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Abstract  The basic reproduction ratio, R0, is a fundamental concept in epidemiol-
ogy. It is defined as the total number of secondary infections brought on by a sin-
gle primary infection, in a totally susceptible population. The value of R0 indicates 
whether a starting epidemic reaches a considerable part of the population and causes 
a lot of damage, or whether it remains restricted to a relatively small number of 
individuals. To calculate R0 one has to evaluate an integral that ranges over the dura-
tion of the infection of the host. This duration is, of course, limited by remaining 
host longevity. So, R0 depends on remaining host longevity and in this paper we 
show that for long-lived hosts this aspect may not be ignored for long-lasting infec-
tions. We investigate in particular how this epidemiological measure of pathogen 
fitness depends on host longevity. For our analyses we adopt and combine a generic 
within- and between-host model from the literature. To find the optimal strategy for 
a pathogen from an evolutionary point of view, we focus on the indicator Ropt

0
 , i.e., 

the optimum of R0 as a function of its replication and mutation rates. These are the 
within-host parameters that the pathogen has at its disposal to optimize its strategy. 
We show that Ropt

0
 is highly influenced by remaining host longevity in combination 

with the contact rate between hosts in a susceptible population. In addition, these 
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two parameters determine whether a killer-like or a milker-like strategy is opti-
mal for a given pathogen. In the killer-like strategy the pathogen has a high rate 
of reproduction within the host in a short time span causing a relatively short dis-
ease, whereas in the milker-like strategy the pathogen multiplies relatively slowly, 
producing a continuous small amount of offspring over time with a small effect on 
host health. The present research allows for the determination of a bifurcation line 
in the plane of host longevity versus contact rate that forms the boundary between 
the milker-like and killer-like regions. This plot shows that for short remaining host 
longevities the killer-like strategy is optimal, whereas for very long remaining host 
longevities the milker-like strategy is advantageous. For in-between values of host 
longevity, the contact rate determines which of both strategies is optimal.

Keywords  Epidemiology · R0 · Host longevity · Duration of infection · Fitness 
strategy · milker–killer dilemma

1  Introduction

In general, successful parasites engage in a dynamic co-evolutionary interaction 
with their host population. As such, they do not eradicate their hosts. Instead, they 
live in some kind of stable hostility, resulting in an arms race between parasite and 
host (Haraguchi and Sasaki 1996). For vertebrate hosts and their obligatory directly 
transmitted pathogenic microbes this arms race is taking place between the hosts’ 
immune system on the one hand, and the complex genetic systems that the patho-
gens develop on the other hand. The main tools pathogens have at their disposal are 
antigenic diversification and variation in replication rates. These two mechanisms 
are essential to the pathogen’s continued struggle to evade the host’s immune system 
that is adapting to control the proliferation of infectious organisms (Deitsch et  al. 
2009).

The clash of the above-mentioned antigenic players can lead to different optimal 
strategies for the pathogen. To achieve ecological success (i.e., persistence within a 
host population), pathogens require mechanisms both for survival within hosts and 
transmission between hosts. Deitsch et al. (2009) consider some of these strategies 
and in particular pay attention to the mechanisms of antigenic variation adopted by 
pathogens to avoid eradication by the hosts’ immune system in order to maintain 
persistent infections. Herewith, they ensure the feasibility of their transmission to 
new hosts. Two main strategies combining within- and between-host dynamics are 
the so-called ‘milker-like’ and ‘killer-like’ strategies (van Baalen and Sabelis 1995). 
The ‘milker-like’ strategy relates to a pathogen replicating slowly within the host in 
an attempt to damage the host minimally. In contrast, the ‘killer-like’ strategy refers 
to a pathogen replicating very quickly and making the host ill. The latter strategy 
puts all emphasis on a high release rate of pathogens.

In most epidemiological models, the main tool used to identify the ecological 
success of a pathogen is the basic reproduction ratio, R0 (Diekmann et  al. 1990; 
Heesterbeek 2002). This measure of pathogen fitness is widely applied, because it 
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provides information regardless of the specific characteristics of the infection under 
consideration, such as prevalence, virulence change, host switch, and control escape. 
R0 is defined as the expected number of secondary infections arising from a single 
individual during its entire infectious period, in a population of susceptible hosts. 
See, e.g., Anderson and May (1995), Diekmann and Heesterbeek (2000), Keeling 
and Grenfell (2000) and Heffernan et al. (2005). An important conclusion from their 
work is that if R0 < 1 , the infection does not disappear immediately, but subsequent 
generations of infected organisms are smaller and smaller in size. Alternatively, 
R0 > 1 indicates a possible outbreak of the disease (van den Driessche and Wat-
mough 2002).

Traditionally, R0 was incorporated in studies that relate to between-host dynam-
ics. However, to account for the complex genetic systems that pathogens have devel-
oped, nowadays much attention is given to within-host competition between strains 
of a given pathogen, as opposed to the implicit assumption that hosts are exploited 
by a single clone of pathogens (see e.g., Anderson and May 1979; Ewald 1983). 
When combined with the more traditional population-level approach, this relatively 
new approach to infectious disease modelling is very promising to gain better under-
standing of the arms race described above. Consequently, when using systems in 
which within- and between host processes are modelled simultaneously, R0 depends 
on a combination of host-specific and pathogen-related characteristics. One of these 
characteristics is the remaining longevity of the host.

Increased computational capabilities brought on by technological advances has 
allowed to consider mathematical models that combine within- and between-host 
interactions as opposed to viewing the two systems in isolation (see e.g., Bhat-
tacharya et al. 2014; Numfor et al. 2014). Identifying and analysing both host- and 
pathogen-specific characteristics that influence the spread of an infection in a host-
population, is nowadays a topic of intense research. Traditionally, in this field much 
emphasis has been placed on factors such as force of infection, transmission proba-
bilities, contact neighbourhoods, etc. Of late, the different transmission mechanisms 
also receive more and more attention. E.g., Rohani et al. (2009), and Brooks-Pollock 
et  al. (2014) consider the impact of environmental transmission mechanisms on 
control efforts related to various microorganisms. Heinzmann et  al. (2011) utilise 
density based models to investigate environmental factors and evaluate intervention 
programs. Alexander et al. (2009) evaluate various treatment strategies for influenza 
infection—with R0 as threshold parameter - and the optimal timing of treatment 
campaigns.

In the basic definition of R0 given in Eq. (9) below, the integral is taken over 
the entire infectious period. See, e.g., Diekmann and Heesterbeek (2000) and 
Anderson and May (1995). Although the upper boundary in this integral is taken 
as ∞ , the effective length of integration is determined by the transmission rate 
q(t) in the integrand, which is defined in Eq. (4). This transmission rate vanishes 
as soon as the infection dies out. This may be caused by recovery but also by the 
death of the host. The first is automatically included via (4), but the latter must 
be introduced by setting the upper boundary at a finite value. We remark that 
in simulation studies the upper boundary in the integral must always be set at a 
finite duration, as done by, e.g., Lange and Ferguson (2009), since numerically 
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the integration cannot exceed to ∞ . However, as we show in this paper, the value 
used for the upper boundary may strongly determine the model predictions and 
can be decisive whether the milker-like or the killer-like strategy is optimal. The 
reason for this is not hard to understand: a milker-like strategy can only last for 
the specific chosen value of host longevity. In the literature some studies con-
sider host longevity. Examples are a study of the evolution of virulence under 
the trade-off between transmission probability and host longevity (Sigmund et al. 
2002), and a study of the effects of shortened host life span on the evolution of 
parasite life history and virulence (Nidelet et al. 2009).

The specific relationship between R0, as a measure of pathogen fitness in a 
host population, and host longevity has not yet received attention. Therefore, we 
explicitly study the effect of a finite host longevity on R0. To investigate this rela-
tionship we take an existing model from the literature with no extra mortality due 
to the infection. In our simulations we use dimensionless versions of these mod-
els and by applying numerical procedures that are computationally very efficient, 
we are able to perform extensive parameter scans. Taking the (remaining) host 
longevity variable enables us to draw new conclusions about how host longevity 
shapes the maximum pathogen fitness strategies.

2 � Methods

We first discuss the modelling concepts underlying the present study. The model 
used is taken from Lange and Ferguson (2009). The numerical implementation is 
optimized to allow for many and long computer simulations. We started with rep-
licating their results (see Fig. A1 in Appendix A) to check for computational cor-
rectness. Although the modelling principles used in our analysis are thus not new, 
we prefer to present them in this paper in a self-contained way to avoid unneces-
sary reference to the literature.

In the next section we describe the modelling of the dynamical evolution of 
an infection in a host. This within-host model represents how in an infected host 
the number of pathogens evolves in time. Because we allow mutations, the model 
may deal with a variable number of pathogen strains, each with its own dynamics, 
depending on their interactions with the immune system of the host and the avail-
ability of resources.

Next, we describe the model that represents how an infection spreads in a pop-
ulation. This between-host model incorporates the effect of one infected host in a 
direct and an indirect way: it may infect its direct neighbours directly, and it may 
infect its neighbours via other neighbours that were already infected by this host 
at an earlier time. To that end, we include in an averaged way the structure of the 
relational network of the population.

Eventually we come to the essence of the paper by coupling the two models 
and considering the R0 of the coupled system. R0 depends on host longevity and it 
is this dependency that gives rise to remarkable insights, as shown in the Sect. 3.
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2.1 � Within‑Host Model

To describe how a pathogen replicates within a host and how the immune system of 
the host reacts in response to the presence of the pathogen, we use a model with a 
variable number of strains. The idea is as follows:

We start the invasion in the host with one specific strain. This strain replicates 
and builds up a viral load, and at the same time evokes an immune response. When 
replicating a mutation may take place with probability � . Most mutations will not 
lead to a new strain type. The fraction of mutations that is ’successful’ and generates 
a new strain type is equal to parameter � . In the simulations this process of repli-
cation and mutation is modelled using a Poisson process. After the first successful 
mutation a second strain type comes into existence, with its own dynamics. These 
two strains may mutate, but may also die and disappear from the system. The conse-
quence is that the number of strains n is stochastically varying. The immune system 
of the host may adapt to recognize new strains. The specific mortality rate of strain i 
due to the immune system of the host is weighted by the difference between between 
the new strain and the strains that are already present. As a quantative measure for 
this difference we use the so-called Hamming distance, which is explained below.

The state variables in the within-host model are: Vi , the number of pathogens of 
strain i, also referred to as pathogen load i ; Xi , the adaptive immunity of the host 
specific to strain i; and C, the resource level, i.e., the number of target cells available 
for any strain to multiply.

The dynamics of pathogen load Vi is governed by the following differential 
equation:

where � is the probability that a mutation occurs, � the replication rate of the patho-
gen, �1 a conversion factor: it is the number of pathogens that may stem from one 
unit of resource, and � the total viral load in the host, � ≡ ∑n

i=1
Vi . Equation (1) links 

pathogen replication to two inhibiting mechanisms: host immunity and resource lim-
itation. Pathogen growth is restricted via a Monod function that shows saturation 
behaviour if 𝜈 ≫ 𝜈1C . This term links the pathogen load Vi to the resource level C. 
The last two terms in (1) represent the clearance of pathogen: � Vi gives the natural 
clearance of pathogens from a host, independent of any immune response, while 
the term with � represents the decrease in pathogen load due to immunity acquired 
by the host. Here, the latter term includes cross immunity via 

∑n

k=1
y(�ik)Xk, which 

models via the Hamming distance �ik (see below) how similar strain i is to any other 
strain k that is currently in circulation.

In the computer simulations a strain is represented by a string of 5 elements (rep-
resenting loci) and each element may attain 3 different values (representing alleles). 
Altogether this allows for 243 possible, different strains.

(1)

dVi

dt
≡ [pathogen growth] − [natural death] − [death due to acquired host immunity]

= (1 − �) �Vi

�1C

� + �1C
− � Vi − � Vi

n
∑

k=1

y(�ik)Xk.
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We use the Hamming distance �ik as a metric that relates similarities between 
antigenic variants, where �ik is defined as the fraction of loci at which strains i and 
k differ. The relative Hamming metric is widely used in the literature to measure 
antigenic variation. For other possible choices, see e.g. Cai et  al. (2012), Plotkin 
et al. (2002), and Neher et al. (2016). The degree of cross-immunity is incorporated 
through the function y(�ik), where y(�ik) = 1 − (1 − �)�ik if �ik ≤ 1∕(1 − �) , and 
y(�ik) = 0 otherwise. Parameter � thus regulates the degree of cross-immunity with 
� = 0 in case of total cross immunity. Increasing � values correspond with less and 
less cross immunity.

The dynamics of the adaptive immune response Xi is governed by

In (2), the first term describes the decline of immunity with x0 the minimum immune 
level. Note that in general Xi > x0 . The acquisition of immunity depends on the load 
of strain i via a Monod function.

The dynamics of the resource level C is modelled as:

In any host, resource is being replenished at a rate � , with C0 a maximum value for 
C, chosen to represent a realistic number of target cells. Note that in general C < C0.

As in an infected host each pathogen strain i grows at a rate proportional to 
Vi (�1C∕(� + �1C) ,) the resource is depleted proportionally to the sum of all these 
growth terms.

Because we allow the generation of new strains, the number of pathogen strains 
is variable, and so is the number of differential equations in our model. If at some 
moment in time we have n different strains, the model consists at that moment of 
2n + 1 differential equations. We solve differential equations (1), (2), and (3) to 
obtain the time evolution of Vi(t),Xi(t), i = 1,… , n , and C(t) until a new success-
ful mutation takes place. At that moment we replace n by n + 1 and extend the set 
of model equations with two new equations. It may also happen that we have to 
decrease n with 1, namely when one of the pathogen strains goes extinct. This hap-
pens when Vi ≤ �0.

The model in Eqs. (1–3) yields state variables that vary greatly in magnitude, with 
total pathogen load reaching levels of � ≈ 1011 , while adaptive immunity is saturated at 
� = 105 . In contrast with these high values, most parameter values (see Table 1) are of 
order 1. To allow us to investigate the relationships between parameters and the influ-
ence of specific parameters on the dynamics of the system, it is therefore essential to 

(2)

dXi

dt
≡ [decline of immunity] + [acquisition of immunity]

= � (x0 − Xi) + � Xi

Vi

� + Vi

.

(3)

dC

dt
≡ [limited exponential growth] − [use by present pathogens]

= � (C0 − C) −
�

�1

n
∑

i=1

Vi

�1C

� + �1C
.
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rewrite the model in dimensionless form. For the non-dimensional version we refer to 
Appendix B. The descriptions of the parameters and state variables of the within-host 
model are listed in Table 1.

2.2 � Between‑Host Model

As for the transmission of the pathogen between hosts, our model is based on the use 
of a network structure as investigated in Keeling (1999). Let us focus on one initially 
infected host connected to N − 1 susceptible, but still healthy neighbours. As an exam-
ple, a sub-network with N = 7 nodes is sketched in Fig. 1.

In this part of the network the number S of susceptible nodes is thus initially 
S(0) = N − 1 . S(t) will decrease in time, because the infected host may transfer its 
infection to its neighbours. The transmission rate q will depend on the pathogen load in 
the infected host, and thus on its age. It is modelled as

So, q(t) depends on the between-host parameter � (transmission rate) and the 
dynamic within-host total pathogen load, �(t) . Parameter �T is the infectiousness 

(4)q(t) = �

[

1 − exp

(

−
�(t)

�T

)]

.

Table 1   Parameters and variables of the within host model

Description Default value

Parameter
� Replication rate of pathogen � ∈ [3, 8]

� fraction of mutations that are ‘successful’ � ∈
[

10
−9
, 10

−3
]

� Probability that a replication leads to a mutation 0.1
�
0

Initial and minimum pathogen load 10
�
1

Conversion factor from resource to pathogens 10
3

C
0

Initial/maximum resource level 10
8

� Clearance rate of pathogen 0.25/day
� Immune-related clearance rate 10

−3/day
� Critical load of saturated immune response 10

5

� Decline of immunity 0.3/day
x
0

Initial/minimum immunity 1
� Growth of immunity 0.8/day
� Replenishment of resources 1/day
� Degree of cross-immunity 0.6
Variable
Vi(t) Number of pathogens of strain i
Xi(t) Adaptive immunity against strain i
C(t) Number of target cells available for a strain to multiply
�(t) Total pathogen load ∑n

i=1
Vi(t)
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threshold. If 𝜈 ≫ 𝜈T , q will no longer depend on � and converge to � . The transmis-
sion rate � is defined as � ≡ � �∕N with � the contact rate and � the transmission 
probability per contact (� ∈ (0, 1)).

It remains to model how S(t) evolves in time. This is done in an averaging way. 
In our sub-network the total number N of nodes is conserved and the number I of 
infected nodes and the number S of susceptible nodes sum up to the total number of 
nodes, I + S = N . At the initial time t = 0 , we can simply write

because only direct infections may occur. However, at times t > 0 the infestation of 
a susceptible could not only be direct, but also secondary, i.e., due to other neigh-
bours that in the meantime got infected by the originally infected host. When these 
neighbours were infested 𝜏 < t times ago, this happened with a chance proportional 
to the transmission rate q(t − �) at that moment. This leads to the extended integro-
differential equation

Here, � defines the cliquishness of the network, i.e. the proportion of neighbours 
of a node who are neighbours of each other. The integral represents the secondary 

(5)
dI

dt
(t) = q(t) S(t),

(6)
dI

dt
(t) = S(t)

[

q(t) + � ∫
t

0

dI

dt
(�) q(t − �) d�

]

.

Fig. 1   Left: initial network of a susceptible population with one infected host (node 1). This infected 
host is surrounded by 6 direct neighbours (within the dashed circle), so for the local subnetwork we have 
N = 7 . Right: the same part of the network after some time. Some of the neighbours of node 1 are now 
also infected. The infection of node 4 could be caused by its link with node 1 (direct infection), but could 
also stem from its contact with node 3 (secondary infection). Note that some of the infected neighbours 
in the local neighbourhood of node 1 may be in the meantime replaced by new susceptible ones. In the 
present case this happened to node 2, which has exchanged position with node 8
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infections caused by new infectives up to time t and takes into account the changing 
transmission rates resulting from time dependent pathogen loads.

Using that dI∕dt = −dS∕dt , we can rewrite this in the form

with the convolution of two functions f(t) and g(t) defined in the usual way as 
(f ∗ g)(t) ≡ ∫ t

0
f (�) g(t − �) d�.

As a last modelling step we assume that the infected nodes in our sub network are 
replaced at a rate � by susceptible nodes from the environment in a constantly ongoing 
exchange process. That process is in a quasi- steady state, so that N remains conserved. 
In (7) this effect is incorporated by replacing dS / dt with dS∕dt − � I . Eventually we 
then arrive at

The parameters of the between-host model, together with descriptions, are listed in 
Table 2.

2.3 � Basic Reproduction Ratio R0

The basic reproduction ratio, R0, is a fundamental concept in epidemiology. It is defined 
as the total number of secondary infections brought on by a single primary infection, in 
a virgin, susceptible population. The value of R0 indicates whether a single infection 
may lead to an epidemic or will probably die out soon. According to Diekmann and 
Heesterbeek (2000), R0 is given by the integral

(7)
dS

dt
(t) = −S(t)

[

q(t) − �

(

q ∗
dS

dt

)]

,

(8)
dS

dt
= � (N − S) − S

[

q + � q ∗
(

�(N − S) −
dS

dt

)]

.

(9)R0 = ∫
∞

0

S(t) q(t) dt.

Table 2   Parameters and 
variables of the between host 
model

Description Default value

Parameter
� Contact rate between hosts � ∈ [0, 10]

� Replacement rate of hosts 0.001
� Probability of transmission 0.2
� Transmission rate � = ��∕N

� Cliquishness 0.75
�T Infectiousness threshold 10

8

� Expected maximum pathogen load 10
11

N Neighbourhood size 20
Variable
S Number of susceptible hosts
q(t) Transmission rate between hosts q = �

(

1 − e−�(t)∕�T
)
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Here, q(t), defined in (4), is the transmission rate from the infected host to the sur-
rounding susceptibles. This rate depends on the pathogen load in the infected host, 
which is obtained by evaluating the within-host model. S(t) is the number of suscep-
tibles in the neighbourhood of the primary infective. It is obtained as a solution of 
the between-host model in (7) or (8).

The upper boundary in the integral in (9) is ∞ . In computer simulations one 
can only work with a finite upper boundary. In Lange and Ferguson (2009) the 
authors interpret the upper bound as the maximum duration of infection and they 
take as a cut off point a fixed value of 2 years. This value is in many practical 
cases sufficiently long. In general however, this may introduce inaccurate results, 
since in practice the maximum duration of an infection is limited by the host’s 
(remaining) longevity. That is why we take in this paper a finite upper boundary 
Dmax and use the definition

It is clear that S(t) and q(t), and thus also R0, depend in quite a complex way on the 
model parameters summarized in Tables 1 and 2. If our only goal would be to show 
how R0 depends on Dmax , it would suffice to fix all parameter values, and to vary 
Dmax . However, our aim is more intricate: we want to look at strategies that patho-
gens may develop under different circumstances. For this we assume that the patho-
gen attempts to optimize R0 in the course of time. For this purpose, the pathogen has 
two parameters at its disposal, namely the replication rate � , and the fraction of suc-
cessful mutations � . To find the optimal strategy that a pathogen will develop in an 
evolutionary process, we optimize R0 with respect to these two within-host param-
eters. As for the between-host dynamics, the dominant parameter is the contact rate 
� . This parameter is not under control of the pathogen. Consequently, we consider 
R0 = R0(�, �;�,Dmax) and we are in particular interested in the dependence of R0 on 
the contact rate � and host longevity Dmax . That’s why we optimize over � and �:

R
opt

0
 measures the ‘success’ of a pathogen when adjusting its replication and muta-

tion parameters � and �.
The optimization of Eq. (11) is done by calculating R0(�, �;�,Dmax) on a rec-

tangular grid in the ( �, � ) plane and the optimum is simply found by comparison 
of all grid points.

Solving the within-host system of the system of differential equations is done 
numerically by using a fourth order Runge Kutta method. Subsequently, Eq. 
(11) is maximized using the well-known optimisation method of Levenberg and 
Marquardt.

(10)R0 = ∫
Dmax

0

S(t) q(t) dt.

(11)R
opt

0
(�,Dmax) = max

(�,�)
R0(�, �;�,Dmax).
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3 � Results

We combined and implemented the within- and between-host models in Eqs. (1–8) 
and, as a check, first recalculated the results as reported in Lange and Ferguson 
(2009). We found the same results; they are given in Appendix A and B. Next, we 
focussed at finding how the evolutionary optimal Ropt

0
 depends on contact rate � 

between hosts and host longevity Dmax.
To ensure realistic within-host model dynamics that allows for an infec-

tion to become endemic in a host, it suffices to use the ranges � ∈ [3, 8] and 
� ∈ [10−9, 10−3] . For the contact rate we take as a realistic range � ∈ [0, 10] . The 
maximum of R0 over ( � , � ) for fixed values of � and Dmax is found by calculating R0 
on a grid in the ( � , �)-plane. For this we need to evaluate the within- and between-
host models for many ( � , �)-pairs. This time consuming procedure yields a so-called 
fitness landscape. An example is given in Fig. A1 of Appendix A, where we not only 
present R0, but also the cumulative pathogen load and the duration of the infection, 
as functions of ( � , �).

In Fig. 2 we show Ropt

0
 as a function of � , for the values Dmax = 500 , 1000, 1200, 

1500, and 2000 days. The results in Fig. 2 exhibit remarkable behaviour. If Dmax is 
relatively short ( Dmax = 500 ) days, the dependence of Ropt

0
 on � is nearly linear over 

the full interval that we tested. This implies that, when the contact rate increases, 
the success of the pathogen in spreading itself in a host population goes up in a way 
proportional to the number of contacts, as is to be expected.

However, for high values of Dmax ( Dmax ∈ (1200−2000) days), the linear depend-
ence on � is shown on a much smaller interval. Ropt

0
 tends to increase fast to a high 

value of about 32 as soon as � exceeds 1, and increases from there on only very 
slowly as a function of � . In the limiting case of Dmax → ∞ , Ropt

0
 immediately attains 

the value of 32 as soon as 𝛼 > 0 , and shows a linear dependence on � for all � , but 
with a very small slope.

When observing the results in Fig. 2, the question arises for which combination 
of pathogen replication rate � and mutation rate � , R0 attains its maximum, and how 
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this combination changes when host longevity Dmax and/or between hosts contact 
rate � vary. This question is answered via the information in Fig. 3.

When Dmax ≤ 1000 days ( ≈ 3 years), we observe in Fig. 3 two completely distinct 
R
opt

0
 regions: first, a region centred at about � = 3 and � = 10−3 (low replication and 

high diversity, the ‘milker-like’ region, and second, a region centred at about � = 8 
and � = 10−6 (high replication and intermediate diversity, the ‘killer-like’ region). 
Low contact rates � are associated with the killer-like region and high rates with the 
milker-like region. This is to be expected: if contacts are rare, the pathogen should 
optimize the transmission rate of the disease by increasing the viral load during con-
tact, because this is its only option to survive. The viral load is high in the killer-
like regime and low(er) in the milker-like regime. A striking observation is that the 
jump between the regions occurs at a critical value of � , which we denote by �c . 
On its turn, this critical value depends on Dmax . In Fig. 4 we show how �c behaves 
as a function of Dmax . The curve in Fig. 4 divides this plane into two regions with 
completely distinct pathogen behaviour. Above the curve the ’milker-like’ behaviour 
(replication rate � low and mutation rate � high) is optimal for the pathogen and 
below the curve ’killer-like’ behaviour (replication rate � high and mutation rate � 
intermediate).

Another remarkable detail observed in Fig. 4 is that �c vanishes if Dmax is big-
ger than some threshold, which occurs for our parameter values (taken from Lange 
and Ferguson 2009) at Dmax = 1425 days. Above that threshold the killer-like region 
disappears and all optimum R0 values are attained in the milker-like region. This 
implies that for Dmax larger than this threshold the system always ultimately con-
verges to approximately the same ’optimal’ values for � and � , namely � ≈ 3 and 
� ≈ 10−3 . It should be noticed that this effect will only be seen if the epidemics gets 
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enough time to adjust its parameters, since that is the philosophy underlying the 
introduction of Ropt

0
 in (11). In this limiting case, Ropt

0
 still increases linearly with � , 

but quite slowly. It should be noted that the milker-like strategy is the one that even-
tually will show up if one waits long enough. In reality some diseases are still in the 
region of transient behaviour and thus on their way to a milker-like regime, but now 
still displaying killer-like behaviour.

4 � Discussion

A lot of studies relate pathogen success or failure to R0 by investigating how changes 
in the parameters governing model dynamics lead to changes in R0. The commonly 
considered factors, like force of infection, transmission probabilities and contact 
neighbourhoods are important. This certainly leads to more insight pertaining to 
the success or failure of infectious disease progression. Here, we have shown that 
the factor “remaining longevity of the host”, also influences the basic reproduction 
number of an epidemic and thus can essentially determine whether an outbreak is to 
be expected or not. We used a specific model from the literature to investigate the 
relation between R0 and remaining host longevity Dmax . The within-host model used 
allows for variation in the diversity of the infectious agent, as well as for different 
rates of replication. Coupling it with the population-level model, we are able to show 
how the optimal strategy for the pathogen depends on the parameters. It should be 
noted that these optimal strategies will develop in the end and that during the tran-
sient phase suboptimal strategies could be observed. We found that optimal strate-
gies depend heavily on Dmax , as is clearly shown in Fig.  2. We conclude that the 
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value of Dmax should be chosen in correspondence with the specific host-pathogen 
system under consideration. The value of Dmax may vary from very short, e.g., in the 
cases of fly or mosquito, to very long, e.g., for humans. One of the consequences of 
this insight is that the results given in Lange and Ferguson (2009), from which we 
adopted the modelling ideas, are valid for systems in which the hosts live at most 
2 years after the start of the infection, because they fixed Dmax at that period, assum-
ing that it would not change their conclusions. The present work shows that varying 
(remaining) host longevity can change conclusions drastically: in our long run simu-
lations to determine the optimal R0 (Eq. 11), one of the three different regimes that 
Lange and Ferguson (2009) distinguished never pops up as the optimum strategy.

When expected host longevity is relatively short, we find that optimum 
between-host R0 only emerges in two clearly distinct regions in the plane spanned 
by the two relevant pathogen characteristics, namely � , ther probability of a muta-
tion to be successful, and � , the replication rate. These two regions could be asso-
ciated with the well-known ‘milker-like’ (low replication rate � ) and ‘killer-like’ 
(high � ) strategies. It should be noted that longevity may vary over sub-popu-
lations. For example, for humans longevity really hinges on the food availabil-
ity in the environment and it ranges in WHO’s (2016) report between 50.1 and 
83.7 years. This might also be the case for other species.

For given host longevity Dmax , the choice between the milker-like and killer-
like strategies depends on the contact rate � . Figures  3 and  4 show that there 
exists a critical value �c where the transition from killer-like to milker-like as 
the best strategy occurs. Figure 4 also shows that if Dmax exceeds some threshold 
value, the milker-like strategy is always optimal, independent of the contact rate 
� . For the parameter setting used throughout this paper this threshold is approxi-
mately 4  years. This value itself is not the most important discovery, but the 
achieved insight is that such a threshold exists and can be quite easily calculated. 
If we combine the information contained in Figs. 3 and 4, we not only conclude 
that for Dmax above this threshold the milker-like strategy is optimal, but also that 
R0 in this regime linearly increases with the contact rate � , although the slope of 
this increase is very small.

Our analysis suggests that in long-living hosts like humans most infectious dis-
eases will finally attain a milker-like strategy. That does not imply that all human 
diseases are already of the milker-like type, but diseases that are already for a long 
time among us tend to be of milker-like type. Counterexamples are the diseases, 
so-called zoonotic diseases, that jump from animals to the human population. Exam-
ples like bird influenza and Ebola show that diseases that come from organisms with 
a shorter longevity. For example, bird influenza (de Jong et al. 2009) and fruit bats 
(Ebola, WHO 2017) are highly virulent (killer-like type).

It should be noted that both an individual based model or a physiologically struc-
tured population model incorporating a contact network, the within-host dynamics 
of the pathogen, and the stochastic longevity of hosts, might be able to show the 
impact of host longevity on R0 in a more rigorous way. However, this kind of mod-
ellling is beyond the scope of the present analysis.

The presented results show that host longevity really matters when pathogen fit-
ness is investigated. When using R0 as a measure of fitness, Dmax should be taken 
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equal to the expected remaining host longevity. The optimum infection strategies 
can only be reliably predicted if one uses appropriate estimates for host longevity.

5 � Supporting Information

Appendix A This appendix gives some typical results obtained through numerical 
simulations. We show typical types of within-host behaviour, as well as the fitness 
landscapes that result from the combination of the two models.

Appendix B In this section of the supporting documentation, we show how the 
within- and between-host models, given in the Methods section, have been made 
dimensionless and how they have been solved numerically.
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