadipocytes) (Berry and
Rodeheffer, 2013). Gupta reported the use of the transcription
factor zinc-finger protein (Zfp)423 to enrich preadipocytes in
bone marrow, which is generally used to label adipogenic cells in
white adipose tissue (WAT) (Gupta et al., 2012). In addition,
Zfp423 is able to distinguish preadipocytes from adipogenic
progenitor cells in bone marrow. According to Ambrosi’s
study, marker combination adipogenic progenitor cells can be
enriched in CD45-CD31-Sca1+Pα+CD24-Zfp423- and pre-Ads
by CD45-CD31-Sca1-CD24-Zfp423+ (Ambrosi et al., 2017).
Another study mentioned above identified adipocyte lineage
cells of LepR+ cells. Tikhonova reported but did not clearly
define two adipogenesis-associated clusters P1 (Mgp high) and
P2 (Lpl high), which presented a continuous relationship among
four subsets of LepR+ cells. They were specifically found covering
the sinusoidal capillaries as LepR+Esm1+ cells (Tikhonova et al.,
2019). However, the association between these two has not been
fully developed (Tencerova and Kassem, 2016).

There were significant differences in cell size and fatty acid
content between intramedullary and extramedullary fat cells.
Zhong first classified adipocyte lineage cells from a
morphological perspective. There was a novel population of
adipocyte lineage cells containing no lipid droplets in the
cytoplasm. Zhong further identified a novel population that
does not express Plin1, a lipid droplet coating protein gene,
but does express Pparg, Cebpa, Adipoq, Apoe, Lpl, Lepr,
Cxcl12, Il1rn, Serpina3g, Kng1, Kng2, Agt, Esm1, and
Gdpd2 in vivo and named them marrow adipogenic lineage
precursors (MALPs). In conclusion, MALPs express adipocyte
markers but do not contain lipid droplets. As nonproliferative

precursors of adipocytes, they are abundant in the form of
pericytes and stromal cells, forming ubiquitous 3D networks
in the bone marrow cavity, maintaining the bone marrow
vascular system and inhibiting bone formation (Zhong et al.,
2020). However, the pericyte function of these cells is not totally
clear. The MALP knockout experiment did not change anything
with respect to hematopoiesis. Zhou claimed that bone marrow
adipocytes secrete SCF to promote the regeneration of stem cells
and hematopoiesis (Zhou et al., 2017).

In brief, the identification and classification of adipocyte
lineage cells seems simpler than that of MSCs and SSCs at
present. More attention should be given to functional studies
in the future.

Linkage Between Fat and Bone
Regulation of Differentiation Fate
As illustrated in many studies, the differentiation fate of BMSCs
to osteo-lineage cells and to adipo-lineage bone cells is located on
two branches. The differentiation fate is specifically regulated by
an increase in intracellular transcription factors (TFs), signaling
pathways, and microRNAs. In addition, extracellular elements
such as hypoxia and mechanical stimulation are also involved in
this vital process (Figure 3).

For osteogenesis, TFs regulate the differentiation fate of
BMSCs by increasing the expression of genes that are
responsible for the corresponding osteo-cell type. Runt-related
transcription factor 2 (Runx2) and Osterix are two key TFs that
promote osteoblast differentiation (Augello and De Bari, 2010).
Runx2 enhanced by core-binding factor beta (Cbfβ) promotes
osteoblast differentiation (Yoshida et al., 2002), but inhibits
adipocyte differentiation of BMSCs by disturbing PPARγ
(Komori, 2006). Runx2 is also called core binding factor α1
(Cbfa1) and is upregulated in BMSCs through single-cell
sequencing (Wolock et al., 2019). Many other factors can
increase the TF level of Runx2 and then cooperate with it,
such as bone morphogenetic protein-2 (BMP2), Dlx5, Sprouty

FIGURE 2 | Hierarchy of skeletal stem cells in mouse and human growth plate. SSC, skeletal stem cell; pre-BCSP, pre-bone, cartilage and stromal progenitor;
BCSP, bone, cartilage and stromal progenitor; BLSP, B-cell lymphocyte stroma progenitor; OPC, osteo progenitor cell.
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2 (Spry2), Twist-1, and Twist-2 (Gori et al., 1999; Bialek et al.,
2004; Kronenberg, 2004; Augello and De Bari, 2010; Schneider
et al., 2017). Under pathological conditions, unexpected
upregulation of Runx2 causes heterotopic ossification (Wang
et al., 2019). BMP2 is proven to be a key signaling pathway by
targeting Runx2/Cbfa1. High concentrations of BMP2 show
dose-dependent effects on osteogenesis (Javed et al., 2008).
Furthermore, microRNAs are another important coeffector in
this process. MiR-204 and miR-211 are induced during
adipogenesis and downregulate Runx2 expression (Huang
et al., 2010). MiR-17-5p/miR-106a and miR-30c/miR-30 days
inhibit BMP signaling by targeting key components of the
pathway, namely, BMP2 and Smad1 (Kang and Hata, 2015).
In addition to runx2, a vital factor related to many important
signaling pathways and microRNAs, osterix is another primary
TF for the osteogenesis of BMSCs. Osterix has been demonstrated
to play a role downstream of runx2 and can be activated by runx2
(Nakashima et al., 2002). In osterix-null mice, MSCs cannot
differentiate into osteoblasts, and no bone formation occurs
(Nakashima et al., 2002). Osterix, also called Sp7, is
upregulated in OBs and pre-OBs based on single-cell
sequencing (Wolock et al., 2019; Zhong et al., 2020). miR-637
and miR-31 can directly suppress osterix expression (Zhang et al.,
2011; Baglìo et al., 2013). In addition to Runx2 and osterix, other
transcription factors, such as TAZ and Forkhead box C2 (Foxc2),
can also promote osteogenesis and suppress adipogenesis (Hong
et al., 2005; Park et al., 2011; Yu et al., 2018). The expression of
Wnt10b signaling promotes osteogenesis by inducing the
expression of runx2, osterix, distal-less homeobox 5 (Dlx5),

and TAZ and suppresses adipogenesis by inhibiting PPARγ and
C/EBPα (Bennett et al., 2005; Byun et al., 2014), which
demonstrates the pro-osteoblastic and anti-adipocytic
differentiation effect of Wnt/β-catenin signaling (Kang and
Hata, 2015; Gu et al., 2016). The regulatory function of
H3K9me3 and H3K27me3 works in balancing the osteogenic
and adipogenic differentiation of mesenchymal stem cells. Ye
et al. reported that the histone demethylase KDM4B in BMSCs
increases bone marrow fat cells by epigenetic coordination of
β-catenin/Smad1-mediated transcription by removing inhibitory
H3K9me3, ultimately contributing to bone aging and osteoporosis
(Ye et al., 2012). Xue et al. reported that H3K9me3 can activate
Wnt-5a and repress PPAR-γ (Xu et al., 2016).

For adipogenesis, PPARγ plays a vital role by regulating the
expression of adipogenic genes. PPARγ shows pro-adipocytic and
anti-osteoblastic effects (Zhuang et al., 2016). Upstream of
FOXO1, it could regulate lipogenesis through PPARγ and the
adipocyte cell cycle through p21 and p27 (Chen et al., 2019).
PPARγ agonists induce adipocyte differentiation by modulating
the expression of Lipin-1 downstream (Kim et al., 2016). PPARγ
is a secretory BMP inhibitor (Gustafson et al., 2015). As
mentioned above, a high concentration of BMP2 accelerates
osteoblast differentiation, while a low concentration of BMP2
promotes adipocyte formation in the C3H10T1/2 mesenchymal
cell line (Tang et al., 2004). Additionally, CCAAT/enhancer
binding protein α (C/EBPα), platelet-derived growth factor
receptor β (PDGFβ) and zinc finger proteins 423 and 521 also
take part in adipogenesis (Lin and Lane, 1994; Gupta et al., 2012;
Huang et al., 2012; Dang et al., 2021).

FIGURE 3 | Regulation of differentiation fate. The differentiation fate of BMSCs is specifically regulated by an increase in intracellular transcription factors (TFs),
Osterix and PPARγ; signaling pathways; and microRNAs. In addition, extracellular elements such as hypoxia and mechanical stimulation are also involved in this vital
process. Runx2, Runt-related transcription factor 2; BMP2, bone morphogenetic protein-2.
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In addition to transcription factors, signaling pathways,
miRNAs, and other intracellular influencing factors, there are
extracellular factors that can also play an important regulatory
role, typically including hypoxia, mechanistic stimuli, radiation, a
high-fat diet, drug use, and perivascular distribution.

Hypoxia promotes osteogenesis but suppresses adipogenesis
of human mesenchymal stromal cells in a hypoxia-inducible
factor-1 (HIF-1)-dependent manner (Wagegg et al., 2012).
Hypoxia and hypoxia-mimetic microRNA miR-675-5p
mediate the angiogenesis response and osteochondroblast
commitment of hMSCs (Costa et al., 2017; Wang et al., 2007).
Clinically, an FDA-approved iron chelator promotes
angiogenesis and osteogenesis, thereby enhancing the rate of
fracture repair (Yellowley and Genetos, 2019), while hypoxia
promotes osteogenesis but suppresses adipogenesis of human
mesenchymal stromal cells in a hypoxia-inducible factor-1 (HIF-
1) dependent manner (Wagegg et al., 2012). Hypoxia and
hypoxia-mimetic microRNA miR-675-5p in angiogenesis
response and osteo-chondroblast commitment of hMSCs
(Costa et al., 2017; Wang et al., 2007). Clinically, an FDA-
approved iron chelator promotes angiogenesis and
osteogenesis, thereby enhancing the rate of fracture repair
(Yellowley and Genetos, 2019). Mechanical factors, such as
exercise and vibration, have been confirmed by many studies
to regulate the differentiation fate of BMSCs. Climbing exercise
was reported to significantly increase bone volume and OB
number while decreasing bone marrow fat volume and
adipocyte number (Mori et al., 2003; Menuki et al., 2008). In
vivo studies have demonstrated that vibrations with low-
magnitude mechanical signals upregulate Runx2 and
downregulate PPARγ (Luu et al., 2009). In addition, low-
magnitude high-frequency vibration may promote osteoblast
differentiation of MSCs via the Wnt/β-catenin signaling
pathway, the estrogen receptor α signaling pathway, and
cytoskeletal remodeling (Haffner-Luntzer et al., 2018; Wang
et al., 2020; Yi et al., 2020) (Wang et al., 2020a; Haffner-
Luntzer et al., 2018; Yi et al., 2020).

In addition to mechanical stimuli, other chemical factors,
such as a high-fat diet and drug use, also play roles in
regulating MSC differentiation. Obesity caused by a high-
fat diet and aging impair osteogenesis and hematopoietic
regeneration by regulating osteoblastic or adipocytic genes,
probably through PPAR-γ (Parhami et al., 2001; da Silva
et al., 2016; Ambrosi et al., 2017). Yue et al. reported that in
diabetes and obesity, LepR signaling in BMSCs has been
shown to promote adipogenesis and inhibit osteoblast
production in response to diet (Yue et al., 2016). In
addition, both obesity and osteoporosis are associated with
elevated oxidative stress and increased production of
proinflammatory cytokines. The expression levels of DLL1/
delta-like one and DLL4/delta-like four ligands decreased
under stress conditions. In the absence of vascular Dll4,
hematopoietic stem cells prematurely induce bone marrow
transcriptional programming (Tikhonova et al., 2019).
Deacetylated histone 3 (Hdac3) inhibits lipid storage in
osteoblasts and controls fat production (Pierce et al.,
2019). Regarding drug use, long-term use of steroid

hormones, such as glucocorticoids, can lead to obesity
with rapid bone loss (Body, 2010).

In addition, previous studies have suggested that the
differentiation directions appear to be correlated with
distinguishing the perivascular distribution of cells.
Perivascular multipotent stem cells fall into two categories
based on the differential expression of the accepted adipose
precursor marker stem cell antigen (Sca) 1+ (Ambrosi et al.,
2017): around arterioles (PDGFRα+Sca-1-CD45-Ter119- cells)
(Morikawa et al., 2009; Ambrosi et al., 2017) and around
sinusoids [PDGFRα+Sca-1-CD45-Ter119-, as well as CAR cells
(Greenbaum et al., 2013)]. Osteolectin is an osteogenic growth
factor that enhances the maintenance of adult skeletal bone cells.
It has also been reported that a group of peri-arteriolar
LepR+Oln+ cells express osteogenic genes by gene set
enrichment analysis. However, LepR+Oln- cells were
distributed around the venous sinus and expressed lipogenic
genes (Shen et al., 2021).

Taken together, internal factors, such as epigenetic regulation
and perivascular distribution, and external factors, such as
exercise, drug use, and a high-fat diet, are also critical in
regulating osteogenesis and adipogenesis of BMSCs. These
factors may take effect through cross-talk with the key
transcription factors and signaling pathways mentioned above.

In brief, the differentiation fate regulation of BMSCs presents a
complex network.

Cross-Talk Between Bone and Fat
Bone growth is the coupling of bone formation by osteoblasts and
bone absorption by osteoclasts. In childhood, bone growth is
dominated by osteogenesis. During aging, cross-talk occurs
between bone and fat. Osteogenesis weakens, bone absorption
increases, and fat cells in the bone marrow increase.

Fat is negatively related to bone mass (Shen et al., 2007; Shen
et al., 2014). Fat is reported to inhibit bone formation and fracture
healing (Ambrosi et al., 2017). Fat can affect bone growth through
two or more mechanisms. It was reported that adipo-lineage
progenitors specifically and highly express osteoclast regulatory
factors. RANKL is the most widely studied one. MALPs can
specifically secrete several osteoclast regulatory factors, especially
RANKL, which is involved in the progression of bone remodeling
(Robling and Bonewald, 2020; Hu et al., 2021; Yu et al., 2021).
Adipokines, such as leptin, adiponectin, and chemerin, are
typically secreted by adipocytes and are directly or indirectly
involved in bone metabolism and correlated with bone mineral
density (Fang and Judd, 2018; Helfer and Wu, 2018; Reid et al.,
2018; Maeda et al., 2020; Zhao et al., 2020; Fang and Judd, 2018;
Helfer and Wu, 2018; Reid et al., 2018; Maeda et al., 2020; Zhao
et al., 2020). In pathological situations, such as postmenopausal
osteoporosis, obesity has long been considered a beneficial factor
for bone health (Felson et al., 1993) that can reduce the risk of
fracture (Compston et al., 2014). However, as soon as fracture
occurs, the opposite condition occurs. Adipocytic cells
significantly impair bone fracture healing and hematopoietic
repopulation by secreted dipeptidyl peptidase-4 (DPP4), an
important target of antidiabetes treatments (Ambrosi et al.,
2017). This adipocyte ablation-mediated enhancement of bone
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mass reflects the activation of BMP receptors after the elimination
of its inhibitor, which is associated with simultaneous epidermal
growth factor receptor signaling. Diphtheria toxin receptor
adiponectin-induced osteosclerosis was not due to ablation of
surrounding fat cells but may reflect the elimination of cells
expressing adiponectin in the bone marrow (Zou et al., 2020). To
our knowledge, acute fat loss through dieting does not affect bone
mass (Lagerquist et al., 2021).

Regarding the effect of bone on fat, there are few studies.
However, in many pathological conditions, such as osteoporosis,
the phenomenon of expanding the volume and number of
adipocytes in BM is generally observed (Justesen et al., 2001).
Bone loss is often regarded as a consequence but not an impact
factor. The clinical influence of bone on fat needs to be further
explored. What is more, many other well-known ways are able to
restrain the fat accumulation so that there may be no need to
regulate fat through bone and fat cross-talk.

As shown above, cross-talk exists between differentiated bone
tissue and fat. The balance between these two is tightly related to
physiological homeostasis and pathological situations.

CONCLUSION

In conclusion, BMSCs are highly heterogeneous. Different
researchers have defined subsets of markers or combinations
that are discrete or partially overlapping. Otherwise, those single-

cell sequencing studies report their classic and newly discovered
roles and connections in the context of physiological or
pathological states. The diversity and assortative nature of
different cell markers makes it difficult to classify BMSCs,
let alone find associations between them. We tried our best to
review the identification and classification and to find a link
among the overlapping clues of multipotent stem cells, skeletal
stem cells, and adipocyte lineage cells for more applicable and
clinical explanations.
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