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A B S T R A C T   

Motor imagery (MI) can produce a specific brain pattern when the subject imagines performing a 
particular action without any actual body movements. According to related previous research, the 
improvement of the training of MI brainwaves can be adopted by feedback methods in which the 
analysis of brainwave characteristics is very important. The aim of this study was to improve the 
subject’s MI and the accuracy of classification. In order to ameliorate the accuracy of the MI of the 
left and right hand, the present study designed static and dynamic visual stimuli in experiments so 
as to evaluate which one can improve subjects’ imagination training. Additionally, the filter bank 
common spatial pattern (FBCSP) method was used to divide the frequency band range of the 
brainwaves into multiple segments, following which linear discriminant analysis (LDA) was 
adopted for classification. The results revealed that the averaged false positive rate (FPR) under 
FBCSP–LDA in the dynamic MI experiment was the lowest FPR (23.76%). As such, this study 
suggested that a combination of the dynamic MI experiment and the FBCSP–LDA method 
improved the overall prediction error rate and ameliorated the performance of the MI 
brain–computer interface.   

1. Introduction 

The brain–computer interface (BCI) creates a bridge of communication for humans. BCI can transfer human responses from the 
brain activity to commands that is used to control external equipment and games [1,2]. Many different types of indices from the brain 
activity can be adopted to develop a BCI system; the common indices are event-related potential (ERP), event-related desynchroni-
sation (ERD), event-related synchronisation (ERS), and steady-state visually evoked potential (SSVEP), which are derived from the 
features extracted from the brain activity [3, 4, 5]. 

Human movement imagination of limbs result in ERD and ERS from the brain activity [6,7]. When a user starts to imagine 
movements of his/her left and right hands, the mu frequency power (8–13 Hz) and the beta frequency power (13–30 Hz) reveal the 
ERD condition in the central areas of the brain. Movement imagination applications use these indices from the brain activity to produce 
control signals [8,9]. However, these indices from the brain activity differ from one individual to another and thus cannot provide a 
reliable control signal [10,11]. A previous study indicated that 20% of the subjects cannot imagine a movement and produce the 
related brain activity [10]. This phenomenon is called aphantasia [12]. 
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In order to help subjects to produce and regulate the related brain activity effectively while they imagine the movement, many 
recent studies have proposed feedback training methods to improve the performance of a motor imagery (MI)-based brain–computer 
interface (BCI) [13, 14, 15]. Feedback training methods provide users with the information about the brain activity and help them to 
use effective methods to regulate brain activity and control MI-based BCI accurately [16]. A comparison of the performance of MI 
between realistic and abstract feedback signals revealed that there is no difference in the training performance of the two different 
signals [16]. Some of the untrained subjects can even use the MI-based BCI system to quickly learn effective control methods. Kondo 
et al. suggested that static and dynamic visual stimuli on neurofeedback training affect the different performance of an MI-based BCI on 
ERD [17]. Bian et al. suggested that the four different MI tasks using the dynamic visual stimuli can induce stronger MI-EEG features 
and obtain higher classification accuracy than the static stimuli [18]. They hypothesized that the static stimuli of the hand would 
contradict sensorimotor subjects after the generation of motor commands and produce ERD phenomena [17,18]. 

Furthermore, common spatial pattern (CSP) is an efficient method to develop the MI-based BCI, because CSP has been used with 
extracting features in the MI because of its simplicity, high speed, and robustness [19,20]. However, the suitable frequency band is 
subject-specific for CSP and it is hard to determine [21,22]. Ang et al. proposed filter bank common spatial pattern (FBCSP) to fix the 
filter band selection problem. FBCSP adopted a set of CSP filters with several time/frequency filters to extract the log–variance features 
and then concatenated all the features to the classifying tasks by using machine learning. FBCSP can be useful in the case of EEG 
processes in different frequency bands [22]. 

Although feedback training methods have both inhibitory and facilitative effects on EEG control, the development of feedback 
training methods starts with the designed experiment without feedback when the EEG signals are recorded and then uses the last 
recording EEG data to construct a classifier that can only be used for the next MI-based BCI [23]. Thus, the performance of feedback 
training methods depends on the initial recording EEG data, and the EEG data may not be distinguished or classified precisely. If the 
subjects are unfamiliar and inattentive to the BCI system and cannot successfully perform the MI experiment, the feedback signals may 
frustrate them [14]. If the MI-based BCI system can provide subjects a suitable cue which instruct them how to imagery the hands 
movement, it can save training time and frustration. Therefore, the development of an effective experimental design and analysis tool 
is always a major challenge for MI-based BCI system. 

Previous studies have reported different ERD phenomena under different static and dynamic visual stimuli [17,18]. A particular 
property of ERD for the MI task is somatotopic; that is, the MI of a right-hand movement may induce ERD at the contralateral (left) 
sensorimotor cortex [18]. In addition, Pfurtscheller et al. added ERS as a neuronal condition to improve the classification performance 
in MI tasks [24]. However, Wolpaw et al. suggested that manipulating the ERD to reflect appropriate mental images is a difficult 
method to master [25]. Thus, the lack of an in-depth understanding of the physiological mechanisms governing ERD can leave the 
MI-based BCI system baffled. The problem of enhancing ERD patterns is another attractive area of research. Pichiorri et al. proposed 
MI-based BCI training to enhance cortical excitability and improve the ERD phenomenon at the end of four weeks. Some studies have 
attempted to design different experimental paradigms or visual stimuli of MI tasks. Nakayashiki et al. suggested that the kinematic 
factor in MI tasks can induce ERD significantly [26]. Because ERD can be induced during motor planning, execution, and observation, 
the experiment can design these factors into MI tasks to enhance ERD. Different ERD enhancements may be caused by different types of 
visual guidance and stimuli. Pfurtscheller et al. suggested that dynamic hand visual guidance with the moving hand is better than static 
hand visual guidance [27]. Many previous studies have designed different imagery tasks to induce the ERD and ERS in order to obtain 
higher classification accuracy [18,20]. Wang et al. proposed the CSP to analyze the spatial patterns of imagined hand and foot 
movements by means of combining linear discriminant analysis with a view to achieving ERD and readiness potential (RP). The 
classification accuracies with four optimal channels (C3, CPz, Cz and FCz) were 93.45% and 91.88% for two subjects. Bian et al. 
designed the four motor imagery tasks with different stimuli and adopted the CSP to extract spatial pattern features. Following this, 
support vector machines (SVM) were used to classify four kinds of motor imagery and the results showed that the classification ac-
curacy exceeded, or was equal to, 87.5% [18]. Furthermore, they proved that task complexity can enhance alpha ERD phenomena in 
cognitive tasks and that such complexity can be considered an option for guidance optimization. Some studies have obtained higher 
classification accuracy (>90%) for left- and right-hand movements imagery tasks [28,29]. 

However, most previous studies had to analyze multi-channel EEG or required relatively expensive equipment, which easily led to 
inconvenient recording preparation and complicated calculations. When it comes to designing a practical MI-based BCI, one option is 
to select fewer channels for application. Furthermore, the question of how to design MI stimuli and guidance to enhance the ERD 
schema remains truly unanswered [30,31]. The motivation of the current study lay mainly in evaluating whether the static and dy-
namic visual stimuli of right- and left-hand movement can induce ERD or ERS in the EEG and further evaluate which kinds of ERD or 
ERS produced by the different visual stimuli can achieve effective classification. We hypothesized that the dynamic visual stimuli of 
right- and left-hand movement can induce ERD or ERS. If the phenomenon of ERD or ERS was not obvious and would lead to failure of 
the classification, this paper proposed the FBCSP with linear discriminant analysis (LDA) method to improve the accuracy of classi-
fication for a BCI system. 

This study attempts to design the static and dynamic visual stimuli of right- and left-hand movement in experiments and to 
determine whether the different kinds of stimuli have influences on ERD or ERS. In the case of failure of right- and left-hand move-
ments classification using ERD or ERS, classification was assessed and modeled by CSP–LDA and FBCSP–LDA. 
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2. Methods 

2.1. Participants 

In all, seven participants (males; mean age: 24 ± 2 years) with normal or corrected-to-normal vision and dominant right hand and 
from Ming Chi University of Technology were selected for this experiment. All the participants were healthy and had no history of 
gastrointestinal, cardiovascular, neurological, and/or psychological disorders. The time of experiment was 2–4 pm. Before the 
experiment, we asked the participants whether they had any BCI experience or not. None of the subjects had any BCI experience. Then, 
the purpose of the experiment was explained. The participants understood the method of measuring the brainwave program and the 
motor imagery required by the overall experiment. The Institutional Review Board of Research Ethics Committee National Taiwan 
University approved the experimental protocol used in this study. Informed consent was obtained from all the participants. Finally, the 
function of the keyboard was explained because the recording of the brainwave data began as soon as they pressed the button to start 
the experiment. 

2.2. Motor imagery (MI) training experiment 

During the experimental session, the participants sat in a comfortable chair in front of a 27” computer monitor. Each trial began 
with a black background with a cross on the computer monitor for 5 s (a baseline period), followed by the black background for 
0.5–0.8 s and visual stimulation for 10 s. Final, the participant rested for 2 s. In order to compare that the performance of the dynamic 
MI training experiments with that of static MI training experiments, this study designed two types of MI training experiments (Fig. 1) 
for visual stimulation. The dynamic and static MI training experiments had the right- and left-hand MI stimulations. In the static MI 
training experiments, the stimulations of right and left hands were a picture which showed an illustration of a left- or right-hand 
crimping force device. The participants were asked to imagine the picture of their left or right hand crimping the force device. 
During the imagining process, each subject was asked to imagine that they crimped the force device with their left or right hand from 
the first-person perspective. The stimulations of the dynamic MI training experiments were in the video format. The simulated video 
showed that the right or left hand poked the ball and the ball rolled to the opposite hole. The subjects were asked to imagine poking the 
ball with their left or right hand and then causing the ball to roll in that direction until the ball was pushed into the hole. The complete 
experiment included 30 trials each of the left- and right-hand MI simulations in the static and dynamic MI training experiments, and 
the total number of trials was 120. The left- or right-hand MI simulations in the static and dynamic MI training experiments appeared in 
a random order, and the experimental sessions lasted an hour. 

2.3. EEG data acquisition 

Continuous EEG was recorded using a NeuroScan system (NuAmps Compumedics Ltd., VIC, Australia). The system contained 32 
active electrodes and headcaps with electrode positions according to the extended 10–20 system. EEG signals were sampled at 1 kHz 
and notch filtered at 60 Hz. The contact impedance between the scalp and the electrode was adjusted to be less than 5 kΩ. 

2.4. EEG data analysis 

A previous study suggested that the phenomenon of brain imagining ERD and ERS appeared in the motor area and particularly 

Fig. 1. Designed static and dynamic MI training experiments conducted in this study.  
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occurred in mu (8–13 Hz) and beta (13–30 Hz) waves when the subject was participating in the hand MI experiment [32,33]. An 
analysis of this study focused on the location of the motor cortex and the related frequency range of the brain waves. Fig. 2 shows the 
flowchart of the EEG analysis in this study; it is described in the following subsections. 

2.4.1. EEG pre-processing 
EEG data were pre-processed in EEGLAB (http://www.sccn.ucsd.edu/eeglab). In order to remove noise including the direct current 

shifts and the power-line noise in time-series EEG and observe the ERD/ERS condition, that is the mu frequency power (8–13 Hz) and 
beta frequency power (13–30 Hz) in the central areas of the brain [6,7], a band-pass finite impulse response (FIR) filter between 8 and 
30 Hz was applied. Subsequently, data were down-sampled to 250 Hz. Non-physiological artefacts and bad channels in the continuous 
EEG were rejected by visual inspection to obtain a clean independent component analysis. 

On the pruned data, ICA was applied and the EEGLAB plugin EEG Independent Component Labelling was adopted to assist in 
identifying and rejecting the independent components reflecting stereotypical artefacts such as eye blinks, eye movements, EKG, 
muscle activity, and line noise [34]. 

As the experiment was an MI experiment and analyzed the phenomenon of brain imagining ERD and ERS, only the electrodes in the 
motor area of the cerebral cortex, namely FC3, FCz, FC4, C3, Cz, C4, CP3, CPz, and CP4, were used for further analysis. Single-trial data 
epochs were extracted from the artefact-corrected time-series EEG data within a time window extending from the 3-s pre-visual 
stimulus onset to the 10-s post-visual stimulus onset. 

2.4.2. ERD and ERS during MI 
When humans’ senses, cognitive systems, and motor behaviors are in the presence of some external stimulus, the related areas of 

the cerebral cortex not only produce the potential fluctuations but also automatically change the portion of the EEG associated with the 
event. This phenomenon is called event-related potential (ERP). At the same time, ERD or ERS occurs [32,35]. 

The phenomenon of ERD and ERS can be obtained in the EEG data after the following processing [33]:  

1. Subtract the mean value of its from each extracted epoch of the EEG.  
2. Calculate the energy by taking the square of the amplitude of extracted epoch of the EEG signal.  
3. Smoothen the energy of the extracted epoch by using the moving average method (MATLAB Curve Fitting Toolbox, function 

“smooth”).  
4. Quantify the percentage of energy drop (or rise) to obtain the ERD (or ERS, Equation (1)): 

Fig. 2. Flowchart of EEG analysis.  
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ERD=
A − R

R
× 100(%) (1)  

where A denotes the sum energy of the active cycle which sums the energy with a 1-s window overlapped by 0.25 s and then subtracts 
the sum energy of the reference cycle R. The reference cycle was obtained at the interval of the 3-s pre-visual stimulus onset. 

Although the duration of the cortical activity was short, the amplitude of the potential decreased and increased obviously, as shown 
in Fig. 3. A standard measure of ERD determined the difference in the signal band power between the baseline before and after the 
event. The ERD region corresponded to a negative value, i.e. a decrease in power, while the ERS region represented an increase in the 
signal power [36]. 

There are certain frequency bands of ERP on both sides of the cerebral hemisphere. When people imagine or perform both right- 
and left-hand movements, the power of brain waves will be enhanced and weakened. When people imagine the movement of the left 
hand, not only will the ERD phenomenon occur in the right hemisphere of the brain, but the ERS phenomenon will also occur in the left 
hemisphere of the brain. Conversely, when people imagine the movement of the right hand, ERD occurs in the left hemisphere of the 
brain, while ERS occurs in the right hemisphere of the brain [28]. Because of the subjective motor imagination of the brain, the 
characteristic frequency bands and cerebral cortex correspond to different passive ERD and ERS phenomena. For example, the ERD in 
the imagination of hand movements basically appears in the 8–12 Hz and 24–30 Hz frequency bands [28]. Therefore, the ERD and ERS 
phenomena of brain wave signals can be used to evaluate the standard of left- and right-hand motor imagination. 

2.4.3. Feature extraction using CSP and FBCSP 
CSP is a widely used feature extraction algorithm that uses spatial filters to distinguish two classes for MI-based BCIs [19,20]. The 

theory of CSP is to adopt a linear transformation to project the multi-channel EEG onto a low-dimensional spatial subspace with a 
projection matrix. This type of transformation can maximize the variance of two-class signal matrices. That is, CSP diagonalizes the 
covariance matrices of two classes. The amin of CSP is used to determine the matrix W in order to obtain the spatially filtered signal Zj of 
a signal trial EEG Ej as follows (Equation (2)): 

Zj =WEj (2)  

where Ej denotes the observed single-trial EEG signal from the pass band (8–30 Hz) of the jth trial. W ∈ Rs×c indicates the CSP pro-
jection matrix. The rows of W represent the stationary spatial filters, and the columns of W− 1 denote the common spatial patterns. The 
spatially filtered signals Zj ∈ Rs×t can maximize the differences in the variance of the two classes of EEG and can be used as the inputs to 
a classifier. c indicates the number of channels. t represents the number of time samples, and j = 1…n, where n refers to the number of 
trials of training sets. Furthermore, s denotes the number of CSP projections, where s = 2× e× 1(frequency bands)× 2(clasess). In order 
to select the CSP features for the training model, e = 2 eigenvectors from the top and the bottom of the eigenvalue spectrum were 
chosen as the features [22]. 

However, the performance of CSP was dependent on its operational frequency band. For the CSP, Dornhege et al. suggested setting 
a broad frequency range or manually selecting a subject specific frequency range [21,22]. Recently, an alternative approach to FBCSP 
was proposed to solve the problem of manually selecting a specific frequency band for the CSP algorithm [37]. FBCSP selects the 
optimal filter band to extract EEG features by estimating the mutual information among the CSP features in several fixed filter bands. 
FBCSP has four processing steps that include signal processing and machine learning.  

A. Different band-pass filters that decomposed EEG into multiple frequency bands using the Chebyshev Type II filter are used in this 
step. In this study, a total of eight band-pass filters were designed, namely 8–12 Hz, 14–18 Hz, 16–20 Hz, 18–22 Hz, 20–24 Hz, 

Fig. 3. Phenomenon of ERD and ERS [36].  
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22–26 Hz, 24–28 Hz, and 26–30 Hz, which denote the covering ranges of the mu and beta rhythms to produce the eight filtered 
signals.  

B. The CSP algorithm used the eight filtered signals and generated the spatially filtered signals individually.  
C. For 8 frequency bands of the CSP algorithm, the feature was selected according to the eigenvectors from the top and the bottom of 

the eigenvalue spectrum. Here, s = 2× e× 8(frequency bands)× 2(clasess).  
D. Finally, LDA was adopted to classify these features into two classes on the basis of the left versus right hand MI tasks. 

Although the characteristics of brain waves could be identified from the abovementioned phenomena of ERD and ERS, and the 
methods of CSP and FBCSP had their own advantages and disadvantages, as listed in Table 1. 

A comparison of all these advantages and disadvantages revealed that FBCSP was the most effective improvement method of the 
three. This study attempted to determine the discriminatively suitable ERD/ERS features from multiple frequency bands of mu and 
beta and the effective imagery time window by using the comment feature selection algorithms, namely CSP and FBCSP, designed in 
BCILAB [38] (MATLAB toolbox and EEGLAB plugin, https://github.com/sccn/BCILAB). The interval of the extracted epoch was from 
the 3-s pre-visual stimulus onset to the 10-s post-visual stimulus onset. Because the motor imagination of each subject was not 
consistent, this study divided each epoch into five different segments, namely 2− 9 s, 3− 9 s, 4− 9 s, 5− 9 s, and 6− 9 s, as the post-visual 
stimulus onset to determine the subject’s best MI segment. Then, the five different segments imported CSP and FBCSP, respectively, 
through BCILAB. 

2.4.4. Performance evaluation 
This study adopted LDA [39] to classify the EEG data into two classes on the basis of the CSP and FBCSP features from left versus 

right hand MI tasks. The study adopted the 10-fold cross-validation method to estimate the optimal parameters in the model and to 
avoid overfitting problems in the classifiers for the training data [40]. For each subject’s data, this study divided all the MI trials into k 
= 10 parts of equal size; nine of them formed the training set to evaluate the classification performance, and the remaining part for the 
testing set for determining the prediction accuracy. This study proposed two combination methods (CSP–LDA and FBCSP–LDA) and 
applied these methods to five different segments (2− 9 s, 3− 9 s, 4− 9 s, 5− 9 s, and 6− 9 s). This study adopted the false positive rate 
(FPR, Equation (3)) to measure the performance of the classification models. 

FPR= 1 − Spcificity =
TN

TN + FP
(3)  

where FP denotes the number of false positives and TN indicates the number of true negatives. 
Because the 10-fold cross-validation method was repeated for 10 times, the performance of the proposed method was estimated by 

calculating the average of the 10 performance results of the classification, obtained for 10 testing sets. 
In addition, this study adopted a particular element – namely accuracy (Equation (4)) – to compare the performance of the pro-

posed method with other previous studies: 

Accuracy=
TP + TN

TN + TP + FP + FN
(4)  

where TP denotes the number of true positives and TN indicates the number of true negatives. 

3. Results 

3.1. ERD/ERS during imagination of right- and left-hand movements 

Fig. 4 shows the ERD/ERS around the channels of C3 and C4 from two subjects during the imagination of right- and left-hand 
movements in the static and dynamic MI experiments. A comparison of the difference between C3 and C4 of the two subjects 
revealed that Subject A exhibited an obvious difference between C3 and C4. However, the results of this study were not completely 
consistent with the theory [28,41] and suggested that the brain wave measured by the C4 electrode was lower than that by C3 when 
imagining the movement of the left hand. Conversely, the brain wave measured by the C3 electrode was lower than that by C4 when 
imagining the movement of the right hand. Moreover, only subject A during the imagination of right-hand movements in the static MI 
experiments (Fig. 4 (a) and (b)) and during the imagination of left-hand movements in the dynamic MI experiments (Fig. 4 (c) and (d)) 
had obvious ERD/ERS. 

Table 1 
Advantages and disadvantages of brainwave feature methods.  

Method Advantages Disadvantages 

ERD/ 
ERS 

Makes it easy to observe the rise and fall of EEG power. Different results for different subjects make the phenomenon 
difficult to determine. 

CSP Makes the brainwave characteristic phenomenon obvious. Only a single frequency band can be analyzed. 
FBCSP Divides brainwave data into multiple frequency segments and reduces the 

computational complexity. 
Requires a large structure and long operation time.  
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This study adopted the Wilcoxon signed rank [42] to test the difference in ERD/ERS among seven subjects (blue point in Fig. 5 (p <
0.05)). Fig. 5 also shows the mean and standard deviation (std) of ERD/ERS across seven subjects during the imagination of right- and 
left-hand movements in the static and dynamic MI experiments. The results showed that there were no significant differences between 
C3 and C4 before the 0-s mark, which was the baseline section. Thus, the results indicated that the brain activations in the baseline 
section were all under the same baseline. However, ERD/ERS during the imagination of right-hand movements in the static MI 

Fig. 4. ERD/ERS from two subjects during imagination of right- and left-hand movements in the static and dynamic MI experiments. ERD/ERS 
around the channels of C3 and C4 from two subjects during the imagination of (a) left- and (b) right-hand movements in the static MI experiments. 
ERD/ERS around channels of C3 and C4 from two subjects during the imagination of (c) left- and (d) right-hand movements in the dynamic MI 
experiments. 
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experiments had no significant differences between C3 and C4 (Fig. 5(b)). ERD/ERS during the imagination of left-hand movements in 
the static and dynamic MI experiments exhibited non-continuous significant differences between C3 and C4 (Fig. 5(a) and (c)). Fig. 5 
(d) shows the continuous significant differences between C3 and C4, but this phenomenon was abnormal; it has also been reported in 
[43]. Choi et al. suggested that distinctive classification did not exist in each frequency for ERD in the alpha band or ERS in the beta 
band during the MI experiment, indicating that there were no significant differences in ERD/ERS between C3 and C4 [44]. Even when 
the experimental design was changed to dynamic scene cues in this study, no effective identification feature was obtained from the 
ERD/ERS phenomenon. 

According to the discussion of previous studies [45–47], there is considerable inter- and intra-subject variability in ERD/ERS during 
MI tasks. The relationship between the variability of ERD and ERS during MI tasks and the performances of the MI-based BCI system is 

Fig. 5. Mean and standard deviation (std) of ERD/ERS across seven subjects during imagination of (a) left- and (b) right-hand movements in the 
static MI experiments. Mean and standard deviation (std) of ERD/ERS across seven subjects during imagination of (c) left- and (d) right-hand 
movements in the dynamic MI experiments. The blue point indicates significant differences between C3 and C4 (p < 0.05). 

Table 2 
FPR of different segments between CSP–LDA and FBCSP–LDA in a static MI experiment. Boldface indicates the best imaginary time period for each 
subject.   

Different segments Subject 
2–9 s 3− 9 s 4− 9 s 5− 9 s 6− 9 s 

A CSP–LDA 20.33% 23.67% 32% 28.67% 30.33% 
FBCSP–LDA 17% 25.33% 28.33% 30% 27% 

B CSP–LDA 58.33% 45% 66.67% 56.67% 48.33% 
FBCSP–LDA 53.33% 63.33% 71.67% 71.67% 68.33% 

C CSP–LDA 45% 45% 43.33% 41.67% 50% 
FBCSP–LDA 60% 56.67% 53.33% 61.67% 61.67% 

D CSP–LDA 40% 45% 52% 44% 53.33% 
FBCSP–LDA 54.67% 47.67% 52.67% 49% 60.67% 

E CSP–LDA 41.67% 45% 45% 50% 56.67% 
FBCSP–LDA 41.67% 36.67% 46.67% 40% 41.67% 

F CSP–LDA 22.67% 21.33% 26.67% 40% 40.33% 
FBCSP–LDA 21.67% 25.67% 36.33% 42.67% 27.33% 

G CSP–LDA 56.67% 56.67% 56.67% 51% 55.33% 
FBCSP–LDA 38.33% 42.33% 43.67% 51% 37.67%  
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still not well understood. Many previous studies have averaged ERD or ERS patterns across trials and possibly across all subjects to 
observe the ERD or ERS phenomena. Thus, an analysis of the inter- and intra-subjects in ERD/ERS and their variability throughout the 
experiment has been largely neglected in most studies. In order to develop an effective MI-based BCI system, we believe that it is very 
important to understand the intra and inter-individual variability of ERD/ERS during BCI. In further work, this study will further 
analyze the existing variability both across all the trials of each subject and across all the trials of an experiment. The purpose of this 
will be to explore the different motor imagination conditions of different subjects. Depending on the results of further work, it may be 
possible to revise the dynamic MI experiment in this study. 

3.2. Classification results from two combination methods (CSP–LDA and FBCSP–LDA) 

This study proposed two combination methods (CSP–LDA and FBCSP–LDA) and applied these methods for five different segments 
(2− 9 s, 3− 9 s, 4− 9 s, 5− 9 s, and 6− 9 s). Then, the study adopted the 10-fold cross-validation method to check the performance of 
CSP–LDA and FBCSP–LDA. Table 2 shows the FPR of different segments for CSP–LDA and FBCSP–LDA in a static MI experiment and the 
best imaginary time period for each subject which had the lowest FPR, and Table 3 shows the lowest FPR from each subject among the 
five segments for CSP–LDA and FBCSP–LDA and the averaged FRP for CSP–LDA and FBCSP–LDA. The averaged FRP for CSP–LDA and 
FBCSP–LDA was 37.28% and 38.19%, respectively. There were two subjects (A and E) with the lowest FPR for CSP–LDA and 
FBCSP–LDA among the seven subjects. 

Table 4 shows the FPR of different segments for CSP–LDA and FBCSP–LDA in a dynamic MI experiment, and Table 5 shows the 
lowest FPR for each subject among the five segments for CSP–LDA and FBCSP–LDA and the averaged FRP for CSP–LDA and 
FBCSP–LDA. A comparison of the results of Tables 4 and 5 with those of Tables 2 and 3 revealed that the averaged FPR for FBCSP–LDA 
in the dynamic MI experiment was 23.76%, which was lower than that for CSP–LDA in the same experiment (40.90%) and was better 
than that for the same method in the static MI experiment (38.19%). In addition, the FPR of all the subjects decreased, and the FPR of 
subjects A and F improved. These results showed that the FPR of each subject in the cases of CSP–LDA and FBCSP–LDA in the static MI 
experiment were higher than those in the dynamic MI experiment. Thus, this study suggested that a combination of the dynamic MI 
experiment with the FBCSP–LDA method improved the overall prediction error rate and improved the performance of MI BCI. 

This study also adopted the leave-one-subject-out cross-validation (LOSO CV) [48] to test the performance of FBCSP–LDA in the 
dynamic MI experiment. That is, the data from one subject were the testing data, and the rest were the training data. However, the 
results showed that FPR in any imaginary segment was not ideal, and the average FPR rate was higher than 40%. Thus, the study 
suggested that imaginary data of different subjects could not be used as training data and FBCSP–LDA must adopt the training data and 
the testing data from the same subject. This may be a result of the small amount of knowledge regarding variability of cerebral motor 
patterns from FBCSP [49,50]. As a future work path, this study plans to extend such analyses, including the temporal and spatial 
variability of event-related spectral perturbation (ERSP), while also taking into account different machine learning models. 

The present study combined the dynamic MI experiment with the FBCSP–LDA method and adopted the 10-fold cross-validation 
approach to assess the performance of the proposed method. The results show that the averaged FPR was 23.76%, and average ac-
curacy was 73.23%. Table 6 illustrates the comparison of the proposed method with previous methods of classification of left- and 
right-hand motor imagination. The results listed in Table 6 show that, if the designed MI experiment was dynamic, then the feature 
extraction method and classification method could adopt the simple FBCSP–LDA method, and the accuracy of the classification of the 
left- and right-hand motor imagination can be close to that of complex algorithms. 

4. Conclusion 

The aim of this study was to design a dynamic MI experiment to induce motor-imagery electroencephalogram signals (MI-EEG) and 
then adopt the filter bank common spatial pattern (FBCSP) with linear discriminant analysis (LDA) method to improve the perfor-
mance of an MI-based BCI system. According to the collection of brain waves from seven healthy subjects in different experiments, the 
ERD/ERS phenomenon were variable and no distinctive classification was found. The results of FPRs of CSP–LDA and FBCSP–LDA in 
different experiments showed that the averaged FPR for FBCSP–LDA in the dynamic MI experiment was the lowest FPR (23.76%). 
Thus, this study suggested that a combination of the dynamic MI experiment with the FBCSP–LDA method improved the overall 
prediction error rate and improved the performance of MI BCI. 

Table 3 
FPR of seven subjects in static MI experiment. Boldface indicates the lowest two FPRs under CSP–LDA 
and FBCSP–-LDA.  

Subject CSP–LDA FPR (%) FBCSP–LDA FPR (%) 

A 20.33 17 
B 45 53.33 
C 41.67 53.33 
D 40 47.67 
E 41.67 36.67 
F 21.33 21.67 
G 51 37.67 
Average 37.28 38.19  
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There exist two major limitations in this study which could be addressed in future research. First, the effect estimates in ERD and 
ERS under static and dynamic visual stimuli and models (CSP–LDA and FBCSP–LDA) are based on the sufficient sample size for sta-
tistical measurements. However, only seven participants from Ming Chi University of Technology were selected for this experiment. 
Thus, we can increase the number of participants for statistical measurements. Second, we can propose real-time online testing of the 
MI-based BCI system. Thus, in the future, we will further analyze the existing variability across both all of the trials of each subject and 
all of the trials of an experiment to explore the different motor imagination conditions of different subjects. 
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Table 4 
FPR of different segments for CSP–LDA and FBCSP–LDA in a dynamic MI experiment. Boldface indicates the best imaginary time period for each 
subject.  

Different segments Subject 2− 9 s 3− 9 s 4− 9 s 5− 9 s 6− 9 s 

A CSP–LDA 42.33% 48.67% 54.33% 47.67% 48.67% 
FBCSP–LDA 17% 16.67% 20% 22% 20.33% 

B CSP–LDA 47% 49% 52.33% 38.67% 42% 
FBCSP–LDA 31% 25.33% 32% 20% 37.67% 

C CSP–LDA 45.33% 47.33% 41.67% 41.67% 36.33% 
FBCSP–LDA 19.33% 44.67% 37% 47% 41% 

D CSP–LDA 51.67% 55% 56.67% 43.33% 38.33% 
FBCSP–LDA 55% 51.67% 46.67% 38.33% 36.67% 

E CSP–LDA 49.33% 53% 51.33% 47.67% 49.33% 
FBCSP–LDA 41.33% 39.33% 36% 32.33% 47.67% 

F CSP–LDA 41.67% 38.33% 46.67% 48.33% 45% 
FBCSP–LDA 11.67% 11.67% 5% 8.33% 11.67% 

G CSP–LDA 55.33% 50.67% 44.67% 44.67% 45.67% 
FBCSP–LDA 37.67% 36.33% 41% 43% 40%  

Table 5 
FPR of seven subjects in a dynamic MI experiment. Boldface indicates lowest two FPR for CSP–LDA 
and FBCSP–LDA.  

Subject CSP–LDA FPR (%) FBCSP–LDA FPR (%) 

A 42.33 16.67 
B 38.67 20 
C 36.33 19.33 
D 38.33 36.67 
E 47.67 32.33 
F 38.33 5 
G 44.67 36.33 
Average 40.90 23.76  

Table 6 
Performance comparison of the proposed method with previous works.  

Study Methods Accuracy 

Pramod et al. [51] Multivariate empirical mode decomposition (MEMD) using subject independent BCI (MEMD-SI-BCI) with LDA 72.92% 
Mohammad et al. 

[52] 
Power spectral density (PSD) with LDA classifier 74% 

Kaya and Saritas 
[53] 

Power Spectral Density (PSD) with welch method, Wavelet Decomposition (WD), Empirical Mode Decomposition (EMD) and 
Hilbert-Huang Transform (HHT) with Artificial Neural Network (ANN) 

74.5% 

Proposed method Dynamic MI experiment with the FBCSP–LDA 73.24%  
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