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The CXCR4 and adhesion molecule expression of CD34+
hematopoietic cells mobilized by “on-demand” addition of

plerixafor to granulocyte–colony-stimulating factor

Tamara Girbl, Verena Lunzer, Richard Greil, Konrad Namberger, and Tanja Nicole Hartmann

BACKGROUND: Granulocyte–colony-stimulating factor
(G-CSF) is routinely used for mobilization of hematopoi-
etic stem and progenitor cells preceding autologous
transplantation after high-dose chemotherapy in hema-
tologic malignancies. However, due to high mobilization
failure rates, alternative mobilization strategies are
required.
STUDY DESIGN AND METHODS: Patients who poorly
mobilized CD34+ hematopoietic cells (HCs) with G-CSF
additionally received the CXCR4 antagonist plerixafor.
The phenotype of CD34+ HCs collected after this
plerixafor-induced “rescue” mobilization, in regard to
adhesion molecule and CD133, CD34, and CD38
expression in comparison to CD34+ HCs collected after
traditional G-CSF administration in good mobilizers,
was analyzed flow cytometrically. To confirm previous
studies in our patient cohort, the efficiency of mobiliza-
tion and subsequent engraftment after this “on-demand”
plerixafor mobilization were analyzed.
RESULTS: Pronounced mobilization occurred after
plerixafor administration in poor mobilizers, resulting in
similar CD34+ cell yields as obtained by G-CSF in good
mobilizers, whereby plerixafor increased the content of
primitive CD133+/CD34+/CD38– cells. The surface
expression profiles of the marrow homing and retention
receptors CXCR4, VLA-4, LFA-1, and CD44 on mobi-
lized CD34+ cells and hematopoietic recovery after
transplantation were similar in patients receiving G-CSF
plus plerixafor or G-CSF. Unexpectedly, the expression
levels of respective adhesion receptors were not related
to mobilization efficiency or engraftment.
CONCLUSION: The results show that CD34+ HCs col-
lected by plerixafor-induced rescue mobilization are
qualitatively equivalent to CD34+ HCs collected after
traditional G-CSF mobilization in good mobilizers, in
regard to their adhesive phenotype and engraftment
potential. Thereby, plerixafor facilitates the treatment of
poor mobilizers with autologous HC transplantation after
high-dose chemotherapy.

A
utologous hematopoietic cell (HC) transplanta-
tion is widely applied to reconstitute hema-
topoiesis after high-dose chemotherapy in
patients with hematologic malignancies includ-

ing multiple myeloma (MM), non-Hodgkin’s lymphoma
(NHL), and Hodgkin’s lymphoma.1,2 Mobilized peripheral
blood (PB) CD34+ hematopoietic stem and progenitor
cells (HSPCs) are easy to collect, have a high engraftment
potential, and are used as preferred source for transplan-
tation. To mobilize HSPCs from the marrow (BM) into the
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PB, their adhesive interactions with accessory stromal
cells, osteoclasts,3 osteoblasts, and extracellular matrix
components in the BM need to be overcome. The
chemokine CXCL12 and the α4β1 (VLA-4, CD49d/CD29)
integrin ligand VCAM-1 are abundantly expressed by BM
stromal cells and act as key mediators of HSPC retention in
the BM.4 In line, disruption of CXCL12–CXCR4 and VCAM-
1–VLA-4 interactions results in release of HSPCs into the
PB.5-7 Additionally, the αLβ2 integrin LFA-1 (CD11a/CD18)
and the adhesion receptor CD44 are involved in HSPC
lodgment in the BM and CD44 is also implicated in mobi-
lization of these cells.8-10 Importantly, the receptors CXCR4,
VLA-4, LFA-1, and CD44 also mediate BM homing of
HSPCs,9,11-14 wherefore their expression might influence
the migration of these cells into the BM and engraftment
after autologous transplantation.

Currently, the granulocyte–colony-stimulating factor
(G-CSF) is used as standard mobilizing agent, alone or in
combination with chemotherapy. G-CSF causes severe
alterations of the BM microenvironment including osteo-
blast apoptosis,15 depletion of CD68+/CD169+ BM mac-
rophages,16,17 inhibition of osteogenic mesenchymal stem
cell differentiation,18 and bone formation.16,19 Collectively,
these alterations cause a down regulation of molecules
important for HSPC maintenance and retention including
CXCL12, VCAM-1, SCF, and angiopoietin-116-20 in endos-
teal and vascular niches, which eventually facilitates
HSPC mobilization. G-CSF has been suggested to further
promote HSPC mobilization by inducing the expression of
the proteases matrix metalloproteinase-9, cathepsin G,
and neutrophil elastase, which together with mediators of
the complement cascade21-23 and thrombolytic pathway24

cleave and inactivate the retention factors CXCL12,
VCAM-1, and c-Kit.25-29 However, in 10% to 30% of all
patients G-CSF fails to efficiently mobilize CD34+ HSPCs
and does not support the collection of at least 2 × 106

CD34+ cells/kg body weight in one collection attempt,
which are minimally required for transplantation and suc-
cessful engraftment after high-dose chemotherapy.30-33

These patients require alternative mobilization regimens.
Plerixafor (AMD3100), a bicyclam antagonist of CXCR4,
which reversibly blocks CXCL12 binding and chemotactic
signaling,34,35 has recently been identified as potent mobi-
lizing agent. Broxmeyer and colleagues7 first showed that
plerixafor and G-CSF act synergistically in the mobiliza-
tion of functionally competent human stem cells. Subse-
quent studies demonstrated that plerixafor elevates
CD34+ cell harvests in comparison to G-CSF alone in
healthy volunteers36 and NHL and MM patients.37-39

Therefore, plerixafor was approved in combination with
G-CSF for HSPC mobilization for autologous transplanta-
tion in lymphoma and MM patients.

In our study G-CSF was used as standard mobilizing
agent. Patients identified as “poor mobilizers,” based on
low circulating CD34+ cell counts during G-CSF adminis-

tration, additionally received plerixafor (“on demand”). As
plerixafor induces HSPC mobilization by mechanisms dis-
tinct from G-CSF, it may release HSPCs of different subsets
and different adhesion and migration receptor expression
profiles. We evaluated HSPC subset composition based on
CD133, CD34, and CD38 expression and the surface
expression of CXCR4, CD49d (α-subunit of VLA-4), CD11a
(α-subunit of LFA-1), and CD44 on collected CD34+ cells.
Additionally, we analyzed the mobilization efficiency of
plerixafor “rescue” administration in comparison to stan-
dard G-CSF application, to confirm previous investiga-
tions demonstrating plerixafor efficiency37,39-44 in our
patient cohort. To further compare the quality of mobi-
lized HCs, we evaluated the time to engraftment after
transplantation and the impact of CXCR4 and adhesion
molecule expression on time to neutrophil and platelet
(PLT) engraftment.

MATERIALS AND METHODS

Patients and HSPC collection
Under approval from the local ethics committee (No. 415-
E/1177/8-2010) and after written informed consent was
obtained, 37 patients with hematologic malignancies
(summarized in Table 1 and detailed in Table S1, available
as supporting information in the online version of this
paper), who underwent HSPC mobilization at the Third
Medical Department of the Paracelsus Medical University
Salzburg, were included in this study. Mobilization was

TABLE 1. Patient characteristics

Characteristics

Mobilization regimen

G-CSF
G-CSF plus
plerixafor

Number of patients 29 8
Age (years) 54 (18-73) 62 (30-72)
Male sex 20 (69.0) 1 (12.5)
Chemotherapy previous to G-CSF 24 (82.8) 4 (50.0)
Chemotherapy regimen

Cyclophosphamide 15 (51.7) 3 (37.5)
R-DHAP 3 (10.3) 1 (12.5)
DHAP 4 (13.8) 0
BEACOPP 1 (3.4) 0
CHOEP 1 (3.4) 0

Diagnosis
NHL 10 (34.5) 4 (50.0)
MM 14 (48.3) 3 (37.5)
Hodgkin’s lymphoma 3 (10.3) 0
Acute lymphocytic leukemia 1 (3.4) 0
Acute myeloid leukemia 1 (3.4) 0
Scleromyxedema 0 1 (12.5)

* Data are reported as median (range) or number (%).
R-DHAP = rituximab–dexamethasone, cytarabine and cisplatin;
DHAP = dexamethasone, cytarabine, and cisplatin;
BEACOPP = bleomycin, etoposide, doxorubicin, cyclophospha-
mide, vincristine, procarbazine, and prednisone; CHOEP = cyclo-
phosphamide, doxorubicin, vincristine, and prednisone plus
etoposide.
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induced by daily subcutaneous injections of 10 μg of
G-CSF (Merckle Biotec, Ulm, Germany; or Novartis, Basel,
Switzerland) per kg of body weight for 3 to 4 consecutive
days before leukapheresis was started. A total of 75.7%
of our patients additionally received chemotherapy
(Table 1), which was followed by daily administration of
10 μg/kg G-CSF for 7 to 12 days starting from the day after
chemotherapy. Leukapheresis was initiated at the discre-
tion of the attaining physician and depended on circulat-
ing CD34+ cell numbers as monitored via a flow cytometer
(FC-500, Beckman Coulter, Fullerton, CA). A total of
20 × 106 CD34+ cells/L PB were considered as minimum
and at least 50 × 106 CD34+ cells/L PB as optimum to
induce leukapheresis. If the minimum cell number was
not attained during G-CSF administration, patients were
considered as “poor mobilizers” and received a single sub-
cutaneous injection of 240 μg/kg plerixafor followed by
induction of leukapheresis after 10 to 12 hours. Cell col-
lection was performed in one session with a commercially
available apheresis system (COBE Spectra, Terumo BCT,
Lakewood, CO). The number of collected CD34+ cells was
determined by flow cytometer. Patients not responding to
plerixafor were not subjected to leukapheresis and there-
fore not included in this study.

Flow cytometry
Fresh leukapheresis products were stained with the
following monoclonal antibodies (MoAbs): anti-CXCR4–
PE, anti-CD49d–PE, anti-CD11a–PE, anti-CD34–FITC (BD
Biosciences, Franklin Lakes, NJ) or corresponding isotype
controls. Additionally, PB mononuclear cells (PBMNCs)
were isolated by density gradient centrifugation, viably
frozen, and stored in liquid nitrogen until use. Thawed
PBMNCs were stained with anti-CD34–FITC (BD
Biosciences), CD44–FITC, anti-CD38–PE, anti-CD34–PE
(Beckman Coulter), and anti-CD133–APC MoAbs (Miltenyi
Biotec, Bergisch-Gladbach, Germany). The percentage of
cells expressing respective receptors and mean fluores-
cence intensity values in relation to isotype controls
(MFIRs) were analyzed with a flow cytometer and its
accompanying software (Gallios and Caluza, respectively,
both Beckman Coulter).

Definition of engraftment
Neutrophil engraftment was defined as the first day
after transplantation where neutrophil counts in the
PB reached at least 500 × 106/L. PLT engraftment was
defined as first (of 3 consecutive) day(s) where PLT
counts reached at least 50 × 109/L PB based on guide-
lines of the European Group for Blood and Marrow
Transplantation.45 In three cases (marked in Table S1), we
observed lower but stable PLT counts in the absence of

bleeding without further requirement of PLT transfusion
at discharge from the hospital, which was defined as
engraftment.

Statistical analyses
Statistical analyses were performed with computer soft-
ware (GraphPad, San Diego, CA). The Kolmogorov-
Smirnov test was used to evaluate normal distribution.
Normally distributed data were analyzed by t test,
nonnormally distributed by Mann-Whitney test. Correla-
tion analyses were carried out using the Pearson’s test for
normally distributed or Spearman test for nonnormally
distributed data. Two-tailed p values of less than 0.05 were
considered significant.

RESULTS

G-CSF and G-CSF plus plerixafor result in the
mobilization of CD34+ cells with similar CXCR4
and adhesion molecule expression profiles
The surface expression of CXCR4, VLA-4, LFA-1, and
CD44, which are involved in HSPC BM homing and
retention, were measured on CD34+ cells in
leukapheresis products collected after G-CSF plus
plerixafor–induced rescue mobilization and standard
G-CSF mobilization using multiparameter flow
cytometry. HSPCs were identified by size and granularity
(forward and side scatter) and CD34 expression (as exem-
plified in Fig. 1A). Representative fluorescence histo-
grams of each receptor and the MFIRs are depicted on
the left side of Figs. 1B through 1E. CXCR4 was weakly
expressed on CD34+ cells of both treatment groups as
shown by median MFIRs of 1.8 (G-CSF) and 2.0 (G-CSF
plus plerixafor, Fig. 1B, middle) and median percentages
of CXCR4-positive CD34+ cells of 4.3 (G-CSF) and 14.2
(G-CSF plus plerixafor, Fig. 1B, right). As CXCR4 levels
were directly determined in fresh leukapheresis products
the low levels were not caused from down regulation
during density centrifugation or freezing and thawing. In
contrast, the expression of VLA-4, as determined by flow
cytometric analysis of CD49d (α-subunit of VLA-4), was
high on the entire CD34+ population throughout all
patients, independent of the mobilizing regimen
(Fig. 1C). Similarly, LFA-1, as determined by analysis of
CD11a (α-subunit of LFA-1) levels (Fig. 1D), and CD44
(Fig. 1E) were highly expressed on mobilized CD34+ cells
of all patients and did not differ between G-CSF and
G-CSF plus plerixafor–mobilized CD34+ cells.

Collectively, our data show that CD34+ cells collected
after G-CSF plus plerixafor–induced rescue mobilization
or standard G-CSF administration exhibit similar CXCR4
and adhesion receptor expression profiles despite differ-
ent mechanisms of release from the BM.
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The addition of plerixafor to G-CSF causes
increased mobilization of primitive
CD133+/CD34+/CD38– HCs
To compare the HC subsets collected after either mobili-
zation regimen, we characterized CD133, CD34, and CD38
expression in leukapheresis products via flow cytometry.
Although CD34 is widely used as HSPC marker,46,47 CD34–/
CD38–/Lin– HCs are capable of repopulating immunode-
ficient mice.48 Therefore, we additionally analyzed the
alternative HSPC marker CD133,49 which is expressed on
primitive CD34–/CD38–/Lin–50 as well as on CD34+ HCs,
where it marks a subpopulation enriched for repopulating

cells.51,52 Within the CD34+ population, CD38– cells repre-
sent a subset with extensive proliferation and repopulat-
ing capacity,53,54 while CD38+ cells express differentiation
markers and have limited repopulating capacities.55

Figure 2A illustrates a typical CD34 and CD38 expres-
sion profile of CD133+ HCs in leukapheresis products col-
lected after G-CSF (top) and G-CSF plus plerixafor
administration (bottom). In all patients the main popula-
tion of CD133+/CD34+ HCs also expressed CD38 (exempli-
fied in Fig. 2A). While leukapheresis products collected
after G-CSF treatment contained no or very small percent-
ages of CD133+/CD34+/CD38– HCs, G-CSF plus plerixafor
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induced the collection of a significantly larger subpopula-
tion of early CD133+/CD34+/CD38– HCs (median, 0.39%
compared to 1.84%; p = 0.037, Fig. 2B).

Plerixafor rescues HSPC mobilization in
poor mobilizers
To determine how the addition of plerixafor to G-CSF in
poor mobilizers affects mobilization efficiency, we first
compared circulating CD34+ cell counts 1 day before and
the next morning after plerixafor administration before
leukapheresis. Figure 3A shows that plerixafor induced a
12-fold elevation of the median number of circulating
CD34+ cells (×106/L PB) from 7.5 to 90.5. Further, we found
that G-CSF plus plerixafor induced the mobilization of
similar numbers of CD34+ cells (×106/L) to the PB
(median, 96.5 × 106 cells/L) like G-CSF alone in good
responders (median, 95.0 × 106 cells/L; Fig. 3B), as deter-
mined shortly before leukapheresis, and resulted in
similar yields of CD34+ cells/kg by leukapheresis (median,
5.2 × 106 and 6.9 × 106 cells/kg; Fig. 3C). Of note, within
G-CSF–treated patients, those who underwent chemo-
therapy before G-CSF treatment had significantly higher
CD34+ cell counts (×106/L PB; median, 115.0 × 106 com-
pared to 48.0 × 106 cells/L; Fig. 3D) and CD34+ cell
yields/kg (median, 8.3 × 106 compared to 3.3 × 106 cells/
kg; Fig. 3E). Preapheresis CD34+ cell numbers (×106/L)
in the PB of the whole patient collective correlated with
the number of CD34+ cells/kg yielded by subsequent

leukapheresis (Fig. 3F), which confirms peripheral CD34+
counts to be helpful indicators to predict mobilization
success.

Together, our data show that the on-demand use of
plerixafor potently induces mobilization of CD34+ cells in
patients poorly responding to G-CSF (with or without che-
motherapy) and facilitates mobilization rates similar to
those of good mobilizers.

CXCR4, VLA-4, LFA-1, and CD44 expression on
mobilized CD34+ cells is independent of
mobilization efficiency
Next, we evaluated whether the surface expression of
receptors involved in HSPC retention in the BM is related
to mobilization efficiency. The relations of preapheresis
CD34+ cell numbers (×106/L PB) with expression of
respective receptors are shown in Fig. 4 and illustrate that
the surface levels (MFIRs) of CXCR4 (Fig. 4A, left) and per-
centages of CXCR4 expressing CD34+ cells (Fig. 4A, right)
and the surface levels of CD49d (VLA-4, Fig. 4B), CD11a
(LFA-1, Fig. 4C), and CD44 (Fig. 4D) do not correlate with
mobilization efficiency as analyzed in the total patient
cohort. The separate analysis of both treatment groups
similarly did not show any correlation (data not shown).
However, it is worth mentioning that three patients
displaying particularly high mobilization response
(>300 × 106 CD34+ cells/L PB) exhibit a low expression of
CXCR4, CD49d, and CD11a.
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Transplantation with HCs mobilized via G-CSF or
G-CSF plus plerixafor results in similar time
to engraftment
A rapid engraftment of transplanted HCs in patients after
high-dose chemotherapy is essential in reconstituting the
immune system and minimize the risk of severe infec-
tions. Therefore, we compared the time to of hematopoi-
etic recovery (as defined by time to neutrophil and PLT
engraftment) in 26 patients transplanted with autologous
HCs collected after either mobilization regimen. Neutro-
phil engraftment after transplantation with HCs mobi-
lized by G-CSF resulted in neutrophil engraftment after a
median of 11 days, comparable to that of neutrophil
engraftment after G-CSF plus plerixafor–induced mobili-
zation (median, 10 days; Fig. 5A, left). PLT engraftment
occurred after a median of 14 days in patients receiving

G-CSF–mobilized HCs and after a
median of 20 days in patients receiving
G-CSF plus plerixafor-mobilized HCs
(Fig. 5A, right). Next, we investigated
which variables influenced time to
engraftment. As reported previously for
G-CSF–mobilized HCs, in our cohort of
G-CSF and G-CSF plus plerixafor–
treated patients, the number of trans-
planted CD34+ cells/kg inversely
correlated with time to neutrophil
engraftment (Fig. 5B, left) and weakly
inversely correlated with time to PLT
engraftment (Fig. 5B, right). To further
assess the influence of CXCR4 and adhe-
sion molecule expression on CD34+
cells in apheresis products on engraft-
ment we related expression levels of
each receptor to neutrophil and PLT
engraftment time. As shown in Figs. 5C
through 5F, none of the CXCR4, CD49d,
CD11a, or CD44 surface expression
levels were related to neutrophil or PLT
engraftment. Our results show that
G-CSF and G-CSF plus plerixafor mobi-
lize HSPCs with similar engraftment
kinetics and that the time to engraft-
ment primarily depends on the number
of transplanted CD34+ HCs but not
on CXCR4 and adhesion molecule
expression.

DISCUSSION

Limited data are currently available
comparing the phenotype and engraft-
ment properties of HSPCs collected
after G-CSF plus plerixafor–induced
rescue mobilization compared to tradi-

tional G-CSF administration. In our exploratory study on a
total of 37 patients we found that while the on-demand
addition of plerixafor to G-CSF in poor mobilizers altered
the subset composition in leukapheresis products in favor
of more primitive CD133+/CD34+/CD38– HCs, the CXCR4
and adhesion molecule expression profiles were similar
on the bulk CD34+ population collected after both mobi-
lization regimens. In line, plerixafor-induced rescue mobi-
lization was similarly effective in mobilizing CD34+ cells
and caused equal neutrophil and PLT engraftment after
transplantation like G-CSF in good mobilizers.

Previous studies suggested that a modulation of
adhesion receptor expression on BM HSPCs occurs dur-
ing G-CSF administration, which might be functionally
involved in the mobilization process. Specifically,
CXCR4 surface expression was found to be dynamically
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indicating the median. The 25th and 75th percentiles are marked by the edges of the

box and the minimum and maximum observations (excluding outliers) are marked

by the whiskers. Outliers are defined as cases that are more than 1.5-fold the

interquartile range away from the edges of the box and are indicated as dots. (D)

Preapheresis CD34+ cell numbers (×106/L PB) of good mobilizers who did (n = 22) or

did not (n = 4) receive chemotherapy immediately before G-CSF. (E) Total CD34+ cell

numbers/kg collected from good mobilizers, who received chemotherapy before

G-CSF (n = 22) or not (n = 4). (F) Correlation of preapheresis CD34+ cell numbers

(×106/L PB) with total CD34+ cells/kg collected via leukapheresis. (■) Patients

treated with G-CSF (n = 27); ( ) patients treated with G-CSF plus plerixafor (n = 8).

*p < 0.05; **p < 0.01; ***p < 0.001; ns = not significant.

GIRBL ET AL.

2330 TRANSFUSION Volume 54, September 2014



modulated in response to G-CSF,25 and CXCR4, VLA-4, and
LFA-1 surface levels were suggested to be down regulated
during mobilization into the circulation.25,56,57 Although
plerixafor is thought to elicit less pronounced effects on the
BM microenvironment than G-CSF, HSPCs mobilization to
the PB might be accompanied by alterations in their adhe-
sion molecule expression. For example, plerixafor has
recently been shown to induce release of CXCL12 from BM
stromal cells into the PB,58 which in turn might affect
CXCR4 expression on HSPCs, for example, by induction of
CXCR4 internalization. Studies in an autologous trans-
plantation rhesus macaque model demonstrated that
plerixafor-mobilized CD34+ cells have higher VLA-4 and
CXCR4 levels as G-CSF–mobilized CD34+ cells.59 In con-
trast, we did not detect any differences in the adhesion

molecule expression on mobilized
CD34+ cells, whether plerixafor was
used or not. Importantly, our patients
received G-CSF until the day before
plerixafor injection and therefore might
exhibit G-CSF–induced alterations on
mobilized CD34+ cells. These receptor
modulations alone might have not been
sufficient to initiate pronounced mobili-
zation but might facilitate release from
the BM in addition to plerixafor-specific
mechanisms. Our interpatient compari-
son of G-CSF plus plerixafor– versus
G-CSF–mobilized subsets illustrated
that the addition of plerixafor also
induced the release of more primitive
CD133+/CD34+/CD38– cells in poor
mobilizers compared to G-CSF alone
in good mobilizers. A previous study
showed that the supplementation of
plerixafor in a G-CSF–based regimen
increased the percentage of CD38– cells
in the circulating CD133+/CD34+ popu-
lation within individual MM and NHL
patients60 and another study reported
elevated percentages of CD133+/CD38–
within CD34+ cells if plerixafor was
added to G-CSF instead of cyclophos-
phamide.61 Together these data show
that the different mobilizing mecha-
nisms of plerixafor and G-CSF cause
the collection of different HC subset
combinations.

A rapid hematopoietic recovery
after HC transplantation is essential to
reduce the risk of secondary infections.
Recently, a minimal delay in engraft-
ment independent of the CD34+ cell
dose was associated with mobilization
by G-CSF plus plerixafor in comparison

to G-CSF.62 Our data (albeit determined in a small cohort)
do not support this suggestion, as we have observed that
transplantation with HCs mobilized by either regimen
result in similar engraftment times. Although CD34+/
CD38– cells possess extensive proliferation and repo-
pulation potentials,53,54 greater percentages within CD34+
cells or total transplanted numbers were not related to
faster engraftment (data not shown). However, effects on
long-term hematopoiesis need to be further investigated.
Furthermore, engraftment time after transplantation did
not correlate with the expression of BM homing and reten-
tion receptors on CD34+ cells (that one could expect) but
was strictly correlated with the number of transplanted
CD34+ cells, supporting a previous study63 and underlin-
ing its dominant role in determining engraftment. A
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recent report shows that patients with prolonged time to
neutrophil engraftment (>19 days) exhibited lower VLA-4
levels on collected CD34+ cells.64 Importantly, all our
patients expressed high VLA-4 levels on collected CD34+
cells, which might exceed a certain threshold necessary to
effectively mediate HSPC homing and retention within the
BM. In line, neutrophil engraftment occurred faster in our
entire patient cohort (≤17 days), which could further

explain the lack of correlation. Although CXCR4 is essen-
tial for homing into the BM, we did not observe any asso-
ciation of CXCR4 levels and engraftment. Interestingly,
previous studies have shown that CXCR4 expression on
CD34+ cells is dynamically regulated and that CD34+ cells
can release CXCR4 from intracellular stores to the cell
surface upon cytokine stimulation.65 Therefore, we
suggest that the low CXCR4 expression on collected
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CD34+ cells might be significantly increased upon injec-
tion into the recipient to facilitate migration into the BM.

Collectively, our results suggest that the use of
plerixafor on-demand releases HSPCs that are qualita-
tively equivalent to HSPCs mobilized by G-CSF, in terms of
BM homing and retention receptor expression and
engraftment potential. Therefore, our study, albeit using a
limited patient number, supports the use of plerixafor for
poor mobilizers to rescue HSPC mobilization and facili-
tate their treatment with potentially curative high-dose
therapy and HC transplantation.
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