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Abstract
Two-sample summary data Mendelian randomization is a popular method for
assessing causality in epidemiology, by using genetic variants as instrumental
variables. If genes exert pleiotropic effects on the outcome not entirely through
the exposure of interest, this can lead to heterogeneous and (potentially) biased
estimates of causal effect. We investigate the use of Bayesian model averaging to
preferentially search the space of models with the highest posterior likelihood.
We develop a Metropolis-Hasting algorithm to perform the search using the
recently developed MR-RAPS as the basis for defining a posterior distribution
that efficiently accounts for pleiotropic and weak instrument bias. We demon-
strate how our general modeling approach can be extended from a standard
one-component causal model to a two-component model, which allows a large
proportion of SNPs to violate the InSIDE assumption. We use Monte Carlo sim-
ulations to illustrate our methods and compare it to several related approaches.
We finish by applying our approach to investigate the causal role of cholesterol
on the development age-related macular degeneration.
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1 INTRODUCTION

The capacity of traditional observational epidemiology to reliably infer whether a health exposure causally influences
a disease rests on its ability to appropriately measure and adjust for factors which jointly predict (or confound) the
exposure-outcome relationship. Mendelian randomization (MR)1 avoids bias from unmeasured confounding by using
genetic variants as instrumental variables (IVs).2 For the approach to be valid to test for causality, each specific IV must be
robustly associated with the exposure (assumption IV1), independent of any confounders of the exposure and outcome
(IV2) and be independent of the outcome given the exposure and the confounders (IV3), as illustrated in Figure 1A.

Two-sample summary data MR is a design that derives causal effect estimates with summary statistics obtained from
two separate samples—one supplying the single nucleotide polymorphism (SNP)-exposure associations and the other
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F I G U R E 1 Causal diagrams representing the hypothesized relationship between genetic instrument (G), exposure (X), outcome (Y ),
and all unmeasured variables (U) which confound X and Y . 𝛽 is the causal effect of X on Y . (A) 𝛿 is the genetic effect on X . Dashed lines and
crosses indicate examples of violations of the standard IV assumptions which can lead to bias. (B) Genetic instruments have a direct effect on
Y (𝜐), a phenomenon known as horizontal pleiotropy and a violation of IV3. Genetic instruments have a direct effect on U (𝜓), violation of
IV2 and an example of horizontal pleiotropy that violates the InSIDE assumption

supplying the SNP-outcome associations3-6—an SNP being the most common type of genetic variation in the genome. If
the chosen SNPs are valid IVs, and the causal effect of a unit increase in X on the mean value or risk of Y is approximately
linear in the local region of X predicted by these variants7 then a simple inverse-variance weighted (IVW) meta-analysis
of SNP-specific causal estimates provides an approximately unbiased estimate of this average causal effect. If sufficient
heterogeneity exists between the MR estimates across a set of variants, this suggests evidence for violation of one or more
of the IV assumptions. This could be due to assumption IV1 being only weakly satisfied by the genetic variants (ie, weak
instrument bias).8,9 It is however more problematic when the heterogeneity is caused by violations of assumptions IV2
and IV3.7,10 The latter violation is commonly known as “horizontal pleiotropy,”11 and hereafter referred to as pleiotropy
for simplicity. Pleiotropy does not necessarily lead to biased causal effect estimates if it is “balanced,” in the sense that
the average pleiotropic bias across SNPs is zero, and the weight each SNP receives in the analysis is also independent of
its pleiotropic effect. This latter condition is commonly referred to as the instrument strength independent of direct effect
(InSIDE) assumption.12,13 However, this assumption is itself unverifiable.

Methods have been developed that are robust to pleiotropy and InSIDE violation. For example, the weighted median
estimator14 is statistically consistent if 50% of the SNPs are valid IVs (or not pleiotropic). Similarly, mode-based estimation
strategies focus on identifying the largest subset of variants yielding a homogeneous causal estimate, and are consis-
tent when this set is made up of valid IVs.15,16 These approaches do not make any assumptions about the nature of the
pleiotropy for invalid SNPs—they could violate InSIDE or not. Other approaches, such as MR-PRESSO17 and Radial MR8

attempt to detect and remove SNPs that are specifically deemed responsible for bias and heterogeneity in an MR-analysis,
however they assume the remaining SNPs satisfy InSIDE. Finally, the robust adjusted profile score (MR-RAPS)9 uses an
adjusted profile likelihood, which penalizes outlying (and hence likely pleiotropic) SNPs using a robust loss function.
MR-RAPS is also naturally robust to weak instrument bias because uncertainty in the SNP-exposure association estimates
is incorporated into its likelihood function.

In this article, we develop a method for pleiotropy robust MR analysis with two-sample summary data using the gen-
eral framework of Bayesian model averaging (BMA).18 We adapt this general approach to the summary data setting where
the SNPs are uncorrelated but potentially pleiotropic. Our approach uses the profile likelihood of MR-RAPS9 as a basis
for efficiently modeling the summary data in the presence of weak instrument bias and pleiotropy, but with the addi-
tion of an indicator function to denote whether an individual SNP is included or disregarded in the model. We develop
a Metropolis-Hastings BMA algorithm to intelligently search the space models defined by all possible SNP subsets (ie,
≈2L in the case of L SNPs) in order to decide which SNPs to include in the identified set of valid IVs within a given itera-
tion of the Markov chain. The derived posterior distribution is therefore averaged across all selected SNP combinations.
We call our method Bayesian set identification Mendelian randomization (BESIDE-MR). BESIDE-MR aims to find the
largest set of variants that furnish consistent, homogeneous estimates of causal effect, but accounts for model uncer-
tainty, due to the selection of different instrument sets, which we will show is important for preserving the coverage of
resulting MR estimates. Our one-component BESIDE-MR model is robust to a small proportion of invalid SNPs, but is
inadequate when a large proportion of SNPs are invalid. To address this case, we extend BESIDE-MR to a two-component
model.
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In Section 2, we introduce the methodology behind our one-component model and in Section 3 assess its performance
in Monte-Carlo simulations. In Section 4, we introduce and assess the performance of the two-component model exten-
sion. In Section 5, both the one- and two-component approaches to investigate the causal role of the amount of cholesterol
in extra large high density lipoprotein particles on the risk of age related macular degeneration (AMD) using data from
the 2019 MR Data Challenge.19 We conclude with a discussion and point to further research.

2 METHOD

2.1 Description of the general model

Suppose that we have data from an MR study consisting of N individuals, where for each subject k we measure L indepen-
dent genetic variants (Gk1 …GkL), an exposure (Xk) and an outcome (Yk). Uk represents the shared residual error between
X and Y due to confounding, which we wish to overcome using IV methods. To estimate the average causal effect, we
assume the following linear structural models20 for U, X , and Y consistent with Figure 1B:

Uk|Gk =
L∑

j=1
𝜓jGkj + 𝜖U

k ,

Xk|Uk,Gk =
L∑

j=1
𝛿jGkj + 𝜅xUk + 𝜖X

k ,

Yk|Xk,Uk,Gk =
L∑

j=1
𝜐jGkj + 𝛽Xk + 𝜅yUk + 𝜖Y

k ,

where 𝜖U
k , 𝜖X

k , and 𝜖Y
k are mean zero independent error terms for U, X , and Y , respectively. See Table S1 for a summary of

the assumptions required for the estimation of the average causal effect. From these structural models, we can derive the
approximate reduced form models for the G-X and G-Y associations for SNP j :

Xk|Gkj ≈ (𝛿j + 𝜅x𝜓j)Gkj + 𝜖′Xk , (1)

Yk|Gkj ≈
[
𝜐j + 𝜅y𝜓j + 𝛽(𝛿j + 𝜅x𝜓j)

]
Gkj + 𝜖′Yk . (2)

We use “approximate” here because the error terms 𝜖′Xk and 𝜖′Yk are not exactly the same for all j—the jth residual error
term in fact contains common contributions from all other genetic variants not equal to j.7 This approximation is very
accurate in most settings because the genetic variants combined make a very small contribution to the total residual error
in each model (eg, typically of the order of 1%-2%) and the marginal coefficients are estimated from genome-wide asso-
ciation studies (GWAS) that usually have sample size of hundreds of thousands.21 Under this assumption, the following
models can then be justified for summary data estimates of the G-X (�̂� j) and G-Y (Γ̂j) associations gleaned from fitting (1)
and (2):

�̂� j ∼ N(𝛾j, 𝜎
2
Xj), Γ̂j|𝛼j, 𝛾j ∼ N(𝛼j + 𝛽𝛾j, 𝜎

2
Yj). (3)

Here, 𝛼j = 𝜐j + 𝜅y𝜓j and 𝛾j = 𝛿j + 𝜅x𝜓j. Under Model (3), it is assumed that the first study provides �̂� j and standard
errors 𝜎Xj, and a second study, independent from the first, provides Γ̂j and standard errors 𝜎Yj. Both the standard errors are
assumed to be fixed and known. As the two studies are independent, we assume that the uncertainty in �̂� j is independent
of the uncertainty in Γ̂j. Model (3) also assumes that SNPs are independent, which can be ensured by performing link-
age disequilibrium (LD) clumping in publicly available tools such as PLINK22 and MR-BASE.23 The two-sample design
implicitly assumes that SNP j associations have identical associations in both studies as they are sampled from the same
population. See Supplementary Section A for further justification of the underlying assumptions made to estimate the
average causal effect via two-sample approach.
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The individual Wald ratio estimand for SNP j from Model (3) is then

𝛽j =
Γj

𝛾j
= 𝛽 +

𝛼j

𝛾j
= 𝛽 +

𝜐j + 𝜅y𝜓j

𝛿j + 𝜅x𝜓j
.

From this we see that to reduce the bias of 𝛽j of SNP j, the instrument strength (𝛾j) needs to be large, or the pleiotropic
effect (𝛼j) should be small. Under Model (3), invalid SNPs can be put into two classes:

• InSIDE respecting pleiotropic SNPs for whom 𝜐j ≠ 0 but 𝜓j = 0.
• InSIDE violating pleiotropic SNPs for whom 𝜐j ≠ 0 and 𝜓j ≠ 0.

InSIDE violation occurs in the last case because instrument strength and pleiotropic effects are functionally related
due to a shared 𝜓j component, so that the sample covariance Ĉov(𝛼j, 𝛾j) ≠ 0. For the case of InSIDE respecting pleiotropy,
we are able to assume the sample covariance is approximately zero for a sufficient number of instruments, since 𝜐j and
𝛿j are imagined to be themselves generated via independent processes.7 In Supplementary Section B, we show, under the
simplifying assumption that the SNP-outcome standard errors are approximately constant and 𝜅x = 𝜅y = 1, when Γ̂j → Γj
and �̂� j → 𝛾j as N → ∞, the approximate bias term for IVW estimator is,

E[𝛽IVW] ≈
E

[∑L
j=1Γ̂j�̂� j

]
E

[∑L
j=1�̂�

2
j

] → 𝛽 +
E

[∑L
j=1𝛼j𝛾j

]
E

[∑L
j=1𝛾

2
j

] = 𝛽 +
Ĉov(𝛼j, 𝛾j) + 𝛼𝛾

V̂ar(𝛾j) + 𝛾2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
bias term

. (4)

If all SNPs are pleiotropic, but have mean zero (𝛼 = 0) and satisfy the InSIDE assumption (Ĉov(𝛼j, 𝛾j) = 0), then the
standard IVW provides an unbiased estimate of 𝛽. MR-Egger regression is an extension of IVW that can work under the
InSIDE assumption even if 𝛼 ≠ 0, which is referred to as “directional” pleiotropy. It does this by estimating an intercept
parameter in addition to the causal slope parameter. However, its estimates are generally very imprecise and it is not
invariant to allele recoding.24 Lastly, it cannot separate directional pleiotropy satisfying InSIDE from balanced pleiotropy
violating InSIDE, as the intercept reflects the numerator of the bias term, which is a combination of both. This motivates
the use of methods that can attempt to detect and down-weight a small number of variants that may be responsible for
either InSIDE violation or directional pleiotropy so that, for the remainder of SNPs left, Model (3) holds approximately
with only InSIDE respecting balanced pleiotropy remaining. This is the approach we will initially pursue for BESIDE-MR,
in line with other researchers.9,17 Since BESIDE-MR does not estimate an intercept term, it is therefore invariant to allele
recoding, unlike MR-Egger regression.

2.2 BMA over the summary data model

We are interested in searching over the space of all possible models defined by each of the 2L subsets in the entire summary
data. Let I = (I1,… , IL) be the L-length indicator vector denoting whether SNP Gj is included (Ij = 1) or not (Ij = 0) in
the model. We want to “force” our data to conform to Model (3) with the additional assumption that 𝛼j ∼ N(0, 𝜏2). The
parameters of interest are then 𝜃 = (𝛽, 𝜏2, I) and with data, D, that consists of �̂� j and Γ̂j, with their standard errors 𝜎Xj and
𝜎Yj, respectively. The joint posterior is

P(𝜃|D) ∝ P(D|𝜃)P(𝜃),
where P(D|𝜃) is the likelihood and P(𝜃) is user specified prior for each of the parameters. We use a random walk
Metropolis-Hastings (M-H) algorithm for updating the model parameter values, for the specific details see Supplemen-
tary Section C. For a given iteration of the Markov chain, the selection of instruments is conditional on the likelihood of
the data and the given priors. After the Markov chain has been sufficiently explored, we can obtain posterior distributions
for the model parameters and the posterior probability that each individual SNP is valid. This method has been applied
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within the context of variable selection and model building to reduce bias from many weak instruments25,26 and highly
correlated instruments.27

It has also been previously shown that using a small number of SNPs for two-sample MR can lead to large viola-
tions of the InSIDE assumption by chance (see fig. A.1 in Bowden et al7). Small SNP numbers also make estimation of
the pleiotropy variance very imprecise. Therefore, we have restricted the M-H algorithm to explore models that have
at least 5 instruments. Given that the BESIDE-MR model is weak-instrument robust, it will almost always be possi-
ble to include a sufficient number of instruments because it is not necessary to select only “genome-wide significant”
SNPs. This means that it is amenable to a so called “three sample design,” where an external GWAS is used to select
SNPs as instruments, before commencing the two sample MR study. Indeed, this is the approach we take in our applied
analysis.

2.2.1 The profile score likelihood

For P(D|𝜃), we use the profile log-likelihood derived by Zhao et al.9 The profile likelihood is particularly well suited to a
Bayesian implementation because it enables heterogeneity due to weak instrument bias and pleiotropy to be taken into
account, while only having to update three parameters (𝛽, 𝜏 and I). Generally, a standard Bayesian formulations requires
an additional L parameters (𝛾1,… , 𝛾L) to be updated (see, eg, Thompson et al28). BESIDE-MR is therefore not strictly
Bayesian, as we have not used the full likelihood.

Specifically we work with likelihood for (𝛽, 𝜏2) given the data (�̂� , Γ̂) profiled over the parameters 𝛾1,… , 𝛾L. After the
incorporation of our indicator vector I, the log-profile likelihood is approximately given by

l(𝛽, 𝜏2, I|�̂� , Γ̂) ≈ −
∑L

j=1Ij

2
log(2𝜋) − 1

2

L∑
j=1

Ij

{
log(𝜎2

Yj + 𝜏
2) +

(
(Γ̂j − 𝛽�̂� j)2

𝛽2𝜎2
Xj + 𝜎

2
Yj + 𝜏2

)}
. (5)

As shown by the derivation in Supplementary Section D, this likelihood allows for heterogeneity due to pleiotropy
via 𝜏2, and weak instruments, via 𝜎2

Xj. If we consider that the existing set of instruments have a small 𝜏2, then
the likelihood will increase if introducing a new instrument does not lead to a sufficiently large increase the
pleiotropy variance, but decrease otherwise. Hence, our BMA algorithm will naturally give more weight to I-vectors
that include large set of instruments with homogeneous causal effect estimates. In other words, it tacitly assumes
that the true causal effect can be identified by a large set of instruments with a homogeneous MR estimate. This
property is reminiscent of the zero modal pleiotropy assumption (ZEMPA)15 or the plurality rule that defines the
two-stage hard thresholding (TSHT) approach of Guo et al.29 However, the TSHT approach explicitly aims to iso-
late the largest set of “valid” instruments and base all inference on this single set, which is equivalent to giving
a single I-vector a weight of one and all other vectors a weight of zero. BESIDE-MR is less aggressive, allowing
as many distinct I-vectors as are supported by the data to be given weight in the analysis. This feature properly
accounts for model uncertainty. Indeed, as subsequent simulations will demonstrate, this yields causal estimates
and standard errors that are less prone to under-coverage than methods which incorporate instrument selection or
penalization.

One such method of penalization, also proposed by Zhao et al,9 is MR-RAPS. Instead of being based on likelihood
function (5) which uses standard least squares (or L2 loss) plus the addition of our indicator function, it uses a robust L1
function such as Huber or Tukey loss. This enables the contribution of large outliers to be penalized (ie, reduced) com-
pared to L2 loss. Our use of the standard profile likelihood can be viewed as an alternative way to achieving the robustness
of MR-RAPS, by averaging over multiple instruments sets and where more weight is given to homogeneous SNP sets.
As MR-RAPS is a system of nonlinear equations, in some cases the causal effect may not be globally identifiable,9 which
motivates the use of BMA approach to model average all possible local causal effects. And thus for this reason, conver-
gence is an essential part of BESIDE-MR implementation to ensure that all plausible models and parameter values have
been explored.

BMA implementations tend to favor parsimonious models, that is, models with fewer variables,18 therefore, to explore
the sensitivity of our BMA procedure to the average number of SNPs included in the model, we include a penalization
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term within likelihood function (5);

l(𝛽, 𝜏2, I|�̂� , Γ̂) + L∑
J=1

Ij

2
𝜂. (6)

The parameter 𝜂 dictates the size of models BMA explores the most. Setting a large positive 𝜂, the likelihood will
increase with number of instruments, then BMA will favor models with many instruments. And hence for negative 𝜂,
BMA will favor models with fewer instruments. We will assume 𝜂 to be zero throughout the simulations, but explore
ranges of 𝜂 as sensitivity analysis for the real data example in Section 5.1.

2.3 Choice of priors

In general, we encourage the construction of priors to be based on previous epidemiological study or biological knowledge.
For the purpose of elucidating our approach, we will use priors that ensure efficient mixing and rapid convergence. For
the causal effect parameter 𝛽, we use a zero centered normal prior P(𝛽). For the pleiotropy variance (𝜏2), we use a gamma
prior P(Prec) for the precision, where Prec = 1∕𝜏2. For the indicator function prior, we will assume an uninformative
Bernoulli prior P(I) with probability 1

2
for all Ij. Note a prior probability of 0.5 implies each instrument is equally likely

to be pleiotropic or not, and therefore evidence for pleiotropy will be dictated by the likelihood of data. We strongly
recommend using biologically informative priors, see Section 6 for further discussion.

2.4 An alternative implementation

It is well known that the estimation of 𝜏2 is challenging, even within a classical framework, as its maximum likelihood
estimate is not consistent, see Section 4 of Zhao et al9 for further discussion. Therefore, we propose an alternative imple-
mentation of our M-H algorithm in which a plug-in estimate for 𝜏2 is substituted at each iteration. For simplicity, we
chose to use the closed-form DerSimonian-Laird (DL) estimate for 𝜏2.30 In Supplementary Section C, we describe how
the M-H algorithm is modified to implement this alternative approach. Hereafter, we will refer to the first method as the
“full Bayesian” approach and this latter method as the DL approach.

3 MONTE CARLO SIMULATION

3.1 Simulation strategy

We simulate two-sample summary MR data sets with L = 50 instruments from Model (3). Motivated by recent genetic
studies,31,32 four scenarios are considered;

1. All instruments are strong and invalid instruments have balanced pleiotropy.
2. All instruments are weak and invalid instruments have balanced pleiotropy.
3. All instruments are strong and invalid instruments have directional pleiotropy.
4. All instruments are weak and invalid instruments have directional pleiotropy.

The strength of the instruments is measured by the mean F-statistic (F) over all instruments. Pleiotropic effects, 𝛼j,
is simulated from a normal N(𝜇𝛼, 𝜎𝛼) distribution, where zero and nonzero 𝜇𝛼 gives balanced and directional pleiotropy
respectively, as shown in Table 1. While scenarios 3 and 4 are referred to as directional pleiotropy, it is both indistinguish-
able and equivalent to the case of InSIDE violating pleiotropy, as illustrated in Equation (4). Within each scenario, 0% to
100% (at 20% intervals) of the L SNPs are simulated as invalid instruments. We first compare our approach with the stan-
dard IVW method, MR-APS and MR-RAPS. The latter two are the classical counterparts that our approach sits between.
Specifically, MR-APS is the MR-RAPS with a standard L2 loss function as opposed to Huber or Tukey loss. We monitor
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T A B L E 1 Summary of simulation scenarios

Scenario Type of pleiotropy F
Pleiotropic effect (𝜶j)
of invalid instruments

1 Balanced 100 N(0, 0.04)

2 Balanced 10 N(0, 0.04)

3 Directional 100 N(0.05, 0.04)

4 Directional 10 N(0.05, 0.04)

the mean bias of the causal parameter estimate and the coverage (for BESIDE-MR the bias is taken with respect to the
mean of the posterior distribution of 𝛽 and the coverage is calculated from its credible interval). For BESIDE-MR only,
we also give the posterior probability of inclusion (PPI) in the valid instrument set for each SNP. We also report the weak
instrument bias corrected exact Q-statistic8 to measure the amount of heterogeneity due to pleiotropy in our simulated
data. See details of the simulation strategy in Supplementary Section E.

From the convergence test (see Supplementary Section E2), our algorithm functions effectively with 50 000 iterations
with a burn-in of 10 000 iterations with the DL and fully Bayesian implementations taking 5 and 7 seconds to converge
respectively on a standard desktop computer. Increasing the number of instruments (L) increases the potential models
(2L) for BESIDE-MR to explore, but for the same number of iterations, convergence was reached even with 100 valid
instruments. In rare occasions, we removed results from simulations where the BESIDE-MR model had failed to converge
after 50 000 iterations. For example, for Scenario 1 without invalid instruments, 8 and 7 out of 1000 simulated datasets did
not converge for the DL and full Bayesian implementation respectively. This changed to 15 and 29 in the weak instrument
case.

3.2 Results

Table 2 shows the results. Under Scenario 1, all methods deliver approximately unbiased estimates. The IVW, MR-APS,
and MR-RAPS estimators achieve nominal coverage when there are no pleiotropic instruments. However, as the propor-
tion of pleiotropic instruments (and hence the heterogeneity) increases, their coverages can drop substantially, with the
MR-APS and MR-RAPS estimators most affected. BESIDE-MR has conservative coverage under no heterogeneity (due to
many nuisance parameters33 in the absence of invalid instruments) but maintains far better coverage when heterogeneity
increases. The general pattern remains the same for weaker instruments (Scenario 2), even with many more weak instru-
ments (L = 100), with results shown in Supplementary Section E4. In Scenario 3, all the approaches deteriorate with
increasing number of invalid instruments, but BMA has consistently the least bias and best coverage throughout. In Sce-
nario 4, the IVW estimator is seemingly least biased, due to weak instrument bias canceling out some of the pleiotropic
bias. With 40% and 60% invalid instruments, full Bayesian BESIDE-MR struggled to converge within 50 000 iterations in
a small number of cases.

The PPI box plots in Figure 2 demonstrates BESIDE-MR’s ability to distinguish valid from invalid instruments in
Scenarios 1 and 3. Under Scenario 1, we see a smaller and constant difference across different proportions of invalid
instruments. Under Scenario 3 this difference is maximized (ie, we get the best discrimination) when there are 20% invalid
instruments, this difference steadily decreases to half its value as the number of invalid instruments increases further,
indicating that BESIDE-MR generally struggles to deal with directional/InSIDE violating pleiotropy across a substantial
proportion of invalid SNPs. There is still a difference in PPI between valid and invalid instruments, however the discrimi-
nation is worse for weak instruments. This poor performance with directional/InSIDE violating pleiotropy motivates our
two-component model formulation in Section 4.

Additional simulations were performed to investigate the robustness to non-normal pleiotropic effect and the effect on
PPI with different patterns of heterogeneity. For the former, the difference in bias is minimal between the estimators. The
coverage for BESIDE-MR decreases with increasing number of invalid instruments, but still close to nominal coverage
(Supplementary Section E5). For the latter, we find that the discrimination is best with small numbers of highly pleiotropic
SNPs, and the worst with large numbers of weakly pleiotropic SNPs. However, the algorithm maintains its reliability even
in this case. For further details, see Supplementary Section E6.
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T A B L E 2 Evaluation criteria for different types of pleiotropy and instrument strength (Table 1)

IVW DL est. Full Bayes. MR-APS MR-RAPS

No. inv. Q Bias Cover. Bias Cover. Bias Cover. Bias Cover. Bias Cover.

Scenario 1

0 49.0 −0.001 96.40 −0.000 97.50 0.000 98.10 −0.000 94.40 −0.000 94.00

10 57.9 −0.001 93.20 0.000 97.50 0.000 97.70 −0.000 89.50 −0.000 92.10

20 66.4 −0.001 90.80 −0.000 95.40 −0.000 94.60 −0.000 83.90 −0.000 87.30

30 75.5 −0.000 88.30 0.001 94.20 0.001 92.00 0.001 77.30 0.001 80.80

40 84.0 −0.001 86.80 −0.000 95.80 −0.000 90.70 0.001 76.60 0.001 77.60

50 91.9 0.000 85.40 0.000 94.80 0.001 86.60 0.002 70.40 0.001 72.90

Scenario 2

0 48.7 −0.018 33.40 −0.001 97.10 0.002 96.10 −0.000 93.90 −0.000 92.90

10 54.4 −0.019 37.50 −0.000 97.10 0.005 93.70 0.003 91.80 0.003 92.10

20 59.2 −0.018 41.70 0.001 96.70 0.008 90.50 0.006 88.00 0.006 89.10

30 64.0 −0.018 44.60 0.001 96.70 0.011 87.80 0.009 83.20 0.008 84.90

40 68.8 −0.018 46.50 0.001 95.60 0.014 80.20 0.012 72.50 0.011 75.70

50 73.9 −0.019 47.80 0.002 94.60 0.017 73.40 0.015 68.80 0.015 70.10

Scenario 3

0 49.0 −0.001 96.40 −0.000 97.50 0.000 98.10 −0.000 94.40 −0.000 94.00

10 69.0 0.011 75.60 0.007 92.80 0.007 92.70 0.013 61.30 0.009 75.80

20 84.1 0.024 35.20 0.018 71.90 0.016 70.00 0.027 20.20 0.021 33.60

30 92.0 0.037 11.80 0.032 38.20 0.031 36.10 0.039 4.70 0.035 7.90

40 96.1 0.051 1.40 0.049 9.30 0.049 9.70 0.054 0.10 0.052 0.40

50 95.2 0.064 0.30 0.066 1.50 0.067 1.50 0.068 0.00 0.067 0.00

Scenario 4

0 48.7 −0.018 33.40 −0.001 97.10 0.002 96.10 −0.000 93.90 −0.000 92.90

10 58.8 −0.011 69.77 0.007 95.60 0.015 79.00 0.018 66.30 0.016 71.70

20 64.5 −0.003 84.70 0.017 84.60 0.028 46.20 0.035 23.70 0.034 29.60

30 66.5 0.006 82.60 0.028 64.60 0.040 21.70 0.050 5.10 0.048 7.00

40 66.2 0.014 70.10 0.040 35.60 0.049 9.90 0.064 0.40 0.063 0.60

50 65.3 0.022 53.90 0.050 18.90 0.057 5.20 0.075 0.10 0.074 0.10

Note: 50 instruments in total. True 𝛽 is 0.05.
Abbreviations: Bias, mean bias; Cover., coverage; DL est., DL estimate; Full Bayes., full Bayesian; No. inv., number of invalid instrument(s); Q, Q-statistics with
exact weights.

4 AN EXTENDED TWO- COMPONENT BMA MODEL FOR INSIDE
VIOLATION

The one-component BESIDE-MR model introduced thus far assumed that the majority of SNPs were valid under the
InSIDE assumption, but a small proportion could be invalid under InSIDE. We now consider the use of an extended
model to account for the more extreme case where a large proportion of SNPs may be pleiotropic, and in violation of
InSIDE (Figure 1B). In this case, also demonstrated by the previous section, the standard one-component BESIDE-MR
model cannot easily identify and remove the invalid SNPs, they must instead be formally modeled with an additional slope
parameter. To motivate this approach we use the same underlying data generating Model (3). For illustration, suppose
that we have two different groups of invalid instruments: in the first group, S1, the SNPs exhibit balanced pleiotropy
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(A) Scenario 1: DL estimate
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(B) Scenario 1: full Bayesian
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(C) Scenario 3: DL estimate
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(D) Scenario 3: full Bayesian

F I G U R E 2 Box plots of PPI for true valid and invalid instruments under balanced and directional pleiotropy (Scenarios 1 and 3,
respectively) and under four valid/invalid SNP ratios. (A, C) The DL implementation, and (B, D) the full Bayesian implementation. PPI is
posterior probability of inclusion in the valid instrument set

under the InSIDE assumption, but still collectively identify the true causal effect, 𝛽. The remaining instruments are in
a set S2, where the InSIDE assumption is perfectly violated (ie, the correlation between the SNP-exposure association
and the pleiotropic effect is 1). Using the bias formulas in Equation (4), the set of SNPs in S2 identify a distinct, biased
version of the causal effect (𝛽 + 1). This data generating model would give rise to two clusters or slopes in the data, which
motivates our extended two-component version of BESIDE-MR, that is, our model assumes that there are 2 effects to
be estimated. In addition, although the main purpose of our extension is to approximate causal effect in the presence
of directional/InSIDE violating pleiotropy (these are not distinguishable as shown by Equation 4), this same modeling
framework could also account for true mechanistic heterogeneity,34 which will be discussed later.

4.1 A modified BMA algorithm

Under the data generating Model (3), assume that the pleiotropic effects for InSIDE respecting SNPs in S1 are generated
from a N(0, 𝜏2

1 ) distribution and InSIDE violating SNPs in S2 are from a N(0, 𝜏2
2 ) distribution. They therefore identify a

distinct slope parameter. Our total parameter space is modified to 𝜃 = (𝛽1, 𝜏2
1 , 𝛽2, 𝜏2

2 , I1, I2), with likelihood:

l(𝜃|�̂� , Γ̂) = Max𝜸 l(𝛽1, 𝜏
2
1 , 𝛽2, 𝜏

2
2 |�̂� , Γ̂)

= log f (�̂� , Γ̂|𝛽1, 𝜏
2
1 , 𝛽2, 𝜏

2
2 )
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≈ −
∑L

j=1I1j

2
log(2𝜋) − 1

2

L∑
j=1

I1j

{
log(𝜎2

Yj + 𝜏
2
1 ) +

(
(Γ̂j − 𝛽1�̂� j)2

𝛽2
1𝜎

2
Xj + 𝜎

2
Yj + 𝜏

2
1

)}

−
∑L

j=1I2j

2
log(2𝜋) − 1

2

L∑
j=1

I2j

{
log(𝜎2

Yj + 𝜏
2
2 ) +

(
(Γ̂j − 𝛽2�̂� j)2

𝛽2
2𝜎

2
Xj + 𝜎

2
Yj + 𝜏

2
2

)}
, (7)

where the indicator functions I1j and I2j denote whether an SNP j is included in S1 or S2. We impose the condition that
I1j + I2j ≤ 1, which means that, at a given iteration of our BMA algorithm an SNP is either in S1 (I1j = 1, I2j = 0), S2 (I1j =
0, I2j = 1), or in neither S1 or S2 (I1j = I2j = 0), which we give the label S0. This gives the model the flexibility to assign an
SNP to either S1 or S2, or remove it from the model completely by assigning it to S0. In Supplementary Section F, we give
further details on the M-H algorithm to update the parameter space of this extended model.

The log-likelihood with the addition of two model complexity penalization terms is then;

l(𝜃|�̂� , Γ̂) + L∑
j=1

I1j

2
𝜂1 +

L∑
j=1

I2j

2
𝜂2. (8)

As in Section 2.2.1, we set 𝜂1 = 𝜂2 = 0 for the simulations, but vary the values as sensitivity in the applied example.

4.2 Simulation study

Two-sample summary data are simulated with 50 SNPs under balanced pleiotropy but with a progressively larger pro-
portion of SNPs maximally violating the InSIDE assumption. This changes the proportion of SNPs that are in set S1 and
S2. These data are simulated under a strong instrument scenario (F = 100, Scenario 5) and a weaker instrument scenario
(F = 25, Scenario 6). For precise details of the simulation parameters see Table 3. We also explore the performance of our
two-component model under balanced pleiotropy with weak and strong instruments when there is no InSIDE violation,
that is under Scenarios 1 and 2. This means that all SNPs are effectively in set S1 and the data can be explained with a
single causal slope parameter, rather than two. The full results are shown in Table 4 where we report the bias, coverage
and mean Q-statistic with exact weights of all approaches across 1000 simulations, as before. For BESIDE-MR, PPIS1

and PPIS2 for each SNP are also reported. This represents the posterior probability of an SNP being included in S1 and S2
cluster respectively.

4.3 Results

For data generated under Scenarios 1 and 2, and so in the complete absence of InSIDE-violating SNPs in set S2, our
two slope model correctly identifies 𝛽 and does not try to estimate a second effect, that is, 𝛽1 = 𝛽2. When the data are

T A B L E 3 Summary of InSIDE simulation scenarios

Scenario F of S1 ∶ S2 Typeof pleiotropy S1 S2

5 100:100 Balanced 𝜓j = 0, 𝜓j ∼ U(0.34, 1.1),

𝜐j ∼ N(0, 0.04), 𝜐j = 0,

𝛿j ∼ U(0.34, 1.1), 𝛿j = 0,

𝜎Xj ∼ U(0.06, 0.095), 𝜎Xj ∼ U(0.06, 0.095),

𝛽1 = 𝛽 𝛽2 = 𝛽 + 1

6 25:25 Balanced 𝜓j = 0, 𝜓j ∼ U(0.34, 1.1),

𝜐j ∼ N(0, 0.04), 𝜐j = 0,

𝛿j ∼ U(0.34, 1.1), 𝛿j = 0,

𝜎Xj ∼ U(0.06, 0.4), 𝜎Xj ∼ U(0.06, 0.4),

𝛽1 = 𝛽 𝛽2 = 𝛽 + 1
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T A B L E 4 Evaluation criteria for estimating two causal parameters

Q Mean bias Median bias Coverage

Est. Inst. S1 ∶ S2 S1 S2 𝜷1 𝜷2 𝜷1 𝜷2 𝜷1 𝜷2

Scenario 1 (𝛽1 = 𝛽2 = 𝛽)

DL est. 50:0 60.2 - 0.001 0.001 0.001 0.001 100.0 99.8

Full Bayes. 50:0 60.2 - 0.001 0.001 0.001 0.001 99.7 99.5

Scenario 5 (𝛽1 = 𝛽, 𝛽2 = 𝛽 + 1)

DL est. 40:10 73.5 10.9 0.007 −0.876 0.001 −0.995 99.4 14.6

30:20 55.1 23.8 0.003 −0.079 0.001 −0.013 95.9 92.3

25:25 43.9 30.3 0.005 −0.009 0.001 −0.008 93.9 96.7

20:30 35.3 36.9 0.053 −0.006 0.004 −0.006 91.0 95.6

10:40 16.5 49.1 0.906 −0.008 0.988 −0.005 11.1 85.5

Full Bayes. 40:10 73.5 10.9 0.076 −0.287 0.003 −0.027 84.0 69.0

30:20 55.1 23.8 0.230 −0.218 0.008 −0.009 69.4 76.2

25:25 43.9 30.3 0.248 −0.182 0.011 −0.008 67.9 79.7

20:30 35.3 36.9 0.254 −0.122 0.013 −0.002 66.8 86.1

10:40 16.5 49.1 0.225 −0.041 0.017 0.003 62.4 95.4

Scenario 2 (𝛽1 = 𝛽2 = 𝛽)

DL est. 50:0 58.3 - 0.002 0.002 0.002 0.002 100.0 100.0

Full Bayes. 50:0 58.3 - 0.004 0.004 0.004 0.003 99.9 99.9

Scenario 6 (𝛽1 = 𝛽, 𝛽2 = 𝛽 + 1)

DL est. 40:10 67.6 30.2 0.003 −0.985 0.002 −0.997 99.0 1.4

30:20 50.3 65.7 0.035 −0.474 0.009 −0.391 97.5 60.1

25:25 41.3 85.0 0.012 −0.099 0.006 −0.060 94.1 93.3

20:30 32.8 102.6 0.007 −0.037 0.005 −0.033 94.6 96.8

10:40 14.8 140.6 0.651 −0.072 0.766 −0.062 41.4 93.8

Full Bayes. 40:10 67.6 30.2 0.001 −0.337 0.003 −0.104 89.8 63.2

30:20 50.3 65.7 0.022 −0.179 0.008 0.016 84.7 78.5

25:25 41.3 85.0 0.036 −0.233 0.011 0.013 72.8 80.9

20:30 32.8 102.6 0.002 −0.332 0.011 0.016 64.3 77.5

10:40 14.8 140.6 0.364 −1.349 0.987 −0.379 22.3 52.8

Note: 50 instruments in total. The true 𝛽 is 0.05. S1 and S2 are InSIDE respecting and violating set, respectively.
Abbreviations: DL est., DL estimate; Est., estimator; Full Bayes., Full Bayesian; Inst., instrument(s); Q, exact Q-statistics.

generated under the new Scenario 5 we see that, when S1 and S2 have a similar number of instruments, both 𝛽1 and 𝛽2
can be estimated by the DL implementation of our two-component model. If the proportion of SNPs in either set is too
small, then our algorithm tends to remove them completely and focus on estimating just one slope. The full Bayesian
implementation returns mean posterior estimates that are median unbiased but not mean unbiased. This demonstrates a
lack of convergence for some of simulated data, and indicates that longer iterations and a more sophisticated procedure
for deciding on the M-H tuning parameter may be required to properly fit the model.

When the data are generated with weaker instruments (Scenario 6), we see a degrading in the performance of all
approaches. In particular, see that the effect is worst for 𝛽2. This is because, in our specific simulation, 𝛽2 is larger in magni-
tude than 𝛽1, which increases both the heterogeneity as measured by the exact Q statistic (see Equation 9 in Supplementary
Section E1) and the absolute magnitude of weak instrument bias relative to that experienced when estimating 𝛽1. This
adversely affected the coverage of the estimates. This heterogeneity is further exaggerated with even weaker instruments
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(F = 10), leading to our approach not being able to correctly assign instruments to either S1 or S2 (Supplementary Section
F). If this case is encountered in practice, we recommend use of the single slope model instead.

When applying the full Bayesian implementation of BESIDE-MR in Scenario 6, we noticed an important feature most
prominent when there was a large imbalance in the relative sizes of S1 and S2. In this case, the M-H algorithm can switch
from estimating the posterior for 𝛽1 to estimating the posterior for 𝛽2. This problem is referred to as “label switching.”35

In our applied analysis in Section 5, we discuss this issue in more detail, and our proposal for addressing it.
Figure 3 gives further insight into how well the DL and full Bayesian implementations can correctly partition the SNPs

into clusters. The x-axis shows the true ratio of SNPs in S1 and S2 and the y-axis shows mean PPI for true S1 and S2 SNPs
separately. For the DL approach (Figure 3), true S1 and S2 SNPs are correctly assigned higher PPI for S1 and S2 cluster
respectively when there are approximately equal numbers of SNPs in S1 or S2 (ie, 25:25, 30:20, or 20:30), but true S2 SNPs
have the same PPI for the S1 and S2 clusters when the ratio is more unequal (ie, 10:40 or 40:10). This is because the DL
approach more aggressively prefers to estimate one parameter only, and treats minority SNPs as outliers (eg, assign to
S0). By contrast, PPI for the full Bayesian approach is much more constant across all ratios and is also consistently lower.
When the S1:S2 ratio is balanced, both implementations correctly identified S1 and S2 instruments. However, as explained
above, due to greater magnitude in heterogeneity in estimating 𝛽2, both implementations struggle to identify S2 SNPs
with weaker instruments (Figures S7 and S8).

If an SNP increases the overall heterogeneity (𝜏2) in either cluster, BESIDE-MR increasingly classes it as belonging to
S0 (neither S1 nor S2). Using a simulated example, Figure S9 demonstrates that the further the SNP is from either of the
slope lines, the higher (darker in color) the probability it belongs to neither cluster.
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F I G U R E 3 Box plots of PPIS1
(A, B) and PPIS2

(C, D) of true S1 and S2 instruments for Scenario 5. x-axis shows the true ratio of
instruments in each cluster (S1:S2), and the y-axis is the average PPIS1

and PPIS2
of 1000 simulations. (A, C) The DL implementation, and (B,

D) the full Bayesian implementation. PPIS1
and PPIS2

are the posterior probability of an SNP being included in S1 and S2 cluster respectively
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(A) One-component : DL estimate
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(B) One-component : full Bayesian
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(C) Two-component : DL estimate
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(D) Two-component : full Bayesian

F I G U R E 4 AMD and HDL: Scatter plot of the relationship between SNP-outcome and SNP-exposure association, where the filled
SNPs had PPI > 0.75. (A, B) The one-component model for DL and full Bayesian approach, respectively, and the solid line is the estimated 𝛽.
(C, D) Two-component model for DL and full Bayesian approach respectively, and black and gray colored SNPs are instruments that had
strong evidence for cluster I1 that estimated 𝛽1 and I2 for 𝛽2, respectively. The solid lines are the estimated 𝛽1 and 𝛽2

5 APPLIED EXAMPLE: AGE-RELATED MACULAR DEGENERATION AND
CHOLESTEROL

Age-related macular degeneration (AMD) is a painless eye-disease that eventually leads to vision loss. Recent GWAS have
identified several rare and common variants located in gene regions that are associated with lipid levels,36 fuelling specu-
lation as to whether the relationship is causal.37,38 To this end, a multivariable MR analysis was performed by Burgess and
Davey,39 which provided evidence to support a causal relationship between AMD and HDL cholesterol but not with LDL
cholesterol and triglycerides. In follow up work, Zuber et al40 fitted a multivariable MR model using BMA, with a total of
30 separate lipid fraction metabolites acting as the intermediate exposures. Out of the 30, large particle HDL cholesterol
(XL.HDL.C) had the highest inclusion probability as a risk factor for AMD.

Although multivariable MR approaches can remove bias due to pleiotropy via known pleiotropic pathways (in this
case, other lipid fractions), they can be much more challenging to fit, especially when the correlation between the included
exposures is high. For this reason we now revisit this data and use our univariate MR approaches to probe the causal
relationship between XL.HDL.C and AMD.

For our three-sample MR,41 we selected 27 instruments from the METSIM study,42 the association of G-X and G-Y
summary statistics for the chosen instruments are extracted from Kettunen et al43 and Fritsche et al.36 To avoid severe
weak instrument bias,44 instruments were chosen based on their individual F-statistics with XL.HDL.C to be greater than
3, which gives combined mean F-statistics of 10. A scatter plot for these data is shown in Figure 4. The results for our
various data analyses are given in Table 5.

When one-component causal models are fitted to the data, all methods estimate a positive causal effect, with
BESIDE-MR and IVW giving the largest and smallest effect estimates, respectively. This is not surprising because the
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T A B L E 5 Estimates for the causal effect of a unit increase in XL.HDL.C on the risk of AMD using a range of methods

Parameters Estimator Mean
95%
Lower Interval

95%
Upper Interval

Standard one-component approaches

𝛽 IVW 0.0251 −0.3493 0.3995

MR-APS 0.0672 −0.2997 0.4341

MR-RAPS 0.4567 0.1350 0.7785

BESIDE-MR: One-component model

𝛽 DL estimate 0.8331 0.5332 1.2679

Full Bayesian 0.8149 0.5050 1.2105

𝜏2 × 104 DL estimate 0.0024 0.0000 0.0000

Full Bayesian 0.3773 0.0833 1.4330
BESIDE-MR: Two-component model

𝛽1 DL estimate 1.0219 0.6229 1.6596

Full Bayesian 0.9027 0.4998 1.4966

𝛽2 DL estimate −0.8212 −1.2022 −0.4983

Full Bayesian −0.5948 −1.2456 1.0716

𝜏2
1 × 104 DL estimate 0.0033 0.0000 0.0000

Full Bayesian 0.3435 0.0807 1.2606

𝜏2
2 × 104 DL estimate 0.0061 0.0000 0.0000

Full Bayesian 0.3735 0.0823 1.4568

IVW estimate is known to be vulnerable to weak instrument bias and is biased toward zero in this setting. Figure 4A,B
shows instruments with high probability of inclusion (PPI > 0.75), using our two implementations. The DL approach is
selecting or de-selecting instruments more aggressively than the full Bayesian approach.

Next, we fit our two-component causal model, which offers increased robustness to SNPs violating the InSIDE
assumption. Interestingly, we see that this estimates two distinct causal effects of opposite sign (Table 5). For the DL
approach, approximately 6 SNPs have evidence for inclusion (PPI > 0.75) to each of the 2 clusters, see Figure 4C. For the
full Bayesian approach, 4 instruments have evidence of inclusion in the set identifying a positive relationship and only
SNP rs903319 for the negative relationship (hence 0 is within the credible interval for this smaller set), see Figure 4D.
Figure S10 shows PPI for each instrument.

The DL approach estimates 𝜏2 to be zero. First-order weights were used to derive the Q-statistics that form part of the
DL estimate for 𝜏2 (shown in Supplementary Equation 9) which could potentially have led to an underestimation of the
amount of heterogeneity with weak instruments.8

Our tentative conclusion is that a small proportion of InSIDE-violating SNPs act to reduce the apparent causal effect of
XL.HDL.C on AMD detectable by a one-component model. Once this set has been accounted for within a two-component
model, this increases the evidence in favor of a causal role of XL.HDL.C on AMD further. Our results are consistent with
Zuber et al40 who also found subsets of SNPs which suggested qualitatively different conclusions about the causal role of
XL.HDL.C on AMD.

5.1 Sensitivity with penalization for model complexity

In the simulations, the penalization parameter for model complexity, 𝜂 is zero, here we vary 𝜂 between −5 and 5 for
the one-component BESIDE-MR. Large negative 𝜂 would force BESIDE-MR to favor models with fewer instruments
and large positive 𝜂 would favor many instruments (Tables 6 and S9 for 𝜂 2-5). Furthermore, the heat map of 𝜂 and
PPI in Figure 5 shows that the PPI decreases with 𝜂 in general, however there are a few instruments that have consis-
tently higher probability for inclusion and rs261342 is never chosen. The overall causal estimate did not change with
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(B) Full Bayesian

F I G U R E 5 AMD and HDL: Heatmap of 𝜂 sensitivity on the inclusion probability of each instrument for one-component model with
DL estimate (A) and full Bayesian approach (B)

𝜂, but with fewer instruments the BESIDE-MR estimate becomes more uncertain. Similar patterns were found for the
two-component model, see Table S10. The similarity in causal estimates between ranges of 𝜂 demonstrates that our applied
example exhibits large heterogeneity and therefore only a handful of SNPs strongly influencing the results. The inclu-
sion probability is reduced for most instruments, however the inclusion probability for the originally assigned cluster
(when 𝜂1 = 𝜂2 = 0) is still higher than that for the other clusters which further demonstrates the robustness to change in
𝜂 (Figures S11 and S12).

In the simulations, two-component BESIDE-MR tends focus on estimating one 𝛽 when there is an imbalance of instru-
ments in clusters. However, in this sensitivity analysis, BESIDE-MR consistently estimates two separate slopes over all
choices of the model complexity penalization terms. This gives us confidence that the clusters are both real and robustly
identified.

5.2 Detecting and adjusting for label switching in the full Bayesian model

The trace plots in Figure 6A,B show that the DL implementation consistently identifies two separate distributions for 𝛽1
and 𝛽2, which are centered around 1.02 and −0.82, respectively. This is not the case, however, under the full Bayesian
implementation. Trace plots in Figure 6C,D show that the chains for 𝛽1 and 𝛽2 jumping between two distinct values. This is
commonly known as “label switching.” One accepted approach for dealing with label switching is to re-allocate iteration
labels from the MCMC output.35 We adopted this approach, using a K-means clustering analysis.45 Before K-means correc-
tion, the posterior means of 𝛽1 and 𝛽2 were 0.13 and 0.18, respectively. K-means analysis clustered 181 186 iterations cen-
tered at 0.90 and the second cluster contains 218 815 iterations with mean of−0.59. We re-assigned the estimates (to 𝛽1 and
𝛽2) accordingly (see Figure 6E) which gave new posterior distribution with mean and credible interval shown in Table 5.
This issue further emphasizes the importance of carefully implementing the fully Bayesian approach, and for checking
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F I G U R E 6 AMD and HDL: Trace plots for 𝛽1 and 𝛽2 from the full Bayesian (A, B) and DL implementations (C, D). And combined 𝛽1

and 𝛽2 for full Bayesian (E)

MCMC output for convergence issue. An alternative approach to dealing with label switching is to impose an order restric-
tion on the parameter space, for example so that 𝛽1 > 𝛽2 (we thank a reviewer for this suggestion). However, this lead to
poor mixing in the MCMC run which we could not adequately address and we did not pursue this approach further.

6 DISCUSSION

In this article, we propose a BMA approach for two-sample summary data MR that offers robustness to pleiotropy and
weak instruments. Our approach can be viewed as a Bayesian extension of the classical MR-RAPS approach. Rather than
assuming, as MR-RAPS does, the InSIDE violating SNPs are small in number and can be effectively penalized in the
analysis, our two-component formulation allows many invalid SNPs to be incorporated into the analysis to identify a sec-
ond slope. We were able to demonstrate the potential utility of this extended model in our applied example to uncover
sub-signals in the data that would be missed by conventional methods. We explored two implementations of BESIDE-MR,
namely the full Bayesian and the simplified DL implementation. Our simulations showed that the DL implementation
generally performed well, and led to a more aggressive selection of SNPs as either in or out of the model than the full
Bayesian approach. It was also much more straightforward to fit, achieve convergence and in our applied analysis did not
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suffer from label switching. Despite the fully Bayesian implementation requiring more computational time and careful
consideration of the MCMC output, it is far better at detecting small effects and consistently identifying outlying instru-
ments. In future work we will attempt to improve the reliability of the full Bayesian approach. Specifically, we plan to
create a label switching algorithm46 for BESIDE-MR output and specify a more sophisticated procedure for optimizing
the tuning parameter for each model parameter separately. In the meantime, we urge users of the full Bayesian approach
to manually adapt the tuning parameters and carefully monitor the mixing and convergence of the MCMC chains, which
are the essential aspects of the analysis. We also remind the reader that the number of iterations to reach convergence
increases with the number of instruments. As seen in Supplementary Section E2, diagnostic tools such as performing
multiple chains with different initial values and trace plots are useful in this regard. For a comprehensive tutorial, see
Albert47 and Lunn et al.48

A useful additional output from our BMA approach compared to classical approaches is the inclusion probability for
each SNP. This of course necessitates the specification of a prior probability of inclusion, which we fixed at a constant value
of 1

2
. Ideally, one should use informative priors where possible. Indeed, there are multiple sources of external information,

for example, epigenetic databases and bioinformatic webtools that could be used to achieve this. For example, a genetic
variant that is located in a protein coding gene relevant to the pathway between exposure and outcome of interest can
be given a higher inclusion prior probability. Conversely, we might give a much lower inclusion prior probability if the
variant is located in a gene that is expressed in multiple tissues. Even though here we are advocating the use priors as a
way of incorporating external biological knowledge, most of Bayesian methodology focuses on priors to maximize mixing
and speed of convergence.49 This is another possible future modification to BESIDE-MR.

The two-component model allows BESIDE-MR to estimate a second slope for an (approximately) equally sized instru-
ment set identifying a homogeneous MR estimate. This second slope could represent InSIDE violation or directional
pleiotropy, and was our original motivation. However, it is also an equally valid model to account for “mechanistic het-
erogeneity.” That is, different SNPs perturb the exposure in distinct ways that gives rise to two true causal effects, known
as mechanistic heterogeneity.34 This possibility of multiple causal effects is explored in recent work by Iong et al.34 In
future work we plan to explore the utility of BESIDE-MR in this alternative setting as well. However, to the best of our
knowledge, we do not know any approaches that can differentiate between InSIDE violation, directional pleiotropy, or
mechanistic heterogeneity without support of biological knowledge.

Zuber et al40 proposed a BMA implementation of multivariable MR,39,50 which averages over models incorporating
different numbers of exposures rather than instruments. Their approach is able to estimate multiple causal effects but
the estimation is subject to weak instruments bias. Our model can in principle be extended to multivariable MR too. For
a model with 10 exposure traits, this would necessitate the estimation of 11 causal parameters to account for InSIDE
violation via unmeasured pathways. This is a potential topic for future research. A frequentist counterpart of BESIDE-MR
in the individual-level data setting has been developed by Kang et al.51 In summary their first approach takes the union of
confidence intervals from models with different combinations instruments that is not rejected by the Sargan test, with user
specifying number of invalid instruments as a sensitivity parameter. Their second approach51 is a test for evidence against
the null hypothesis of no effect which is robust even with only one valid instrument. However, the former approach is
computationally intensive for many instruments and for the latter, like all frequentist tests, a P-value cannot distinguish
between there being insufficient data to detect an effect or if there is truly no effect. BESIDE-MR could also be extended to
correlated SNPs and 2 dependent samples, both will require additional weights to account for correlation between SNPs
for the former, and correlations between the SNP-exposure and SNP-outcome association estimates for the latter.
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